医学影像科出科小结范例6篇

医学影像科出科小结

医学影像科出科小结范文1

影像融合是大势所趋

“影像融合”是近来被国内医学影像界提及频率很高的一个词,7月19日,由中国医科院主办的“首届医学影像高峰论坛”在北京举行,该会议的主题即为“融合共赢”。复旦大学副校长、中华医学会放射学分会主任委员冯晓源在会议间隙接受《e医疗》专访时说:“影像医学必然要以影像为根本,但这个‘影像’不是CT、核磁等单种技术的图像,而是多种影像的融合。从目前以形态(解剖)为基础的诊断向功能诊断、分子水平诊断的发展过程中,影像融合是必经的阶段。”同样的内容,他在2012年的中华医学会放射学分会年会上也提到过。

中国医科大学附属盛京医院院长郭启勇认为,以内、外科为代表的临床学科对影像检查的依赖性日益增加;以产前诊断为代表的特殊学科对影像检查的需求认识不断加深;综合影像诊断的重要性被临床广泛认知……知识附加值在影像诊断中将日益显现。

诚然,影像对于临床有着非常重要的作用,而影像医学的发展也必须围绕临床进行,因为作为“医技科室”的影像科,其终极目的必然是为“医”提供服务。

影像融合概念的提出,与医学的发展方向有着直接的关系。未来医学的发展将朝着以预测(Predictive)、预防(Preventive)、个性化(Personalized)和参与性(Participatory)为特征的P4医学方向进行,这正在逐渐成为医学界的共识。冯晓源认为,个性化医学将是新医学模式的核心之一,而影像医学检查技术,将可能是个性化医学的核心和基础。改变诊断模式,适应新医学发展的要求,不仅能改变影像医学式微的趋势,更能让其走向具有广阔前景的康庄大道。影像融合,是大势所趋。

随着科学技术的发展,越来越多的影像检查设备开始提供标准DICOM格式的影像数据,从技术上解决了影像融合的问题。而影像学科因细分而导致的碎片化,却在阻碍着影像融合的进行。中国影像医学奠基人之一、中国工程院院士刘玉清教授一直提倡“大影像”,他呼吁所有的影像部门一起工作,把基于不同成像原理组成的图像放在一起,并在此基础上提取有用的信息进行融合。冯晓源认为,影像的融合更应该是学术上的融合,是各学科知识点在融合的图像上的呈现。他说:“影像医学应该从原来提供单纯的影像学信息――主要是形态学信息――向提供生物学信息进行转变。”

事实上,影像融合现在已经不仅仅只是影像医学的愿景,有些医院已经开始了相应的实践,中国医科大学附属盛京医院就是其中的一个先行者。目前,该院已经尝试将不同学科领域(如化学、计算机、生物工程)的人才引入影像学科,企图打造一个全新的融合影像学科。

三维重建与PACS

根据医学图像所提供的信息,可将图像分为解剖结构图像(CT、MRI、B超等)和功能图像(SPECT、PET等)。解剖图像以较高的分辨率提供了脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像分辨率较差,无法提供脏器或病灶的解剖细节,但它提供的脏器功能代谢信息是解剖图像所不能替代的。由于成像原理的不同所造成的图像信息局限性,使单独使用某一类图像的效果并不理想。这就需要对影像进行包括图像融合在内的图像后处理,三维重建是其中的内容之一。

所谓图像后处理,是指对获取的图像进行处理、使之满足各种需要的一系列技术的总称,最典型的技术包括图像分割和三维重建。通过一定的图像分割操作,切除任意不感兴趣的数据集,仅保留要处理的部分。分割技术可以使医生排除无关图像的干扰,看得更清楚,自然得出的诊断结论也更准确。而三维重建则是根据一系列二维的医学图像,经过多重处理,提取不同物体的边界数据,得出物体的三维模型,并允许对模型进行显示、旋转、缩放等操作。三维模型的重构可以为医生提供多角度立体的视角,从而使医生方便、快捷地对病灶进行定量的分析和处理,提高诊疗水平和效率。

三维影像的获取有两种方式:设备获取和PACS获取,设备获取可分为CT、MR等设备自带工作站和专业的三维影像工作站。专业三维影像工作站功能强大,能够提供信息更丰富、品质更精细的三维图像,而另外两种途径获取的图像品质相对较差。

PACS作为一个获取、存储并提供调阅医学图像的综合应用平台,其看图模块能对图像进行各种二维处理,而三维处理功能并不是所有医疗信息化厂家提供的PACS产品都支持的功能。PACS可以集成三维后处理功能,这样就可以进行影像的三维重建。PACS是一个数字运行的平台,是一个更大的概念,重建后的三维影像可以通过PACS进行存储、传输和查看。

融合了三维影像后处理功能的PACS,以所获取的DICOM图像为基础,对其进行重建、分割等处理操作,使医生可以更全面地观察医学影像,从而扩充了PACS看图模块的功能,取得了更理想的诊疗效果。把图像分割和三维重建技术结合起来使用,将最大限度地发挥后处理功能。诊断医生通过医学PACS系统得到患者的图像信息,在看图模块中进行简单的处理之后,如果发现还不足以做出确切的诊断,就可以利用三维影像后处理系统先重建出患者检查部位的三维立体模型,分割操作可以去除不感兴趣的干扰部分,各种旋转平移操作可以给医生更多的信息,最终做出合理的诊断。

综上所述,三维影像后处理系统处理的影像来源主要是PACS,各方面都要得到PACS的良好支持,既可以成为PACS的辅助模块,也可以单独成为一个独立的软件系统。

三维重建的医学应用

三维影像的应用主要体现在临床上,比如在做手术时查看病灶和周围血管及组织之间的关系,帮助临床医生进行手术计划的制订。《中国放射学杂志》编辑部主任高宏说:“3D影像技术在疾病的诊断、治疗和基础研究方面有着广泛的应用,在肿瘤疾病上的应用更为广泛,很多肿瘤的介入治疗和放射治疗都是通过三维成像引导来完成治疗计划的制订的。”

除了高宏提到的肿瘤疾病的治疗,三维影像在骨科、心血管等临床外科的应用也较普遍。北京大学第一医院泌尿外科要求每个肾癌病例都要进行三维重建,有着一套严格的对肾癌进行三维重建的要求:重建哪几个解剖的位置、重建哪些血管和肿瘤的关系等等。该院呼吸内科开创了用呼吸内镜把肺气肿病变切除的手术,该院影像科主任王霄英评价:“内科把外科的活干了,开拓了一个全新的领域。”

不仅仅是在临床,目前三维重建在诊断、教学和科研方面的应用也已经初具规模。郭佑民认为,三维影像在放射科的应用会越来越多,“对于放射科医师而言,除了观察断面图像之外,结合3D技术可以为临床提供更多更丰富的诊断依据。”他说。

并不是所有的影像从业者都认可郭佑民的观点,在采访中部分放射科主任认为,作为诊断工具来讲,三维影像对放射科的帮助并不大。放射科医生一直都是通过二维影像做诊断,经过多年的专业训练之后,他们已经可以透过二维影像在脑海中重建三维结构,此外,三维影像并没有提供更多与诊断相关的信息。倒是对临床医生而言,三维影像更能帮到他们。

青岛大学医学院附属医院副院长董则在科研方面进行了探索,国家“十二五”科技支撑计划课题“小儿肝脏肿瘤手术治疗临床决策系统开发” 就是由他领衔的。董和他的团队希望在国际上首次将中国各年龄阶段儿童和成人肝脏进行数字化虚拟测量,建立中国儿童肝脏数据库和小儿肝脏肿瘤立体模拟手术系统。

在教学方面,郭佑民认为3D影像与2D影像相结合,有利于学生对影像学结构图像的理解和应用。“因为医学生从学习人体解剖课程开始,就逐步地建立了人体组织和结构的空间概念,而对横断面的2D图像理解不够透彻。借助3D图像可以更好地对照和理解每一幅2D图像与3D图像的关系,为后续的学习奠定基础。”他说。

三维重建的发展方向

三维重建在医学上的应用已经较为普遍,其重要性正在越来越多地得到认可。如何充分利用三维影像的优势,更好地为医学服务,学术、临床及产业界都在进行着积极的探索。

影像引导的放射治疗

影像引导的放射治疗(IGRT)是一种前沿技术,通过放疗前以加速器自带的CT进行扫描,采集并重建三维图像,与治疗计划图像配准后再实施治疗。这样可以克服因治疗摆位和肿瘤位置移动所造成的误差,确保在精确照射肿瘤的同时,将对其周围正常组织的损伤降到最低限度,全方位提高效果。它在三维放疗技术的基础上加入了时序的概念,可以说是一种四维技术。

IGRT可从定位、计划到治疗实施和验证等方面创造各种解决方案。它充分考虑了解剖组织在治疗过程中的运动和分次治疗间的位移误差,如呼吸运动、小肠蠕动、膀胱充盈、胸腹水、日常摆位误差、肿瘤增大/缩小等引起放疗剂量分布的变化和对治疗计划的影响等方面的情况,在患者进行治疗前和治疗中利用各种先进的影像设备对肿瘤及正常器官进行实时监控,并能根据器官位置的变化调整治疗条件,使照射野紧紧“追随”靶区,做到真正意义上的精确治疗。

高级影像中心

四川大学附属华西医院目前正在计划建立AVC(Advanced Visualization Centre,高级影像中心,也称3D中心或三维中心)。

西门子大中华区影像和知识管理总经理王峻介绍,AVC模式是以临床需求为中心而设计的影像信息系统,其所有的活动都是围绕着临床的某些诊疗需求而设计的。他说:“AVC改变了传统影像科的工作模式,使其更贴近临床科室的需求。AVC把大量之前只有在放射科才能访问到的高级图像处理软件的浏览权限向临床科室开放,使临床医生大为获益。AVC模式还将改变放射科的报告不受临床科室重视的尴尬状态,使得放射科的检查、处理和报告可以全面地为临床治疗服务,并为临床医生提供大量其需要的辅助信息。相信AVC能为医院诊断和治疗这两个重要的医疗行为找到更好的合作模式。”

华西医院放射科高级工程师王跃介绍,AVC所特有的各种结构化报告,能协助放射科在临床科室的亚专业和放射科的亚专业之间形成对接,这种一对一的沟通和协作,可以为临床中的不同疾病和亚专业提供更准确而有用的个性化、专业化报告,在提高放射科医生诊断报告价值的同时,也能提高放射科报告的利用率和实用性。

王跃说:“AVC的建设不仅能够大大加强放射科与临床科室的互动,使得临床更加需要放射科的工作以便更好地为患者服务,而且能够提升放射科自身的实力和水平。AVC代表了未来的放射科-临床科室工作模式,完全可以称为诊疗模式的一次革命。”

3D医学打印

据《健康报》今年7月报道,北京大学第三医院骨科刘忠军带领的团队在脊柱及关节外科领域研发出了几十个3D打印脊柱外科植入物,其中包括颈椎椎间融合器 、颈椎人工椎体及人工髋关节在内的三个产品已经进入了临床观察阶段。报道称,已经有近40位颈椎病患者和髋关节病患者在签署知情同意之后,植入了3D打印出来的骨骼。

3D打印技术,是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。3D打印技术又称“增材制造”,长期以来被应用于制造珠宝、电子产品和汽车部件模型,然而如今的工业3D打印机也在造福医疗领域,它们已经可以定制人体肝脏和肾脏的模型,而科学家们也正在研究如何用3D打印机打印胚胎干细胞和活体组织,目标是制造出能够直接移植到受体者身上的人体部位,先进的3D打印机目前已经开始走进医院。

医疗行业(尤其是修复性医学领域)存在大量的定制化需求,难以进行标准化、大批量生产,而这恰是3D打印技术的优势所在。目前,3D打印技术在助听器材制造、牙齿矫正与修复、假肢制造等领域已经得到了成功应用,且应用已经相对比较成熟。

但是,要想走进全球各地成千上万的医院手术室,3D打印技术还面临许多障碍:第一,用于制造器官模型的3D打印机售价在25万美元至50万美元,小医院难以负担;第二,大多数医生不会使用3D打印机,所以医院还需要技术人员来操作3D打印机并把医疗图像转换为可以打印的3D数据。

医学影像科出科小结范文2

儿科影像学一向不被学生所重视,所以要从思想上使生能够认识儿科影像学的重要性。儿科放射学不同于成人放射学,俗话说:“麻雀虽小,五脏俱全”,而且由于小儿患者年龄和疾病的特殊性,我们无法套用成人的标准进行诊断。所以,在教师的讲授和课堂教学相结合的方式进行学习的同时,借助网络和多媒体技术,提高学生对儿科疾病的认识,是非常有必要的。深刻理解和记忆概念,加上教学互动,充分发挥教师与学生的主观能动性,可以调动学生学习的积极性,从而在教学活动中形成教师与学生,学生与学生,教师与教师之间的多边互动交流。

不断提高医学影像学教学质量

1综合运用多种教学方法医学影像教学的幻灯片不仅应图文并茂,而且文字要简洁明了,概念准确,条理清楚,图像显示要求清晰、典型,其次在一张幻灯片上,还可以插入多幅图像及动画演示。因为影像显示是医学影像学教学的核心内容,这是由于医学影像学这门课的特点来决定的。为使教学更活泼、生动、形象,我们配套使用了一系列教学模具、教学录像。为了体现医学影像教学以图像学习为主的特点,我们利用先进的多媒体教学法结合病例分析,借助多媒体技术,给学生生动的体验;既充实了学生的基础知识,又拓宽了知识面,增加了新技术、新进展的学习与掌握。通过多媒体课件的动画旋转演示,课堂气氛活跃,学生更容易轻而易举地接受。比如,讲授小儿先天性心脏病章节时,采用小儿心脏CT血管造影(CTA)的动态旋转以及电影模式,全方位反映了小儿心脏的心内畸形及心外大血管畸形的情况。

学生过目不忘,在进入工作岗位后,就能迅速独立适应临床工作。综合运用影像学比较,通过对正常生理解剖学及临床治疗过程进行比较,找出病理学和影像学之间的异同,从而找出疾病发展的规律和特点,掌握疾病的发展趋势。在医学影像学教学中,将解剖学、生理学、病理学、临床医学、医学影像技术学和病理学影像、医学影像学等多学科结合起来,对不同设备产生的不同检查结果,疾病发展的不同阶段的特征,俗称同病异影、异病同影。将“理论联系实际,重视实践”作为总的指导思想。我们专门配置了电脑和投影仪用于影像图片示教,通过幻灯片演示典型病例,采用启发式提问分析病例的方式,调动学生的积极性,使其最大限度地掌握教学内容。

2加强医学影像实验课教学医学影像学是一门实践性很强的学科,我们在安排学生实习时,不是按检查设备分设实习岗位,而是按解剖部位分类设实习岗位,按系统分为若干个实习小组:影像技术组、小儿神经放射组、小儿心血管放射组、小儿消化道放射组、小儿骨科组等,使学生的知识结构更系统,更合理。我们的教学目的是使学生走上工作岗位后,无论是做临床医生还是影像学医生,都能正确选择检查的适应证,提高诊断的阳性率、准确率。

3建立儿科影像学教学片库,多给学生实践的机会对于影像学专业的学生来说,导师制的跟班临床带教学习成为其最主要的学习方法。但这种学习方法并不可取,我们在临床中遇到的病例不系统、不典型,这样不利于学生理解,常会将学生带入误区,使学生感觉一头雾水。当学生走上工作岗位后,遇到很多从未见过的病例后,就会挫伤自信心和学习的积极性。因此,我们在安排实习过程中,按照各个系统分门别类地将各种典型病例进行归纳,通过病例讨论的形式讲授给学生,系统讲授诊断和鉴别诊断方面知识,鼓励学生多参与阅片讨论会,多给学生创造实践的机会,让学生的知识更全面、更系统。

医学影像科出科小结范文3

关键词:影像医学;教学

中图分类号:R4 文献标志码:A 文章编号:1674-9324(2017)05-0080-02

自伦琴发现X线不久,X线即用于人体的疾病检查,并由此形成了放射诊断学。影像医学是以放射诊断医学为基础的涵盖多种影像技术的学科,如普通X线摄影、数字摄影(CR、DR)、数字减影血管造影、乳腺钼靶摄影、CT、磁共振成像、超声技术、放射性核素扫描(SPECT、PET)等等。近年来,影像设备不断改进和完善,检查技术和方法也不断创新,影像医学与临床工作息息相关,影像医学的发展使得影像医学的教学也越来越受到重视。

一、影像医学的现状及进展

1.涉及内容广泛、繁杂,其基础学科几乎涵盖了所有的医学基础课程。当今医学影像诊断的四大影像技术是CT、磁共振成像、核t学成像和超声成像[1]。前面提到了影像医学包含内容的广泛,而且基于这四大技术的分支学科和边缘学科也越来越多,不仅各有侧重,而且相互交叉。

CT、MRI以及超声三种成像技术所获得的影像基本为解剖结构成像,图像清晰。而核医学成像不仅可以显示脏器或病变的解剖学结构,同时还可以提供有关脏器和病变的血流、功能、代谢和受体密度的信息,甚至是分子水平的生物化学信息,因此解剖学、生理学、生物化学、病理学、药理学、分子生物学等等基础医学学科都与影像学有着密切的关系。

2.学科发展快,各种影像检查技术都有突破性进展。近年来各种成像技术均有很大的发展。超声利用更多的声学参数作载体,以获得患者更多的生理、病理信息,血流信号,通过数字化等途径努力提高声、像、图质量,使其能显示更微细的三维、四维组织结构。对比剂增强和动态CT、磁共振波谱和灌注显像技术等可显示血流动力学、分子微观运动、生理、功能、代谢变化以及化合物定量分析等。新的挑战也促使核医学向发挥自己优势的方向快速发展[1]。随着放射性药物的发展,核医学作为生物学、医学与核能技术相结合的产物,也随着进入一个全新的发展领域――分子核医学。

而CT、MRI、超声和核素显像设备在不断地改进和完善,检查技术和方法也在不断地创新,影像诊断已从单一依靠形态变化进行诊断发展成为集形态、功能、代谢改变为一体的综合诊断体系[2]。

3.设备发展快,多学科影像融合。从影像诊断技术的发展来看,70年代主要是传统X线影像、核医学及超声;从信号角度来看,均以模拟方式进行数据处理。但由于计算机技术迅速发展和数字影像技术的导入,现在所有的装置均实现了用计算机存贮图像。

随着图像融合技术的发展,一种全新的影像学(解剖―功能影像学)形成了,将CT、MRI解剖结构影像与核医学SPECT和PET获得的功能代谢影像相叠加,更有利于病变精确定位和准确定性诊断,其代表设备为PET/CT。现在SPECT/CT、PET/CT和PET/MRI均已应用于临床。

二、影像医学教学中存在的问题及其原因分析

1.教学的步伐相对慢,实际应用能力差。相对于影像技术的飞速发展,影像教学的步伐相对缓慢,究其原因,大致有几点:其一,教材和教学大纲的限制,教材内容相对陈旧,教学大纲有时滞后于临床实际的发展;其二,教师自身知识更新速度慢、拓展能力差,对相关学科的关注度欠缺;其三,教师对PACS系统利用不足。

2.影像医学各专业独立运行,不利于学科发展。我国很多医院的影像专业,传统影像(包括放射、CT、MRI)、超声、介入、核医学等多年来都是独立运行的科室,并未搭建大影像学科发展平台,或者只是一部分专业的简单合并而形成“大影像”科。在这种传统模式下,学生系统的理论知识与临床技能培训缺乏整体安排,由此培养出的学生临床工作能力局限,综合能力差[3]。

三、解决影像医学教学中所存在问题的教学策略

1.调整教学模式,培养学生的综合分析能力。现行的教材特点是各种影像技术都是相对独立的学科,每门学科分别介绍各系统中各器官不同疾病的不同影像表现,而就某一疾病而言,需要我们把它的超声、放射、甚至CT、MRI的影像特点比较出来,才能让学生在临床工作中把所有资料结合起来。

据此,我们可以整合各种影像资源集中安排教学,即X线、CT、MRI及超声相结合;影像、临床、解剖和病理结合的新模式,使学生在学习过程中形成立体的、三维的影像概念,建立起各种影像间的立体联系,增强学生多方面影像的认识能力[4]。同时,在教学中必须严格遵守临床诊断思路,不仅要根据影像图像分析病变的部位和性质,还必须要结合临床表现、实验室检查等资料,做出全面、正确的分析,展现给学生一个影像学的视角,使学生从影像角度对疾病有更全面的认识。

2.分层次教学,将相关内容紧密结合。解剖学是医学影像教学的基础,病理改变是医学影像教学的重点[5]。这要求教师牢固掌握系统、局部、断层解剖学,能回顾授课内容所涉及部位的解剖结构,并与病理、影像对照,加深理解。影像学中的三维重建技术是展示解剖学位置及相邻组织器官关系的好方法[6,7],三维重建后的图像立体感强、解剖结构显示清楚,还可行多方位多角度观察,对认识正常及病变都有着很大的帮助,而且还可以复习解剖知识,利用其进行手术入路等的设计,将影像与临床紧密结合。

3.提高教师自身素质,加快知识更新。对于日新月异的影像医学,教师知识更新速度要快,不仅是专业知识、计算机知识,而且要跨专业、跨学科,比如以前具备了X线、CT、MRI知识,现在还要学习核医学、超声知识,及时把临床的新知识融合到教学中[8]。

4.互动式教学,学与教相互促进。学生们感兴趣的是怎样才能将所学的知识运用到临床实际中,影像学教师应注重围绕问题进行教学[9],而影像本身是一门有着生动的图像的学科,因此我们更应该注重理论和实践的结合,学与教相互促进。读片会是一种很好的途径,在读片的过程中,教师鼓励学生参加并积极发言,听取各种观点,与老师同学相互探讨,既可以让理论知识得以应用,还能及时发现教学过程中的不足;也可以在合适的时机让学生主持阅片工作,激发他们的自主潜能,提高自学能力和独立思考能力[10];参加随访病例的学习及病例讨论也是提高学生知识运用能力的好办法,让临床验证影像,让影像回归临床。另外,在PACS系统上动手操作也可以作为一种补充手段。

现在,医学成像技术仍在不断变革,一方面是前述各种系统性能的改进,另一方面还在探索新的成像技术。影像教学的任务仍然艰巨,要求我们不断总结、积极探索,使影像医学真正成为临床的“眼睛”,在R床工作中发挥愈来愈大的作用。

参考文献:

[1]李少林,王荣福等.核医学[M].北京:人民卫生出版社,2013:1-2.

[2]吴兴旺,王乐,刘斌.非影像专业的影像学教学体会与探讨[J].安徽医药,2013,17(3):534-535.

[3]段小艺,徐贵平,强永乾,郭佑民.“大影像”学科发展对医学影像专业研究生培养的要求及策略[J].西北医学教育,2015,23(4):618-620.

[4]刘东宇,宋玲玲.医学影像学教学改革实践与探讨[J].赤峰学院学报(自然科学版),2014,30(2):255-256.

[5]袁小平,陈建宇,李勇等.TBL教学法结合影像诊断思维在医学影像学教学中的应用[J].中国中医药现代远程教育,2012,10(14):71-72.

[6]黎杨梅.医学图像三维重建[J].襄樊职业技术学院学报,2012,11(1):49-51.

[7]廖胜辉.数字化三维重建技术在解剖教学中的应用[J].中国科教创新导刊,2011,(13):69-69.

[8]赵绘萍,张红梅,蒋高民等.影像医学的教学如何适应影像医学快速发展[J].吉林医药学院学报,2014,35(1):74-75.

医学影像科出科小结范文4

关键词:医学影像学 改革

Doi:10.3969/j.issn.1671-8801.2014.02.300

【中图分类号】R-1 【文献标识码】B 【文章编号】1671-8801(2014)02-0212-01

在医学影像学的教学中,以学生熟练掌握并运用理论知识、不断地更新知识形成良好的临床思维方式、适应日新月异的学科发展需要为教学目标。但往往目标与现实存在很大差距,我们如何来达到满意的教学目标是非常值得关注的。本文拟从教学思路和教学方法两个方面进行改革,以期在医学影像学教学中达到满意效果。

1 改革教学思路

随着科学水平的进步,医学影像学也有了很大的发展,如果还采用传统的教学思路,那是远远不能满足学生发展的需求,另外,医学影像学的理论学习内容太多太繁琐,学生在短短几年大学学习生活中不可能完全掌握,所以必需结合现今科技发展水平和临床需求,对教学的思路进行改革。

1.1 制定适应影像学新发展的《教学大纲》,改革教学内容,确立影像专业学生应该掌握的常见病、多发病,熟知和了解的少见病、罕见病影像学内容;确立增加重点、难点、热点病种的影像学诊断的内容;确立介绍各系统影像学的新技术、新方法以及临床与影像学结合研究进展、疾病介入诊治、不同影像学诊断方法的选择等内容。

1.2 将教学内容中影像诊断与临床基础知识相结合,针对影像学专业本科学生较临床学专业学生病理、病理生理等基础知识相对较薄弱的特点,确立重点讲解各系统基本病变的影像学表现、每章中的疾病都以简要的概述、临床与病理、影像学的表现、鉴别诊断的方式编写,有针对性的复习了基础知识,有利于学生理解和掌握所学影像学诊断内容。

1.3 建立影像学教学图片库。在多年教学中积累的近4千幅具有典型临床病例的X线、CT、MRI教学图片中挑选优质影像800余幅图片,按照临床疾病进行分类。制作PPT光盘、教材中影像图片的编写和制作教材配套光盘。

1.4 教学每章讲解学习目的、学习要点、学习小结、复习思考题,学习小结包括学习内容和学习方法,学习内容以挂线图形式表现。使学生在掌握学习要点的同时启发学生自主学习能力和创新思维,提高学习效率。

2 改革教学方法

传统的教学方法是教师将教学内容以讲授的方式灌输给学生,学生则处于被动的状态进行接收,学生虽然听了一遍,但印象不深,没有通过大脑的思考和过滤,这样对知识的掌握及技能的掌握,起到的作用不明显。因此,为了提高学生的学习效率,急需对教学方法进行改革。

2.1 应用多媒体教学。把传统的教学模式和多媒体技术辅助教学有机地结合起来,充分发挥两者优势,利用多媒体技术,充分利用现代化的影视教学手段,最大限度地展示教学内容,通过图文并茂、语言、声音的完美结合,使授课内容生动、有趣,激发学生学习的积极性和自觉性。

2.2 实行PBL教学。以问题导向式学习(problem―based learning,PBL)的教学方法是一种较好的教学模式,由学生提出问题并在老师的指导下,以小组讨论的形式进行案例分析,在讨论和分析的过程中自行查找资料、学习相关知识,以培养学生的创新思维以及发现问题、 分析问题、 解决问题的能力,培养学生主动学习、终身学习的良好习惯,提高学生临床工作和科研实践的综合能力。同时通过问题引入,查阅相关文献,全面了解问题,及在问题本身加以扩展学习,进一步掌握更多相关知识点。

随着科学技术的发展,医学知识的不断更新,传统的教学模式已不能满足现今影像教学的需求,从而使得教学的结果与期望相距甚远,因此,我们要转变教育思想,更新教育观念,不断深化教学改革,以培养适应社会需求的医学影像人才为最终目标。

参考文献

[1] 邓红艳.应用多媒体讲授药物化学[J].药学教育,2000,16(4):14-21

[2] 尹艳艳,公惠玲,李维祖,等.PBL教学模式在药理学实验教学中的初探[J].安徽医药,2010,14(2):245-246

[3] 魏敏杰.PBI教学模式与传统授课模式在药理学教学中的应用效果评价[J].中国药理通讯,2007,24(4):49-50

[4] 唐光健,刘文亚,秦乃姗.临床医学专业学生医学影像学教学改革初探[J].中华医学教育杂志,2010,30(4):542-544

[5] 王亚蓉,陈玲,王玮,等.浅谈医学本科生医学影像学教学的改革[J].西北医学教育,2006,14(S):147-150

[6] 强永乾,张蕴,李妙龄.留学生医学影像学教学实践和思考[J].西北医学教育,2005,13(2):208-209

医学影像科出科小结范文5

关键词:基层县医院;影像学;带教;人才

1基本现状及问题

1.1科室对前来实习、轮转人员的学习管理、重视不够

由于医院病人多,工作比较繁忙,科室工作人员的带教意愿不高,带教的能力水平有限,讲课及读片不多。硬件设施不足,科室已经有PACS系统,但工作电脑有限,不能提供给实习、轮转医生专门工作学习的电脑,影像科没有示教室及投影仪,不利于读片交流、教学及疑难病例讨论。

1.2学生实习时间短,学习积极性不高

实习生、轮转医生由于实习、轮转时间短,有一些实习同学、轮转医生学习积极性不高,对自己要求不严格,甚至出现走过场等问题。

2解决、应对的办法

2.1加强组织领导与管理

(1)医院、科室设立教学干事,安排专人负责管理实习生、轮转医生,负责人应具有中级以上职称,需要有丰富的临床工作经验,有扎实的放射诊断学基本理论知识,有强烈的责任心等。其职责就是负责管理实习生、轮转医生学习指导和思想动态,与科主任配合好、管理好、带教好实习生和前来轮转的医生[1]。(2)科主任应重视实习、轮转医生的教学与管理,安排好实习生、轮转医生的班。科主任要鼓励所有工作人员积极带教,组织科室相关带教工作人员为实习生、轮转医生阅片、讲课及疑难病例讨论等工作,把带教工作与医院科室的绩效及奖惩制度挂钩,以便促进、提高医生带教积极性[2]。同时应向医院领导反映在条件允许的情况下不断改善教学设施条件。科主任要安排科室工作人员轮流到省内外上级大医院进修学习,以提高诊断、技术水平和带教能力。要了解学生的思想动态、组织纪律,定期召开教学座谈会,主要了解同学们实习的情况,要求学生对科室的教学提一些意见、指出有哪些不足及需要改进的地方。

2.2提高实习生、轮转医生设备操作能力,加强诊断技能的培养

对于到科室实习的学生、轮转医生,在实习中不仅应掌握一定的阅片和报告能力,还应了解常见的各种影像设备的一般操作和X线辐射的防护[3]。(1)岗前培训。进入科室实习的学生、轮转医生,由科主任或科室教学干事带他们了解科室及设备情况,了解、熟悉科室工作流程,讲清楚相关注意事项。科主任为他们排班,安排上班时间;教学干事作学习动员,分配到不同的工作岗位由值班医生或专门的老师带教。(2)操作技能训练。尽管科室病人比较多,工作繁忙,作为老师要指导实习生、轮转医生,在条件允许的情况下要尽量让学生参加CT、MRI等设备上机操作,老师应该放手不放眼,有老师在场,学生操作中的问题能及时得以纠正;当然,老师不在场时,学生不要单独给患者做检查,以免造成差错和纠纷。老师要把自己工作中对设备操作的经验和教训以及注意事项毫无保留地传给实习生,使他们少走弯路,使实习生较好完成实习教学大纲的要求[4]。只有这样实习生才能更好地了解、熟悉设备,将来在自己的工作岗位上更好地使用医学影像学的各种新进设备。(3)诊断技能的培养。影像诊断学是以解剖、病理为基础,形态改变为主,实践性较强的学科,单凭理论知识很难想象出各种疾病的形态表现。必须通过大量阅片、书写一定量的报告,才能了解各种疾病的形态特征,应把理论知识和临床诊断工作相结合。我们对实习生、轮转医生的要求主要是对常见病、多发病的诊断,强调对X线、CT、MRI基本影像表现的认识[5]。学习初期主要是了解、熟悉PACS工作站的使用,通过PACS系统查阅大量影像图像,认识、熟悉疾病基本影像表现,后期鼓励学生参与书写部分报告,以加强对各种疾病认识、理解和影像学的诊断。指导学生在书写报告时要按照一定的顺序描述病灶的特点,如病灶的部位、数目、大小、密度、边缘,以及病变及与周围脏器的关系,重要的阴性表现简单描述,规范诊断报告书写,避免描述过于简单,杂乱无章,重点不突出,阴性过于描写,不知道哪些该写或哪些不该写,医学术语和诊断术语混用,提出诊断依据和鉴别诊断,老师修改后签名。在实习、轮转学习过程中,鼓励学生多提问,参与讨论和交流,以便提高学习的积极性、主动性[6]。(4)X线辐射防护。实习生的自身防护意识差,对患者和陪护的防护不重视。总认为使用CR、DRX线的量已大大降低,X、CT机房有防护,因此,尤其对患者受照部位以外的防护很难引起重视。应提醒学生注意的是:加强防护意识,要遵循既给患者检查疾病,又可以尽量减少不必要辐射照射的原则[7]。特别是儿童和生育年龄的年轻人,能缩小照射范围应尽量缩小;能用低剂量检查部位,绝不用高剂量照射;对不检查或敏感部位最好用铅衣(铅橡皮)遮盖,陪护人员在机器曝光时应离开检查室。一句话,要注意自身防护,也要重视防护患者及相关人员。总之,影像学是医学发展最快的学科之一,在临床中的作用和地位越来越重要。尽管基层医院影像学的带教有主、客观因素的问题,但是也担负着培养影像人才的重任,因此要加强自身学习,不断思考探讨,不断创新,不断充实自我,才能不断提高诊断技术水平和带教质量,为培养符合医院发展需要的新型影像技术人才做出应有的贡献。

参考文献

[1]孙小丽,王仁贵,温廷国,等.医学影像医师规范化培训带教工作的实践与思考[J].中国现代医生,2016,54(29):150-152.

[2]常泰,张斌斌,郑新.任务驱动教学法在中医住培医师放射科实习带教中的应用初探[J].中医教育,2015,34(3):56-58.

[3]吴芳,李军,芦桂林.临床专业住院医师超声科规范化培训的实践与体会[J].农垦医学,2017(2):187-188.

[4]李艳.医学影像专业超声实习带教思考[J].教育界,2014(3):83-83.

[5]张晓雯,解丽梅.医学影像专业本科超声诊断实习带教体会[J].继续医学教育,2017,31(4):65-67.

[6]孙艳平.医学影像专业产前超声诊断实习带教体会[J].中国卫生产业,2016,13(14):134-136.

[7]周山,王海波,黄文亮.医学影像专业实习生带教体会[J].中国误诊学杂志,2012,12(13):3252-3252.

医学影像科出科小结范文6

BME的重要目标之一是发展非侵入式的诊断技术用于治疗和诊断疾病。生物医学影像是一种非常有效的对结构与功能进行诊断的非侵入式技术。现在,生物医学影像学已成为现代化医院的主要标志之一,它是临床研究的一种主要工具,也是医院开展新技术、新业务的重要基础。生物医学影像学是如此的重要,美国国立卫生研究院(NationalInstitutesofHealth,NIH)在20世纪初就改变了它们传统的疾病和器官的机构模式,建立了国立生物医学影像学与生物工程学研究院(NationalInstituteofBiomedicalImagingandBioengineering,NIBIB)。而在我国国家基金的医学科学三处,影像医学不再是BME中的一个分支,而是被放到与BME同等的地位。美国最近开展的一项被认为可与人类基因组计划相媲美的脑科学研究计划,正是生物医学影像学在神经科学领域的巨大应用。根据美国劳工部的统计显示,BME专业是美国就业领域中需求增长最快的专业,从2010年到2018年预计有72%的增长,而生物医学影像学又是BME中增长最快的领域。

生物医学影像学随时间在飞速地发展,被广泛应用在临床和基本生理和生物学的研究之中。大量的新发明出现在生物医学影像领域,被用于创建新的影像模式;提高图像的空间与时间分辨率与对比度;提供更为方便使用的影像数据分析和可视化;进行远程医疗等。生物医学影像学是一门交叉学科,它的飞速发展不仅需要优秀的生物医学影像从业人员,也对生物医学影像的教育提出了更高要求和全新的挑战。如何提高生物医学影像人才队伍的综合水平,已迫在眉睫。

二、生物医学影像学教育

1.生物医学影像学从业者的变化

现代化的大型生物医学影像设备是集物理、材料、机械、电子、计算机、自动化、网络等多种技术于一体的精密仪器。它的操作、维护和保养均十分复杂,对操作者的素质要求比较高。数十年前,大型生物医学影像设备的从业者是一些受过医学图像培训的物理学家。随后,这项工作主要由本科物理专业、研究生医学物理专业的毕业生充当。而在今天,大型生物医学影像设备的操作者主要来自于BME专业毕业的本科生和研究生。BME的教育由于融合了物理科学、工程方法和技术以及生物医学,使得BME专业的毕业生极为适合生物医学影像学方面的工作。生物医学影像学从业者的变化给人们提出了三个教育中的问题:是否所有的BME学生都需要对生物医学成像有一些基本的了解和认识?BME专业的学生需要掌握哪些生物医学影像学知识?如何使学生更好地了解、设计及使用成像系统?

2.生物医学影像学的知识结构和应掌握的基本知识

生物医学影像学的知识来自于多个学科领域,包括电气工程学、机械工程学、生物物理学、数学、物理学、材料科学、生物学等。生物医学影像学需要具备基本能量物理、辐射、辐射能量与物质的交互、硬件设计与实现、数据收集、分析和可视化、组织器官基于图像的建模、数学变换、信号和图像处理、软件工程、信息论以及高性能计算等多方面的知识。由于生物医学影像学在BME教育中的重要性,BME的学生即使未来不从事相关的工作,他也应该学习生物医学成像和生物医学图像处理的基础课程。他们应该理解常用图像模式的基本成像原理和它们的优缺点,如何进行基本的图像分析与处理,常用模态图像的基本解释等。而未来准备从事相关工作的BME学生,则应该选择一到两种影像模式,围绕它们的具体应用进行更深入的学习与研究。

3.生物医学影像学教育中存在的挑战

在生物医学影像学教育中,存在着一些挑战阻碍着高质量的生物医学影像学教育。这些挑战包括有限的动手实践、教科书中的知识老化等。生物医学影像学是一门理论与实践、原理与应用紧密结合的学科,实践教育可以使学生快速有效地掌握必要的基础理论、基本知识,节省时间,提高授课的效率。医疗机构对生物医学影像专业大学生的实际操作能力要求越来越高,因此,必须提高医学影像工程专业实践教学,提升学生的就业竞争力。而在生物医学影像学教育中,使用实际影像设备进行教育,往往由于安全问题和成本高而变得不可行。例如,小型x-射线管和在影像中使用的放射线核素在成本上是可行的,但它们所释放的电离辐射对人体存在安全危害,不适合在高校课堂中使用。如果不考虑安全问题,会发现一台基础的磁共振设备就需要数十万元,而且后期也存在着大量的维护费用,往往不是高校的教育经费可以承担的。当前,在医院的放射科、影像科等科室中,现代化的大型生物医学影像设备被广泛地采用。而在大学的实体教学中,学生却往往没有机会接触这些设备,这就造成了教学与实践环节的脱节。另外,生物医学影像学是一个高速发展的领域,每隔五到十年都会有较重大的突破。而在教学中教材的建设是一个较长期的过程,一本教材往往需要数年才能成形,这就导致了有时教科书和其他教育资源还没出版就有些过时了。

4.生物医学影像学教育中的资源

在生物医学影像学教育中,网络可以为学生与教师提供了一个开放、共享与实时的资源平台,大量的不同影像模式和针对不同的生物医学应用的影像被放在网络上共享,这就使得学生们可以更好地理解图像形成的方式和认识如何根据工程和科学的需要生成图像,从而将抽象概念形象化、具体化。一个在线的超声波教程被证明在帮助BME学生学习超声波的基本知识上比常规教程更为有效。当前,在课堂中使用真正的成像设备是有一定难度的,而影像设备模拟器则是课堂学习一种非常有用的辅助手段。仿真大脑数据库可以根据磁共振设备扫描参数的不同生成T1、T2以及PD模式的大脑磁共振图像。美国的MedSim公司也直接提供了超声图像仿真仪用于实体仿真。在教学过程中,应加强实验室、实习基地、模拟器、网络资源等实验实践教学平台建设,提供给学生一些重要的电子资源,便于学生课外自学,巩固知识,巩固基础性、实用性、稳定性的实践教学资源。根据教育技术的发展,对教学方式、内容与手段等进行改革。从过去的以教师传授,学生被动接受知识向以学生为主体,增强对学生创新意识和动手能力的培养、应用与综合能力的培养,教师积极引导的方式转变,构建良好的学习与交互平台,培养学生主动探索和高级思维的能力,广泛而深入地参与到教学过程。

5.生物医学影像学教育中的教学方法的改进

生物医学影像学的教学不再是以课堂灌输为主,传统的教学模式必然会导致教学质量和学生学习积极性下降,它的改革势在必行。如何高质量地完成现代医学影像学的教学成为摆在教师面前的一项艰巨的任务。学科的迅速发展与实际应用的需求产生导致生物医学影像学技术也不断创新,新的理论、新的方法被应用于生物医学影像学领域,如多模态成像系统的出现,从解剖图像到功能图像,从宏观的组织结构影像到微观的分子影像,成像技术与手段不断更新等。随之,也出现了一些新的生物医学影像处理方法,包括图像的融合、三维图像分割、图像动态跟踪、分子影像分析等。教师的科研方向及课题都具有一定的前瞻性,采用的理论与方法较新。教师可结合具体的项目,实施“产学研”结合,根据所在领域的国内外研究动态,以专题讨论或穿插于课堂教学的方式,及时跟踪学科发展动态,将最新的知识与先进技术介绍给学生,使其掌握本学科最前沿的学术思想与专业知识。此外,宜结合国内外医学影像乃至生物医学工程产业的现状与发展,分析国内相关技术水平与差距,使学生能从宏观上把握学科知识与相关产业发展情况。

三、小结