铁路通信论文范例6篇

铁路通信论文

铁路通信论文范文1

论文摘要:随着铁路列车向高速化与准高速化方向的迈进,为保证有效的人机控制和提高运输效率,要求建立一个功能完善的、技术构成先进的铁路通信网。主要介绍了在现实的铁路通信工程建设中,我们应该注意的问题。

1铁路传输技术

1.1SDH传输技术

SDH是取代PDH的新数字传输网体制,主要针对光纤传输,是在SONET的标准基础上形成的。它把信号固定在帧结构中,复用后以一定的速率在光纤上传送。SDH是在电路层上对信号进行复用和上下。当带着信号的光纤通ODF(光纤分配架)进入ADM时,信号必须通过O/E转换和设备上的支路卡才能下成2Mb/s的基本电信号,并经过通信电缆和DDF(数字配线架)接到用户接口或基站BTS(基站收发信机)。

1.2ATM网络传输技术

ATM是一种基于信元的交换和复用技术,即一种转换模式,在这一模式中信息被组织成信元。它采用固定长度的信元传输声音、数据和视频信号。每个信元有53个字节,开头的五个字节为信头,用以传输信元的地址和其他一些控制信息,后面的48个字节用以传输信息。利用标准长度的这种数据包,通过硬件实现数据转换,这比软件更快速、经济、便宜。同时,ATM工作速度有很大的伸缩性,在光缆上可以超过2.5Gbps。

在网络传输中,为了使多个用户共享高速线路,通常采用时分复用方式。时分复用方式又可分为同步传输模式和异步传输模式。在数字通信中通常采用同步传输模式,这种传输模式把时间划分为一个个相等的片段,成为时隙,一定量的时隙组成一个帧,一个信道在一个帧里占用一个时隙,一个用户占用一个或多个信道。而在异步传输模式中,各终端之间不存在共同的时间参考,各个时隙没有固定的占用者。在ATM中时隙有固定的长度而且比较短,一个时隙传输一个信元,每一个信元相当一个分组。各信道根据业务量的大小和排列规则来占用时隙,信息量大的信道占用的时隙多。

1.3MSTP传输技术

MSTP依托于SDH平台,可基于SDH多种线路速率实现,包括l55Mb/s、622Mb/S、2.5Gb/s和10Gb/s等。一方面,MSTP保留了SDH固有的交叉能力和传统的PDH业务接口与低速SDH业务接口,继续满足TDM业务的需求;另一方面,MSTP提供ATM处理、以太网透传、以太网二层交换、RPR处理、MPLS处理等功能来满足对数据业务的汇聚、梳理和整合的需求。

1.4RTKGPS网络传输技术

随着GPS无验潮测深技术应用的不断深入,传统电台数据链的传输模式已不能满足长距离RTK作业的需要。而网络RTK技术则是利用网络来取代UHF电台进行数据传输,它传输距离远,信号稳定,抗干扰性强,已成为数据链传输的新宠。

通用分组无线业务GPRS,是在GSM系统上发展出来的一种新的分组数据承载业务,GSM是一种使用拨号方式连接的电路交换数据传送方式。GPRS利用现有通信网的设备,通过在GSM网络上增加一些硬件和软件升级,形成一个新的网络逻辑实体。

1.5WDM传输技术

WDM(或DWDM)是在光纤上同时传输不同波长信号的技术。其主要过程是将各种波长的信号用光发射机发送后,复用在一根光纤上,在节点处再对耦合的信号进行解复用。WDM(或DWDM)系统在信号的上下上既可以使用ADM、DXC,也可以使用全光的OADM和0XC,WDM(或DWDM)是基于光层上的复用,它和SDH在电层上的复用有着很大的区别。同时,通过OADM进行光信号的直接上下,无需经过O/E转换,而拥有EDFA的WDM(或DWDM)可以进行较长距离的光传输而不需要光中继。

2接入网技术

随着通信技术的快速发展,人们对铁路通信技术提出了更高的要求,铁路部门必须采用先进的、现代化的有线和无线通信的传输和接入方式,实现铁路通信网的升级,发挥铁路通信网在国民经济中的社会效益和经济效益。

接入网技术是铁路通信中一项关键技术,由于原有用户铜缆接入的普遍性和现在光纤技术的发展,接入网建设就必须考虑通信网络的现状与发展,这就决定了接入网技术的多样化。接入网从接入方式上可分为有线接入和无线接入。

2.1有线接入技术

(1)高速率数字用户环路技术。

通过2-3对双绞线双向对称传送基群数字速率信号,传送距离为3km-5km,上行速率与下行速率相等。通过回波抵消技术实现在一对双绞线上全双工传输,通过特定的编码和调制方式提高传输质量,用多线对并行传输,以降低每对双绞线上的传输速率,增加无中继传输距离。

(2)非对称数字用户环路技术。

它的上行速率和下行速率不相等,下行速率可高达(9-10)Mbit/s,上行速率只有数十或数百kbit/s,此技术适用于视频点播VOD系统;其高速下行信道可向家庭用户提供多路的数字图像信号及低速语音信号,而上行信道用于传送用户控制信号。ADSL的优势在于它几乎不需要对现有的对1双绞线作任何改动就可获得高传输速率。

(3)混合光纤同轴电缆接入技术。

它是基于有线电视系统CATV发展起来的。在有线电视中心与地区中心、地区中心与光节点之间采用光纤连接,光节点与用户设备之间采用同轴电缆连接。其主要是使用副载波调制,将CATV原有的单向传输系统改造成双向传输系统。HFC可以充分利用现有的CATV网络,进行少量投资,就可形成一个支持多种业务的宽带综合业务网。

(4)光纤用户环路技术。

以光纤为主要传输媒介,根据光纤向用户延伸的距离,可以分为FTTC(光纤到路边),FTTB(光纤到大楼),FTTH(光纤到家)等。FTTB是用户接入信息高速公路的最终理想目标,但根据现有通信发展的实际,FTTC、FTTB与铜缆相结合的用户接入,虽然是有过渡性质的折衷方案,但价格相对经济,并且在时机成熟时易扩展到FTTH,所以是现实并且可行的。

2.2无线接入技术

无线接入网是在接入网中部分或全部引人无线传输媒介,为用户提供固定终端业务和移动终端业务。无线接入可分为固定接入和移动接入两大类。其基本结构由控制器、基站和用户终端设备构成。应用技术主要包括微波1点多址技术、蜂窝技术和微蜂窝技术等。无线接人由于其灵活方便易于建设,目前已得到极大的重视。

集群通信系统是一种功能强大的专用移动通信系统,是通信与微处理机技术、程控交换技术、计算机网络技术紧密结合的产物。它集交换、控制、通信于一体,通过无线拨号的方式把一组信道自动最优地动态分配给系统内部用户,最大限度地利用系统资源和频率资源,降低系统内呼损,提高服务质量。由于它具有群呼、组呼、强插、强拆等功能,特别适合于调度指挥以及应急、抢险等场合,并较好地解决了通信频率合理分配的问题,因而倍受专业运营管理部门的青睐,被确定为现行铁路移动通信方式的首选类型。

3结语

铁路通信网是保证行车安全、提高运输效率的有力工具,我国铁路引入现代通信技术还不久,对铁路通信工程建设还需要一段时间对其了解、分析和试验,对其中所要注意的问题,特别是技术问题要认真对待,只有这样才能为铁路通信现代化作出贡献。

参考文献

[1]梁培超.浅析铁路通信工程应用接入网技术[J].科技资讯,2008.

铁路通信论文范文2

1CAN通信冗余设计原理

根据CAN通信的连接方式,通信盘A和通信盘B均应向CANA、CANB发送数据,CANA或CANB仅一路通信中断不影响系统的正常使用。而且,根据《客专列控中心与轨道电路接口规范(报批稿)》4.6.1中规定“若不能从某一通道接收到有效数据时,应自动采用冗余通道接收的数据”。通信板A的CAND和通信板B的CANE连接主发送器和单数接收器,且两路CAN通道互为备用;通信板A的CANE和通信板B的CAND连接备发送器和双数接收器,且两路CAN通道互为备用。通信接口板与移频接口柜的通信连接情况,由于发送器“1+1”备用,接收器互为并机,因此两路CAND和两路CANE有一路可用即可正常CAN通信。综上所述,列控中心与轨道接口盘主用CANA通道,若CANA通信故障,则可通过CANB发送、接收数据。同时,轨道接口盘与轨道电路移频柜间四条CAN通道(两条CAND,两条CANE),只要有一条通道通信正常,则数据可正常传输,不会导致轨道红光带。

2CAN通信“假冗余”问题分析

京广高铁联调联试期间,通过列控功能试验和联锁试验发现:通信盘A与轨道移频柜通道中断,即主通道中断时,列控显示该移频柜轨道电路全部“红光带”。但是,若通信盘B与轨道移频柜通道中断,则设备通信正常不会发生轨道电路“红光带”的故障。于是,立即组织对现场CAN通信连接方式及相关配线、板卡进行检查和分析,发现CAN通信连接方式正确,检查各部板卡也未发现问题。由此得出结论,京广高铁CAN通信系统硬件配置及连接方式符合可靠性设计要求,但是其内部软件的逻辑处理方式却未考虑冗余设置,导致主通道中断就会发生轨道区段“红光带”故障。换而言之,即CAN通信冗余设置“表里不一”,可称之为“假冗余”。通过软件逻辑分析,当轨道电路通信盘与移频柜主通道中断时,即轨道电路通信盘A与轨道电路移频柜通信故障,按照目前轨道电路的处理方式,通信盘通过CANA、CANB发送至列控中心的信息包仍都为有效信息包,只是CANA中区段状态为通信故障。根据《客运专线列控中心列控与轨道电路接口规范(报批稿)》第4.5.2节,列控中心需将区段故障处理成占用状态。但该接口规范中并未规定在轨道电路上传的CANA、CANB数据不一致的情况下,列控中心该如何处理。京广高铁列控中心与通信盘A、B均为通信正常且数据校验正确的情况下,列控中心使用CANA数据进行逻辑判断,在综合GJ状态后,判断区段是“空闲”还是“占用”状态。同时,发现目前的通信盘配置为“通信盘A仅向CANA发送数据,通信盘B仅向CANB发送数据。因此,当断开通信盘A盘与移频柜的连接时,由于通信盘A收不到轨道电路状态数据,会向CANA发送轨道电路通信故障状态。列控中心收到CANA中的通信故障数据后处理为“占用”状态,确认为有效数据,并不使用CANB的正常数据,且此时采集GJ状态为“空闲”状态,则造成列控中心认为“驱动采集不一致”故障,导致轨道“红光带”发生。

二改造方案及建议解决

京广高铁“假冗余”问题,仅需要修改“状态数据帧输出逻辑关系”即可,而不用修改任何硬件配置,即正常情况下CANA为主用通道,列控中心以CANA通信数据为准,当CANA通信故障时,则以CANB通信数据为准。由于《客运专线列控中心列控与轨道电路接口规范》中没有明确:“轨道电路上传的CANA、CANB数据不一致的情况下,列控中心该如何处理。”造成列控中心生产厂家处理方式不一,从而片面的提高其系统的安全性,只要主通道故障就判断为系统故障,大大降低了系统的可靠性。因此,为了杜绝类似问题重复发生,建议明确CANA/B总线冗余处理逻辑,修订《客运专线列控中心列控与轨道电路接口规范》,修改列控中心通信数据处理方式,并增加关于对CANA、B数据进行冗余处理的原则说明。

三结语

铁路通信论文范文3

世纪之交的通信技术是先进的数字技术、计算机技术、微电子技术与光电子技术的有机结合体,它将向着数字化、宽带化、智能化、高速化及个人化的方向发展。未来的通信要彻底克服时间与空间的限制,能够使用户在任何时间、任何地点与任何人进行包括语音、数据和视频等信息的交流。在这种情况下,出行的旅客也需要在列车上享受如同在办公室环境下的信息交流,比如同其它人进行语音、数据、传真、图像等信息交流,还要接入国际互联网。另外,随着铁路列车向高速化与准高速化方向的迈迸,为保证行车安全,实现有效的人机控制和提高运输效率,要求建立一个功能更加完善的,技术构成更加先进的铁路通信网。随着我国电信业垄断格局的打破,拥有仅次于中国电信的庞大铁路通信网络的铁道部,可以利用现有的专用网络设施积极参与竞争,向全社会提供高质量的电信业务。要想使上述构想成为现实,就必须打破常规的铁路通信网的接入方式,采用先进的、现代化的有线和无线通信的传输和接入方式,实现铁路通信网的升级,适应信息社会的发展,发挥铁路通信网在国民经济中的社会效益和经济效益。一、铁路接入网技术的现状由于铁路列车具有高速运动的特点,因而无线(移动通信)接入网在铁路通信网中占有相当大的比重。当然,固定位置的车站(场)、单位以及各种固定设施之间的通信方式,首选方案仍是采用SDH光同步数字传输设备进行组建,同时应考虑采用ATM交换以及网络IP通信等先进技术来构成通信主干网及光纤用户接入网。比如采用“双纤单向环”接入方式,其不仅具有高速、安全、传输质量高、价格合理等光纤通信特有的优点,而且还具有路由迂回、设备备用等特点,从而具备自愈合功能,并使系统的可靠性大大提高。另外,采用远端用户单元(RSU)和数字环路载波(DLC)设备,组网更灵活、方便。组网的过程中要把投资与效益综合统筹来考虑,使系统不仅满足现在乃至几年内铁路通信的需求,而且还能够为出行的旅客及地面用户提供先进的电信业务,并且还需具备便于扩容的功能。按照通信网被分为主干网,局域网和接入网等三部分的构思来看,铁路通信网也可以通过上述划分方法进行。就铁路的通信网来看,接入网占有相当大的比重,包括有线接入网和无线接入网两大部分。铁路有线接入网的情况与电信的接入通信网相似,铁道部将在未来的1~2年内建成可覆盖全国大中城市的铁路互联网,它是由铁路部门依托于基础铁路电信网,组织建设的可以支持众多信息服务的、具有多媒体通信能力的全国范围的计算机网络,铁道部将有可能成为我国第六个面向大众的计算机信息互联网络单位,为铁路通信走向市场做准备。关于有线接入这里不再叙述,下面主要讨论铁路的无线接入网,为此首先回顾一下移动通信的发展过程。1.移动通信的发展过程移动通信技术经历了由模拟到数字,由频分多址到频分+时分多址,再到码分多址(CDMA)的发展过程,并即将向宽带化、智能化和个人化的方向发展。移动通信系统大体可分为二代,第一代是以模拟技术为主,频分多址,工作在400~800MHz频段。由于模拟系统存在频谱利用率低、容量小、设备复杂、抗干扰性能差、保密性不强、价位高、业务面窄等固有缺点,不能满足通信市场急速发展的需要,因此诞生了第二代移动通信系统。第二代移动通信系统采用数字化、时分多址方式等全数字化技术,克服了第一代移动通信的缺点,得到了迅速发展,目前的移动通信数模兼容,以数字系统为主。随着用户对信息接入量的需求呈指数的增长,电信工作者们着手建立最新一代的移动通信 第三代移动通信系统。第三代移动通信系统具有全球化、智能化、个人化和综合化的特点,工作在2000MHz波段,采用宽带的CDMA技术,涵盖地面系统和卫星系统,包括海陆空三维服务面,集成话音、数据、视像、ISDN和多媒体多种业务。这一系统以多种空中接口和接入方式,可向高速和慢速移动用户提供服务。2.铁路无线接入网现状铁路通信网是为旅客和铁路公务、应急抢险、行车维修等人员提供及

铁路通信论文范文4

论文摘要:铁路运输是国家的经济大动脉,铁路通信系统是直接保证铁路运输的重要工具,它的质量的好坏直接影响铁路运输的效率以及运输速度和安全。随着科技的进步和发展,各种高薪技术被广泛地应用在铁路通信系统中,使得铁路通信系统得到逐步提高和完善,并提高了铁路运输的运输速度、效率以及安全可靠性,本文主要讨论移动通信在铁路通信系统中的相关应用。

一、铁路通信的作用

通信,指人与人或人与自然之间通过某种行为或媒介进行的信息交流与传递。铁路通信就是指利用有线通信、无线通信、光纤通信等现代化技术和设备,将铁路运输生产和建设过程中的各种信息进行传输和处理交换。从1825年的人工摇旗引导到1839年的指针式闭塞电报设备的发明以及应用,就说明现代通信技术一开始就是与铁路运输是紧密相关的。随着我国高速铁路的建设和运行,对铁路通信技术提出了更高的要求,只有不断地发展和完善铁路通信系统,才能为现代化铁路的建设与运行提供重要技术支持和安全保障。下面我们就来讨论移动通信在铁路通信系统中的相关应用。

二、无线列调

无线列调是重要的铁路行车通信设备,主要负责列车的位置和运行方向。无线列调系统主要解决行车调度员、车站值班员和机车司机之间的通信和车站值班员、机车司机和运转车长之间的通信。虽然无线列调具有节约资源的优点,但目前使用的无线列调是同频单工电台,随着列车提速的不断深入和列车建设密度的加大,在仅有的一个频道上集中了众多用户,再加上场强的越区严重,容易致使系统阻塞,甚至于瘫痪。对于现代化的高速铁路而言,这种通信系统过于简单,满足不了建设发展的需求。

三、集群通信

集群通信系统是一种高级移动调度系统,代表着专用移动通信网的发展方向。它能按照动态信道指配的方式,实现多用户共享多信道。由于它具有调度、群呼、优先呼、漫游等功能,被广泛地应用于政府、铁路、航空等部门,其中以源自欧洲的tetra较为出色。不过这种通信系统也有一定的缺点,比如系统设备采购、建网成本和终端价格较高,同时也存在信息丢失、保密性不高、易受干扰等,这从上海局目前所建成的集群系统就能看出来。这些缺点对普通语音通信的影响不大,但对要求较高的场合并不适用,比如列车与指挥中心的实时双向数据通信。

四、gsm-r

gsm-r通信技术最早起源于欧洲,是在gsm公众移动通信系统的基础上增加了铁路运输专用调度通信功能,它主要由交换机、基站、机车综合通信设备、手机等组成,目前在德国、意大利、瑞典等大多数国家普遍应用,我国铁道部于2000年底正式确定将gsm-r作为我国铁路通信系统的发展方向。它主要提供无线列调、编组调车通信、区段养护维修作业通信、应急通信、隧道通信等语音通信功能,可为列车自动控制与检测信息提供数据传输通道,并可提供列车自动寻址和旅客服务。比如全世界海拔最高的青藏铁路,它的绝大部分线路都是在高原缺氧的无人区,为了满足铁路运输通信、信号及调度指挥的需要,就采用了gsm-r移动通信系统。另外还有:大秦线、胶济线、合武线、京津城际线,京沪高铁等。

五、卫星通信

卫星通信是指利用人造地球卫星作为中继站来转发或反射无线电信号,在两个或多个地面站之间进行通信。它的主要优点是通信范围大、不受陆地灾害的影响,可靠性高、电路开通迅速、多址连接等,不过也存在成本高、传输延时大、传输带宽有限等不足。相对而言,比较适合铁路应急部门使用。

六、无线宽带wimax

wimax技术是一项于ieee 802.16标准的宽带无线接入城域网技术。目前,在铁路通信系统中的最新应用成果就是中国神华能源股份有限公司的自主研发项目 -“wimax技术在铁路移动通信中的应用研究”。该项目自主研发了基于wimax无线宽带技术的机车同步操控通信、列尾通信、无线列调通信、视频监控等组成的铁路通信应用系统,在经过车载运行实验和室内动力分布实验后,经专家组检验,表明该系统可满足朔黄铁路运行的技术要求,具有创新性,技术成果达到国际领先水平。

七、结束语

铁路通信是以运输生产为重点,主要功能是实现行车和机车车辆作业的统一调度与指挥。但因铁路线路分散,支叉繁多,业务种类多样化,组成统一通信的难度较大。所以,在铁路通信系统中应当将各种现代化的通信技术有机结合,以保证行车安全、防止作业事故,提高运输效率,加速机车周转,以及改善服务质量等。

参考文献:

[1]田裳,沈尧星主编.铁路应急通信[j].中国铁道出版社,2008,6(16):154-156

[2]丁奇编著.大话无线通信[j].人民邮电出版社,2010,1(24):1021-1024

铁路通信论文范文5

【关键词】通信系统;信息安全传;GSM-R;EN-128;GB/T21562-2008

1.前言

随着科学技术的不断发展,铁路运输已成为社会发展不可缺少的重要因素,而且已成为我国运输行业的主要渠道,随着今年来GSM-R基础理论研究的深入、网络设备及终端设备的引进、系统应用平台的开发搭建,我国已形成基于GSM-R的完整铁路应用体系,铁路综合数字移动通信系统GSM-R是在GSM蜂窝系统上增加了调度通信功能和适合高速环境下使用要素的系统,能满足国际铁路联盟提出的铁路专用调度通信的要求。由于GSM-R可以实现跨越国界的高速列车和一般列车的通信,能将现有的铁路通信应用融合到单一网络平台中,以减少集成和运行费用,而且GSM-R是由已标准化的设备改进而成,就能保证价格低廉、性能可靠的实现和运行。

2.GSM-R基本原理及系统结构

现代数字蜂窝系统更具有低功率发射和小区域覆盖、频率复用、灵活的提高系统容量、业务密度的适应性等多方面的特性。因此GSM-R技术采用蜂窝式原理。在面状覆盖的服务区中,通常采用正六边形的小区形状。六边形比正方形和正三角形在半径相同的情况下,覆盖面积要多30%-100%。因此采用六边形的设计需要较少的小区,较少的发射基站。

GSM-R由网络子系统(NSS)、基站子系统(BSS)、维护和管理子系统(OSS)三大系统构成。其中,网络子系统由移动交换中心(MSC)、访问位置寄存器(VLR)、归属位置寄存器(HLR)、鉴权中心(AUC)、移动设备识别器(EIR)、组呼寄存器(GCR)组成,用来管理用户、移动台和固网(PSTN)的接口;

3.GSM-R业务模型

GSM-R是专门为铁路通信设计的综合专用数字移动通信系统,它基于GSM的基础设施及其提供的高级语音呼叫业务(ASCI),其中包含增强多优先级与强拆(EMLPP)、语音组呼(VGCS)和语音广播(VBS),并提供铁路特有的调度业务,包括:功能寻址、功能号表示、接入矩阵和基于位置的寻址,并以此作为信息化平台,使铁路用户可以在此信息平台上开发各种铁路应用。图2-2为GSM-R系统的业务模型层次结构图,因此,GSM-R的业务模型可以概括为:GSM-R业务=GSM业务+语音调度业务+铁路应用。

4.GSM-R标准

EIRENE规范为互用性(对移动通讯来讲)提供了框架。它们和其他由ERTMS用户组提出的规范一样,是欧共体关于欧洲高速铁路网的指示的基础。GSM-R系统虽然采用了GSM标准,但系统也有某些方面不遵从GSM标准。无线通信系统的“马蹄”模型显示TGSM-R系统采用的不同标准(如图4.1)。

GSM-R通信系统依据欧洲标准,在该标准中,对铁路控制和防护系统的软件进行了安全完善度等级(SIL)的划分,针对不同的安全要求制订了相应的标准,按不同等级对整个软件的开发、检查、评估、检测过程,包括对软件需求规格书、测试规格书、软件结构、软件设计开发、软件检验和测试、软硬件集成、软件确认评估、质量保证、生命周期、文档等提出相应的程序与规范的要求(如图4.2、图4.3)。

本标注定义了RAMS各要素(可靠性、可用性、可维护性和安全性)及其相互作用,规定了一个系统生命周期及其工作为基础、用于管理RAMS流程,使RAMS各个要素之间的矛盾得到有效地控制和管理。

5.GSM-R铁路通信系统优化

移动用户通话过程中,为了使呼叫建立在最好的小区中以及为了使呼叫不至于掉话,就引入了切换的概念。切换就是为了维持移动台从一个小区移动到另一个小区时通话能继续进行,以满足网络管理的需要,越区切换是无线资源管理的重要内容。此外,GSM-R网络是传输与铁路运输密切相关的调度通信、应急指挥通信业务的载体。根据铁路通信对可靠性、实时性和不间断性的要求,GSM-R网络必须具有高可靠性和高容错能力。因此,在GSM-R网络中可以考虑采用冗余备份的方式,一旦其中一套设备发生故障,马上切换到另一套设备工作,达到通信不中断的目的,双网之间的切换也是切换的一部分。对于应用于铁路通信的GSM-R网络,对越区切换的处理是提升整个系统有效性和可靠性的关键。网络优化中对于切换事件做重点分析也是出于这个目的。

切换的成功保证了通信的可靠性,切换优化能降低整个系统的干扰情况,有效的均衡话务,提高了系统的平均容量。切换成功率(包括切入和切出)是网络考核的一项重要指标,可以提高切换成功率,有效改善网络质量,降低由于切换引起的掉话及拥塞,提高通话质量,提升用户的满意度

青藏线上GSM-采用的同址双网基站冗余网络结构,结合GSM中公路及铁路中的切换内容,得到一种适用于双冗余链状网的计算切换目标小区列表的算法,该方法利用(Cl,TA)参数判定列车运行方向,减少了切换目标小区数目,选择合适的小区冗余覆盖方案可以提高系统的安全性并降低成本。对我国青藏线GSM-R主设备管理方式的基站同址双网冗余覆盖,研究其切换算法。由于列车以很高的速度穿过小区边界,要求列车能够快速切换到前方小区中,否则就会导致掉话。切换的成功处理能提升整个系统的有效性和可靠性,采用合理的切换算法,有利于降低乒乓效应,提高切换成功率,并保证移动台的越区切换尽量发生在主应用层上,提高铁路通信系统的可靠性和安全性。

理论上分析得到采用SAIC技术的可行性与潜在的系统性能改善。链路使用的联合最大得到采用该SAIC检测算法后对于链路上误码率(BER)性能的改善情况:对于未编码的GSM-R链路而言,这种SAIC技术能够给物理链路带来2dB以上的性能增益。

6.结论

随着科学技术的进步,GSM-R已经成为中国铁路专用通信设备的发展方向,将为铁路运输的语音和数据通信提供传输通道。GSM-R(GSM for Railway)是一种基于目前世界最成熟、最通用的公共无线通信系统。GSM-R平台上增加了铁路通信所必备的功能(如群呼、组呼、优先级别、强插、强拆等功能)的铁路专业无线通信系统,针对铁路通信列车调度、列车控制、支持高速列车等特点,为铁路运营提供定制的附加功能的一种经济高效的综合无线通信系统。目前铁路GSM-R网络建设是基于GSM网络之上的,GSM网络优化解决的主要问题有:信道拥塞率高、呼叫成功率低;越区切换失败率高,掉话严重;通话质量低、有串音;移动台占用话音信道后呼叫释放、出现振铃后无通话、移动台接通后单边通话;设备完好率较低;中继电路的配置与实际话务不相符、电路群的每线话务量差别较大等。

参考文献

[1]张涛.GSM-R综合移动通信系统在青藏铁路的应用研究[D].山东大学硕士学位论文,2006-09-20.

[2]铁道勘查设计院.GSM-R系统欧洲标准简介[J].铁路通信信号工程技术,2008.03.

[3]EN-50128:2001.英国标准.铁路应用-通信、信号和处理系统——信号的安全相关电子处理系统.2003-05-21.

铁路通信论文范文6

关键词:铁路;通信设备;防火;防雷;安全防护

一、铁路通信设备防火的对策

1、铁路通信设备的消防组织管理

要加强铁路通信设备消防管理工作力度,强化岗位责任制度,并采取严格的逐级负责制度,层层把关,步步落实的方式,务必要对消防工作充分的负起责任来。要安排一个行政领导具体主持本部门的消防安全管理工作,下属的业务部门要把工作范围内的消防安全充分重视起来,做到每天上报安全检查工作内容。要成立安全领导小组,定期的召开会议,组织安排并核查本单位消防安全工作的情况,针对重点容易出现问题的部门要加强安保工作的力度,并配备得力的防火干部进行督察和管理,确保不出现任何问题。

除此以外,各单位应建立义务消防组织,并定期训练,全力保障铁路通信设备的防火安全。总之,对职工进行消防知识教育要做到经常化、制度化。对从事易于引起火灾、出现雷电影响的重点工种人员,必须进行消防专业知识培训,有关主管部门应定期考核。与此同时,领导层应定期组织防火检查,每年不少于两次。对检查中发现的火险隐患应及时整改。

2、铁路通信设备的消防器材配备

铁路通信系统包括了大量的监控、检测等电子设备,一旦发生火灾后果时不堪想象的。由于电子设备材料的特殊性,应按规定配备灭火器材和消防设施,专人管理,定期检查,保持完好。灭火器必须选用经公安消防监督部门检测的合格产品,悬挂在机械室便于取用、不易碰撞的位置,挂具要牢固、配套。对于电子设备时不能直接用水流进行扑救的,而应该采用气体灭火装置,最常见的是二氧化碳灭火器,或者在建设初期就应该规划管网气体灭火装置。

3、合理使用耐火材料

对于不同的建筑要根据不同的耐火等级进行建设,对于铁路通信建筑,里面往往存放大量的网络通信设备及电源设备,该类房屋不仅设备价值高,而且业务量大、信息量大,是铁路运输线能否正常运转的重要因素。对于通信建筑,要根据建筑重要程度确定主体结构材料满足耐火时限要求,同时房屋内装饰材料应采用非燃烧材料。

二、铁路通信设备防雷的对策

我国铁路近几年的业务和网络规模得到了快速的发展,无论是面向公众的公网用户还是面向铁路运输的专网用户都在大幅度的增长。铁路专网通信承担着铁路运输通信的重任,包括无线列调、模拟技术的行调列调、数字调度、站场通信、各种MIS采样节点设备等。专网通信是铁通的特色服务之一,专网通信用户是铁通最大的大客户,为铁通提供了一大部分稳定的收入,相应的铁通也以优质的服务回报于铁路运输。铁路运输通信的特点和基本要求就是安全可靠,保证铁路运输的安全正点。但是,专网通信大多在铁路车站及站场使用,其传导线路多为金属介质,不如光纤抗电磁干扰和冲击能力强。由于铁路的特点,地处旷野郊区,电力接触网及铁路钢轨在室外,使铁路车站及沿线成为雷害的重灾区。

目前,铁通公网通信设备已经实现微电子化,通信机房的防雷设施比较齐全,但专网的通信设备由于历史原因防雷害的手段还比较欠缺,有的地方甚至是空白。随着铁路电气化区段的增多及专网通信设备微电子化逐步增多,感应雷击造成通信事故也相应增加,尤其是在车站信号设备进行了综合防雷整治后,铁通的专用通信机械室和设备就成了雷害侵扰的薄弱点,感应雷、传导雷及地电位反击则成为主要雷害,不仅使专用通信设备造成损坏,发生昂贵的维修费用,而且还影响到铁路运输的通信指挥,从而极大地影响铁通的服务质量和企业形象,为此,铁路车站既有通信防雷害工作将成为未来的主要安全工作之一。

为了防止强大的雷电侵入波能量通过各种线缆(如电力线、通信线等)损坏通信设备,应采取以下措施来减小雷电能量:

1、所有的进出局站的线缆都应采用埋地敷设方式,并应选用具有金属外护套的电缆。对于长途明线进局的线缆,应在进入室内之前至少20m处改换成埋地电缆,电缆的埋深一般为0.6~0.8米。如果采用普通的双绞线或多芯电线,应将它们穿过埋地的铁管后进局。电缆的金属外护套或铁管两端应分别就近与防雷的接地装置相连。

2、由于雷击建筑物或其附近时,会在其周围空间产生强大的电磁场,该电磁场与各种回路耦合,可能在其感应出较高的过电压(一般称为感应雷过电压,简称感应雷),要防止通信线、电力线等产生感应过过压,

3、通信楼、信号楼、高层建筑的防雷系统应符合国家有关规范标准。通信楼、信号楼电力配电盘应装在机械室外,楼内电缆沟槽和室外采用复合材料的信号机构、箱、盒等器材及外露的电缆沟槽应采取阻燃措施。楼内高温易燃元器件应按有关规定采用阻燃材料。

三、结语

铁路运输系统是我国重要的基础设施,现代化的通信网络和完备的通信设备是保障铁路系统安全稳定运行的必要条件之一。当前我国铁路建设进入高速发展期,我们务必要在加强运输效率的同时严格保障行车安全,大力维护基础设备,不断改进管理水平和质量。总之,要保证铁路运输的正常就要保证铁路通信系统的正常工作,全力做好防火防雷工作。

参考文献:

[1] 包炳生;杨安良;刘西林;萧忠根;罗毅;;闪电定位系统监测的雷电流幅值佐证技术探讨[A];第26届中国气象学会年会第三届气象综合探测技术研讨会分会场论文集[C];2009年.