智能控制技术论文范例6篇

智能控制技术论文

智能控制技术论文范文1

智能化技术涵盖的领域较多,综合性较强,主要包括控制学、语言学、生物学和信息学等。它是一项研究怎样让机器拥有人工智能的技术。人工智能第一次被提出是在二十世纪五十年代,经历了半个多世纪的发展,人工智能理论和技术都趋于成熟,逐渐形成了一套以计算机为核心涵盖多个领域跨多个学科的综合性技术。人工智能是计算机科学的一部分,主要是探讨如何让机器拥有人工智能的问题。智能化技术在电气工程自动化控制中的应用主要是通过计算机编程实现的,通过执行设定好的程序,让计算机处理、分析、回馈信息,在模拟人脑的过程中实现自动化控制。从当前智能化技术在电气工程自动化控制的应用成果来看,智能化技术极大的促进了电气工程自动化控制的发展,提高了电气自动化控制中的效率,降低了人工投入,为电力企业了良好的经济效益。

2智能化技术的应用优势

智能化技术在电气自动化控制应用的原理主要是实现控制的智能化、人性化,减少控制中的失误,节约人力物力。当前,智能化控制在电气自动化控制上与传统控制相比主要有以下优势:

2.1智能化技术对电气系统调整更加便捷智能化控制器可以通过鲁棒性和响应时间来实现对整个系统的调节和控制,可以有效地提高工作效率,增加自动化控制的精确性。同时,智能化控制器在控制中通过相关数据的改变来实现控制,不需要技术人员的参与,节省了人力,实现远程操控,为电气自动化控制带来了极大便利。

2.2智能化技术提升了控制精密度传统的控制方式会在控制过程中由于控制对象的复杂性而不能准确掌握控制对象的动态,从而在控制中出现无法预测的客观因素,因此设计出来的模型因精确性不够而不能实现很好的控制效果。智能化控制器在控制中不需要建立对象模型,使得不确定性的因素减少,提高了自动化控制的精密度。2.3智能化技术的一致性强在处理不同的数据问题时,输入不同的数据获得的结果较为理想,满足自动化控制的要求。控制对象的不同也会导致控制效果的不同,控制器并没有针对每个控制对象都有控制要求,但控制效果较为理想。同时,部分控制对象的改变也会导致控制效果达不到相关要求,因而在自动化控制设定时,一定要从实际情况出发。在对控制进行评价时,不能对智能化控制盲目否定,要认真找到出问题的具体原因,加以解决。

3智能化技术在电气自动化控制中的应用

3.1诊断电气工程中出现的故障电气工程自动化控制是一个机器系统,在运行中难免会出现故障,智能化技术的运用,往往能够及时诊断出自动化控制系统出现的故障。变压器是电气工程中的重要电气元件,对整个电力运行起着重要作用,电压器故障是电气工程中经常出现的故障,这种故障带来的影响较大。自动化系统的应用能够通过变压器的渗漏油分解气体进行分体,对变压器故障作出诊断,对故障位置进行排查,从而协助工作人员做出检修方案,维护设备的正常运行。智能化技术的运用,大大提升了维修的速度与效率,提升了电力企业的效益。

3.2实现对电气自动化的智能控制智能技术运用到电气自动化控制之中,可以实现对电气系统的远程控制,工作人员只需在控制室中,就可以通过相关控制器控制系统的运转。这种操作的无人化、自主化和高效化扩大了智能化控制的发展空间,体现了智能化控制的优越性,使得智能化控制在其他能与能够进一步发展。

3.3优化电气工程的设计电气工程自动化控制是通过对控制元件的编程设计实现的,在设计中,过程繁杂,技术性和专业性要求高,对工作经验也有相关要求。传统的设计方式是通过试验进行设计,这种设计方式在操作上容易出错,而且效率低,修改起来不方便。在当前技术条件下,电气自动化控制设计主要通过智能化CAD技术和计算机技术结合来实现,在时间控制上,这种设计能够最大限度的节约时间,实现高效化设计,同时还可以保证设计的质量和准确性。遗传算法是优化设计中的重要方式,对电气自动化控制的设计起到重要作用。

3.4其他应用此外,在电气工程自动化控制控制中,PLC技术的使用,是智能化控制的重要组成部分。它通过继电控制器实现对某个工艺流程的控制,继而协调整个系统的生产。在电力企业中,PLC技术的使用,可以极大提高控制的准确性和可靠性。

4结束语

智能控制技术论文范文2

关键词:电气工程;自动化;智能技术

21世纪是一个全新的时代,在新的时代背景下,我国正处于经济腾飞的关键时期,各行各业都在不断的发展和进步。就电气行业而言,自动化和智能化是未来发展方向。对电气工程自动化的研究一直是热点问题,总的说来传统的自动化控制存在一定的劣势,已经无法满足人们日益增长的需求。智能化技术的出现有效的弥补了传统自动化控制方法的不足之处,极大的促进了电气工程领域的发展和进步。本文以电气工程自动化中的智能技术为研究对象,首先介绍了智能化技术在运用过程中的理论基础,接下来讨论了智能化技术在运用过程中的优势,最后探讨了智能化技术在电气自动化控制中的具体应用。

1智能化技术在运用过程中的理论基础

所谓智能化技术指的就是将人工智能理论和计算机技术有效的融合到一起的一种科学技术,现阶段人们刚开始将智能化技术引入电气工程领域,相关研究还处于初始阶段。但是,智能化技术在电气工程自动化领域具有广阔的应用前景。智能化技术是许多学科融合在一起得到的成果,具体来讲包括:控制技术、信息理论、生物理论和语言学理论等等。智能化技术的研究宗旨就是使得机器在人工智能的协助之下具有一定的自主能力,可以自主的开展一些操作行为。一般来讲人们会使用具有智能化能力的机器来完成一些危险性相对较高的操作,这样就可以有效的保证人的安全性。

对电气工程自动化控制的智能化研究是人们十分关心的问题,具体的研究内容主要包括:第一,对相关信息的采集和整理;第二,对相关电子电气技术的研究等等。在研究人员的不断努力之下,目前有些智能化技术已经在电气工程领域得到了应用,而且取得了令人满意的结果,这充分说明了智能化技术在电子工程自动化领域具有广阔的应用前景。融合了智能化技术的电气工程自动化控制具有下述优势:首先,系统的控制效率得到了显著提升;其次,企业可以在一定程度上降低成本投入,从而获得更多的经济效益;再次,工作人员的工作量得到了显著降低;第四,企业可以对人力资源进行更加合理的配置。

2智能化技术在运用过程中的优势

在电气工程自动化控制领域,智能化技术可以发挥自己的作用,总的说来智能化技术的优势主要体现在以下三个方面:

2.1不再需要建立控制模型

在智能化技术未面世之前,人们在电气工程领域使用的是传统控制方式,传统控制方式具有一定的不足之处,包括:第一,控制对象的动态方程不是很容易实现;控制模型中经常存在一些无法控制的变量。在这种情况之下,人们构建的控制模型和系统实际的过程具有一定的出入,控制模型无法实现对系统的精确控制,这样最终的控制效率也就相对较低。智能化技术的出现有效的解决了上述问题,在智能化的控制器中,人们不再需要对控制系统进行建模处理,这样也就避免模型不准确现象的出现,从而有效的提升了控制器对系统的控制精确度。

2.2便于对电气系统进行调整控制

在对电气系统进行控制时,由于系统处于一种动态变化的状态,在控制过程中智能化控制可以实现对控制过程的动态调整。这样的动态调整过程可以有效的保证电气系统处于正常的工作状态,并提升其工作能力。除此之外,融合了智能化技术的控制系统的另一个特点就是:相关人员只需要远程通过数据来操控整个控制过程,技术人员完全不需要在控制现场开展相关操作。

2.3智能化控制器具有很强的一致性

智能化控制在对电气系统进行控制的过程中可以实现很高的一致性,具体体现在就智能控制器而言,当相关人员向控制器传入不同类型的数据时,智能控制器可以通过一定的处理给出合适的控制输出,从而实现对电气系统的有效的控制。总的说来,影响控制效果的主要因素就是具体的控制对象,在智能控制系统中,如果更改了控制对象,那么控制效果就可以无法达到预期效果。因此,相关人员一定在明确系统中的控制对象,根据控制对象的特点设计科学合理的智能控制系统。

3智能化技术在电气自动化控制中的具体应用

在智能化技术的推动以及研究人员的不断努力之下,现阶段智能化技术已经在电气工程自动化领域得到了一定的应用,具体情况如下:

3.1智能控制

人们将智能化技术融入了电气自动化控制中,这样技术人员就可以对电气系统实现远程智能控制,无需工作人员参与控制过程,控制效率也得到了提升。智能控制不但在电气系统中发挥了巨大的优势,也为智能化技术在电气工程领域中的应用提供了坚实的基础。

3.2优化设计

在电气工程自动化的优化设计中,智能化技术也发挥了作用。现阶段,相关人员借助CAD技术和一些计算机软件实现对电气系统的优化设计,有效的避免了传统方法中不方便修改的劣势。此外,人们在优化设计中还可以使用遗传算法,保证了设计结果的有效性和最优性。

3.3故障诊断

现阶段,人们可以通过智能化技术实现对故障的有效诊断。当系统出现故障时,在故障真正产生之前一般会出现一定的特定现象,利用智能化技术可以对上述特定现象进行有效捕捉,从而实现对故障的预警。

参考文献

[1] 蒋敦旗.浅议在电气工程自动化控制中智能技术的应用[J].科技创新导报,2014,v.11;No.32032:106.

[2] 綦振宇.解析人工智能技术在电气工程自动化中的应用[J].黑龙江科技信息,2014,36:14.

[3] 靳虎.人工智能技术在电气工程自动化中的应用[J].科技展望,2015,v.25;No.31902:128.

[4] 翁娟.浅谈电气工程自动化中智能技术的应用[J].电子制作,2015,No.27704:225.

[5] 李鑫.试论电气工程自动化中智能技术的应用[J].中国高新技术企业,2015,No.35035:51-52.

[6] 杨振兴.电气工程自动化控制中智能技术的应用研究[J].科技传播,2013,v.5;No.8807:143+133.

智能控制技术论文范文3

关键字:智能化技术 电气工程 自动化控制 应用

中图分类号:F407.6文献标识码: A 文章编号:

一、智能化技术的含义

智能化技术是人工智能理论与计算机技术全面融合后的重要产物,它是21世纪才兴起的一项高新技术。从兴起到发展,智能化技术在短短的几年时间里,已经被广泛地关注和应用,由此可见,智能化技术的前景将是非常乐观的。

智能化技术被称作人工智能(AI),也可其为机器智能,该技术是自然与社会科学的综合体。AI隶属于计算机技术,它重点研究:将人们的收集信息、识别图文、自动做出反应、分析判断等这些能力,通过运用计算机的编程设计,来加以实现,让计算机来解决各种复杂的问题。目前,AI的研究领域主要涉及到语言和图像识别、自然语言的处理、专家系统和机器人等方面。在电气自动化中应用最为广泛的是专家系统。

智能化技术应用于电气工程的具体内容包括了:信息搜集、信息处理、电气自动化控制、系统运行等。其在电气工程自动化控制中的应用,能增强控制效果,改进、弥补自动化控制中的缺陷和差错,提高设备运行、设备处理的精确度和准确性,进而提升系统的工作效率,促进行业发展。

二、实现智能化控制的好处

智能化技术在电气自动化控制中的应用,主要表现在智能化控制器的开发使用上。与传统控制器相比较,智能化控制器具有很多优点,如取消了控制模型、调整控制更加方便、对于数据处理具有较高的一致性等,以下是对其好处的具体分析。

(一)取消了控制模型

过去的自动化控制,由于控制对象的动态方程非常复杂,使得控制器不能对其进行精确的掌握,从而在设计对象模型的过程中,增加了较多的不可测量和不可预估的客观因素。由于客观因素的不确定性,也就无法保证设计模型的精准性,也就降低了自动化控制工作的效率。智能化的控制器,无需设计控制对象的模型,这也就在根本上避免了各种不利的客观因素的产生,从而保证了自动化控制的高精密度。

(二)调整控制更加方便

依据响应时间、鲁棒性和下降时间的变化,智能化控制器可以随时对控制程度进行调节,让工作性能得到了较大的提高。与以前的控制器相比较,智能化控制器更便于调节,也更符合实际的使用。另外,智能化控制器的调节控制是根据数据变化而自动进行调节的,而不需要专业人员的在场操作,它还可以进行远程的调节控制,从而实现了电气工程自动化控制的无人操作。

(三)较高的一致性

智能化控制器在处理不同的数据时,即使是陌生数据,它也能进行较为准确的估计。针对控制对象的不同,其控制效果也不一样。在对某些对象进行控制时,尽管智能化控制器没有任何行动,但其控制效果还是非常好的。当然这也仅是相对的,若换了控制对象,可能就得不到同样的预期效果了。因此,在设计过程中,技术人员要分析每个对象的具体情况,进行具体化的设计,切实满足智能化控制的高要求。

三、人工智能的具体运用

在智能化技术的不断发展下,其应用领域也不断得到拓展。智能化技术在电气自动化控制中的应用主要表现在电气故障的诊断、优化产品设计、智能控制三方面。

(一)诊断设备故障

复杂性、不确定性和非线性是电气设备故障的基本特征。传统的故障诊断,其准确率和效率都较低。智能化技术的引入,极大程度地提高了故障诊断的准确率,从而保证了故障诊断的高效率。智能化故障诊断主要有专家系统、模糊逻辑和神经网络三种方式。比如,在对发动机、电动机进行故障诊断时,采用智能化技术中的模糊逻辑和神经网络方法,在保留故障诊断的模糊性的同时,使用神经网络的强学习能力对故障进行诊断,有效提高了故障诊断的准确性。

(二)优化产品设计

优化设计是一项较为复杂的工作,它综合应用了实践经验知识和学科理论知识。传统的产品设计,是使用实验手段与设计经验的综合验证,由于技术支持的缺乏,导致其工作量大、工作效率低,其设计方案也不尽科学、合理。

在优化设计中,智能化技术的运用包括了遗传算法、专家系统两种方法。专家系统是以优化设计领域中的部分专家所提供的知识和经验为依据,进行合理的推理和判断,对专家的决策过程进行模仿,然后对复杂问题进行处理。目前该方式还处在研究阶段,在实际中的应用较少,但是其发展空间非常大。遗传算法具有以下特点:首先,它可对结构对象直接进行操作,具有全局寻优能力、内在隐并行性;其次,它可对搜索空间继续指导优化、自动获取;最后,它可以对搜索方向进行自动调整。在优化设计中,它具有极强的实用性和先进性,对于优化设计效率的提高具有重要的促进作用。

(三)智能控制的实现

在电气工程中,综合运用智能化技术和自动化控制,有助于自主化、无人操作化和远程化控制的实现,并为提供给智能控制更好的发展平台。将智能化技术成功运用于智能控制,是对智能化技术本身的肯定,也为今后在其他领域的应用奠定了良好的基础。目前,智能控制的方式包括了专家系统控制、神经网络控制和模糊控制。智能控制运用的主要方面有:所有开关量、模拟量实时数据的采集和处理;记录故障并进行在线分析;使用鼠标和键盘实现系统控制;对主要设备和系统运行状况进行实时监控。

四、总结

智能化理论是对人的智能进行开发、延伸和模拟的理论。作为计算机技术的分支技术,智能化技术以人工智能的实质为依托,生产出类似于人类智能的智能机器。将智能化技术应用于电气自动化控制中,可提高故障诊断的准确率和效率,促进电气产品的优化设计,实现智能化控制,从而提升电气系统效率。由此看来,只有加快电气工程智能化进程,才能促进电力行业的稳定、持续发展。

参考文献:

[1] 林集武.智能化技术在电气工程自动化控制中的应用[J].城市建设理论研究(电子版),2012,(19).

[2] 王楠.浅谈电气工程自动化控制中人工智能的应用[J].城市建设理论研究(电子版),2012,(20).

智能控制技术论文范文4

本文通过对智能控制的发展轨迹和特点进行简单的介绍,对智能控制的技术方法进行了分析,对比了智能控制和传统控制的优缺点,对智能控制在机器人领域的应用进行了分析和探究+提出了智能控制的未来发展方向应该是由多种智能控制模式组成以及把智能控制模式和传统控制相结合的思维方法。

关键词:

智能控制;机器人;应用

1.控制的概述

从20世纪初到今天,控制理论已经由以传递函数为理论基础的传统模式发展到了以状态空间理论为依据的现代模式。到了今天,控制理论经历了由人工智能向自动控制的转变过程,从而形成了智能控制的相关理论。

2.智能控制的发展轨迹和特点

智能控制的理论思想最早被提出时是由人工智能思想和自动控制交叉的思想相融合而得出的一种思想理论,并且把智能控制的系统分为人工控制器为核心的智能控制、人工和机器同时作为核心的智能控制系统、纯机器控制作为核心的智能控制系统。智能控制的理论基础是运筹学的相关理论、人工智能的相关理论以及自动控制理论相结合的一种控制理论学说;智能控制系统是由传统控制理论进化而来,主要利用自主智能机来达到预设目标,从而实现无人操作的目的。智能控制的整套系统结构具有开放式、分级式以及分布式的特点,处理综合信息的能力非常强大。但是智能控制的终极目标却不是高级自动控制,而是优化系统的各个方面。智能控制的服务对象主要是一些非线性和不确定性的研究对象,这种研究对象是主要研究线性结构的传统控制理论无法操作的内容。智能控制在对数学模型的描述以及对符号和相关环境的识别等方面都十分擅长。

3.智能控制的技术方法

智能控制的主要技术方法有神经网络智能控制、模糊网络智能控制以及分层递阶智能控制等。在日常实际操作中,进行智能控制应用时常用的方法是把几种智能控制模式融合在一起来使用。比较典型的智能控制方法有以下几个。(1)模糊智能控制方法。模糊智能控制方法主要是把知识库和模糊模式推理机以及输出量清晰化的模块等进行组合,模糊智能控制的具体方式是,由模糊量的互相转化以及推理,最后得出具体的参数来执行。[1](2)专家智能控制方法。专家智能控制方法就是把智能控制与传统控制理论相融合的一种典型的智能控制方法。这种方法就是以专家智能控制的理论基础作为依据,对控制方法进行优化。

4.智能控制在机器人领域的应用

机器人领域是智能控制的主要应用研究方向之一,随着科技的迅速发展,机器人领域的科学技术越来越全面。比如,还处于发展阶段的人工智能相关技术以及传感器的相关技术都被应用到了机器人领域当中。我们从动力学的角度上来看,机器人的相关技术特点是非线性的,随时发生变化的,在机器人的控制技术上所追求的是多样的任务,这恰恰就是智能控制的相关优势,所以说智能控制技术是机器人研究领域一个十分关键的组成部分。

(1)机器人的行动控制。有一种由四条连杆和从动滚轮组成腿部的机器人,这种机器人的移动依靠后补两条滚轮来实现,移动方向由滚轮的滚动角度来决定。如果要预设这种机器人的移动路线,面对这种非线性系统组成的机器人,一般的控制器是无法实现对其控制的,此时就要使用智能控制理论中的模糊神经网络自适应控制方法。这种控制模式可以减少机器人的系统误差,并且可以有效地对机器人的移动路线进行控制。[2]

(2)机器人的行动计划。如果在一个十字路口同时进行多个机器人的行动控制,就会涉及机器人的回避和协调问题,在解决这个问题的方法上,智能控制理论为机器人提供了集中式路线设计和分布式行动特点设计等方法。即首先设定每个机器人在不遇到障碍的基础上可以按照预先设计的路径到达设计目的地;其次通过在机器人内部设定一整套规则,采用分布式行动特点设计的方式来让机器人在行动的过程中在可能发生冲突的区域进行避让,从而达到避免机器人碰撞的目的。这个实验结论可以证明智能控制可以完美解决多数机器人一起进行行动时的协调和碰撞问题。

智能控制在现阶段的很多方面都不是特别成熟,在具体方法的应用上局限性也很大,如果把多种智能控制的方法结合在一起,也许是解决这些问题的关键途径。

参考文献:

[1]王印束,程秀生,冯巍,等.湿式双离合器式自动变速器起步智能控制[J].江苏大学学报(自然科学版),2011,32(6):658-662.

智能控制技术论文范文5

关键词 智能建筑;系统集成;相关理论;控制应用

中图分类号 TU855 文献标识码 A 文章编号 1673-9671-(2012)071-0204-01

近年来,信息技术的大力发展及各项智能化设备的研发,极大地带动了我国智能建筑的建设步伐,智能建筑在当前的建设规模呈现日益扩大的趋势,其系统构成的复杂程度也逐渐加大。智能建筑建设人员在新时期进行智能建筑建设工作之前,必须对支撑智能建筑发展的系统集成技术的相关理论进行详细的研究,并尽可能多地积累其在智能建筑建设中的控制应用经验,以使智能建筑建设在此种技术的推动下获得更为完善的建设。本文通过对智能建筑系统集成技术相关理论进行分析,谈论了其具体的控制应用,希望能够为建设人员提供一定的助益。

1 系统集成技术的相关理论分析

随着智能建筑在当今时代建设规模的不断加大,系统集成技术的应用也逐渐趋于广泛,并极大地推动了智能建筑的优化建设。而系统集成技术作为智能建筑建设的核心技术,其应用主要是为了使智能建筑的建设能够实现各项功能、管理以及信息共享的目标。而智能建筑当前的各种子系统及分系统不仅在数量上逐步增多,其系统之间还呈现出了更加复杂的关联程度,推动系统集成技术的进一步完善是智能建筑优化建设的必然要求。

系统集成技术的设计和应用是以各种计算机网络和对网络进行联系的网关作为硬件基础,并以计算机数据库系统以及应对控制工作的各项组态软件为软件基础来实现运行的。它的设计能够通过各种软件以及硬件系统的共同工作达到对建设信息的全面及时准确的收集、存储以及处理和传输等,能够为智能建筑建设提供一个良好的自动化信息平台。从系统集成的分类来讲,它主要分为网络系统集成以及楼宇自动化的系统集成这两类,本文则主要是就楼宇的自动化系统来对系统集成进行分析的。

智能建筑所应用的楼宇自动化的系统集成,是由现代网络技术、建筑行业及现代工业相结合而成的一种技术,它将智能建筑中整体网络系统作为自身运行的基础,然后通过使用自身的各种软、硬件对智能建筑的自动化系统以及管理系统进行调控,进而使智能建筑的建设能够充分地满足建筑设计施工的要求以及住户的居住需求。这种系统集成的控制系统在整个智能建筑建设中的应用是极其必要的,而其中最为广泛的则是各种监控集成系统技术的应用,比如空调监控、照明监控以及给排水监控等,通过这些监控系统进行工作,智能建筑才能够在真正的意义上实现智能化的运行。

2 系统集成技术在智能建筑中的控制应用

当前时期,智能建筑的运行主要依赖于系统集成技术,工作人员必须努力加强对于系统集成技术应用的研究,才能够为智能建筑的发展提供更多的助益。而本文下面则通过分析系统集成技术应用于智能建筑的楼宇控制工作的理论以及其具体的应用两个方面来对系统集成的控制应用做一下分析。

2.1 系统集成技术应用于智能建筑楼宇控制工作的理论

在各种计算机网络、网关、软、硬件设备、监控设备等的协调工作中,系统集成技术在智能建筑中的得以有效应用,而且能够为建筑楼宇控制工作提供优化的信息共享功能,从而使智能建筑的楼宇控制工作能够通过运用各种精确充分的数据而实现。而楼宇控制工作的实现则推动了智能建筑的自动化以及智能化管理与运行,使得智能建筑成为名副其实的智能化建筑。比如,智能建筑通过空调监控系统来为空调设备的运行提供数据,从而帮助空调系统自主地调节冷冻水的温度、运行状态、气压及液压、空气适度等,进而使空调设备实现自主的运转。而诸如此类的应用还有智能车间的消防报警系统、智能宾馆的热水供应管理系统等,是智能建筑智能化运行的必要保证。

而就系统集成技术在智能建筑楼宇控制中进行应用的理论基础来讲,其运行是以计算机的集成系统作为宏观控制系统,而从微观上来看这种楼宇控制主要是通过系统集成的前馈控制来实现的。前馈控制指的是在集成系统中各种被控制参数受到干扰因素将要发生变化时,系统则会根据其参数可能会发生的具体变化而提前地调整各种系统控制量,从而使被控制量的变化实现预先的有效应对,进而能够极大地提高系统调控的精确度,使得智能建筑楼宇的各项调控工作得以及时实现。智能建筑各个系统集成的程度越高,前馈系统控制器的控制精准度也就会越高,而其控制的效果也就会在更优化的状态中得以实现。工作人员在利用系统集成技术进行前馈控制时,还可以将前馈以及反馈的控制方案进行结合使用,使控制工作在运行时既能够得到前馈控制对于可测扰动的补偿,又可以获得反馈系统对于随机干扰的各种检验效果偏差的调整。

2.2 系统集成技术在智能建筑楼宇中的具体控制应用分析

智能建筑的楼宇环境极其复杂,各种功能之间存在着非常高的关联性,工作人员在使用系统集成技术进行控制应用时,要充分地兼顾到各个方面的因素。而本文则以系统集成在楼宇的空气环境控制工作中的应用,来具体地分析一下系统集成应用的

优势。

楼宇的空气环境控制牵涉到气候、天气、人数以及空调设备等各方面的因素,空调系统在对空气进行控制时,就会遭遇到这些因素的不同作用而产生非常大的系统工作偏差,不利于空调制冷量的准确制定。而反馈控制系统则是在空调系统产生偏差之后才开始对控制量进行改变,这就使得各项温度的具体调节以及执行产生了极大的滞后性。这样一来,空调系统无法实现良好的运行,从而降低了其控制的效果以及空调控制的节能效果。所以,工作人员要使用集成系统对楼宇的空气环境进行控制,以推动其控制工作的优化实现。

智能建筑的楼宇控制利用集成系统来实施,一方面能够通过集成系统中的能源计量系统进行工作,而在确切的用电量反馈下达到对于各种用电设备所散发的热量的准确把握;另一方面,还可以从集成系统中的门禁系统达到对于当时楼内人员所散热量的精确把握,从而对空调实施预见性的送风量的调整,进而使楼宇温度达到适时的调节,也降低了空调设备的能耗。而这些调控工作就是通过上文的系统集成技术中的前馈控制而得以实现的,前馈控制根据监控数据的分析,能对各种扰动因素所造成的偏差进行适当的事前调整,进而使得楼宇空气始终处于良好的状态。所以说,系统集成技术在智能建筑中的控制应用是极为有效的。

3 结束语

智能建筑的运行对于系统集成技术的应用是必不可少的,建筑建设人员要想使智能建筑的建设达到最佳的智能化效果,就必须不断地完善系统集成技术,使其为智能建筑的运行提供更多的助力。

参考文献

[1]刘江永.建筑智能系统集成模型的构建及研究[J].湘潭大学自然科学学报,2009,01.

[2]李锋博.基于Web的智能建筑系统集成的设计与应用[J].电气应用,2009,07.

[3]陈立定,郑宇祺,曾明,胥布工.基于Web的建筑智能化系统集成组态软件的设计与应用[J].低压电器,2007,06.

智能控制技术论文范文6

关键词:现代科学技术革命;人工智能;智能控制;未来社会

随着科学技术革命的发展,自动控制技术装置、电子计算机、人工智能、智能控制将普遍应用于社会生活的各个方面,将出现生产智能化、组织管理智能化、生活环境智能化。这就要求人们按照当代和未来社会发展的需要进行更有成效的知识和精神生产。因此,人工智能、智能控制作为具有广阔应用前景的学科,已经不单纯是个别哲学家或理论自然科学家的职业嗜好,而是现代科学技术革命发展的需要[1][2]。

一、人工智能

随着1941年以来电子计算机的发展,从50年代早期人们开始注意到人类智能与机器之间的联系。1955年末,Newell和Simon做了一个名为“逻辑专家”(Logic Theorist)的程序,它对AI研究领域产生的影响使其成为AI发展史中一个重要的里程碑,被许多人认为是第一个AI程序。1956年,被认为是人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一个月的讨论。他请他们到 Vermont参加“Dartmouth人工智能夏季研究会”,并提出人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。从那时起,这个领域被命名为“人工智能”。1958年McCarthy宣布了他的新成果: LISP(LISt Processing)语言,很快就为大多数AI开发者采纳。70年代专家系统被开发出来,该系统可以预测在一定条件下某种解的概率,被用于股市预测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等。70年代另一个进展是David Marr提出了机器视觉方面的新理论。

在理论探索方面,美国学者Zadeh首创模糊逻辑,它可以从不确定的条件做出决策;还有神经网络,被视为实现人工智能的可能途径。同时在实际应用方面也进行了大量的研究,并取得了可喜的成果[3][4]。

人工智能(Artificial Intelligence),是计算机科学的一个分支,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习、机器视觉等等。人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标[5]。

二、智能控制

人工智能的发展促进自动控制向智能控制方向发展,智能控制代表了自动控制的最新发展阶段,也是应用计算机模拟人类智能实现人类脑力劳动和体力劳动自动化的一个重要领域。

由于传统的控制理论(包括古典的和近代的)主要涉及对伺服机构有关的系统或装置进行操作与数学运算,而人工智能所关心的主要与符号运算、逻辑推理即计算智能有关,在相当长的时间内,很少有人提到过控制理论与人工智能的联系。1965年,著名的美籍华裔科学家傅京孙(K S Fu)教授首先把人工智能的启发式推理规则用于学习控制理论;然后,他又于1971年论述了人工智能和自动控制的交接关系。由于傅先生的重要贡献,他已成为国际公认的智能控制的先行者和奠基人。1967年,利昂兹(Leondes)等人首次正式使用“智能控制”一词,这一术语的出现要比“人工智能”晚11年,比“机器人”晚47年[6]。1987年1月,在美国费城由IEEE控制系统学会与计算机学会联合召开了第一届智能控制国际会议,这标志着智能控制作为一门新学科正式建立起来。

在理论结构上,智能控制具有十分明显的跨学科(多元)结构特点。

(1)自从傅京孙教授1971年提出把智能控制作为人工智能和自动控制的交结领域以来,许多研究人员试图建立起智能控制这一新学科。这可以用二元交集结构来表示;也可以用离散数学和人工智能中常用的谓词公式之合取来表示,即

IC=AI∧AC

式中,各子集(或合取项)的含义如下:AI―人工智能(Artificial Intelligence);AC―自动控制(Automatic Control);IC―智能控制(Intelligent Control);∧表示连词“与”符号。

(2)萨里迪斯于1977年提出另一种智能控制结构,他把傅京孙教授的智能控制扩展为三元结构,即把智能控制看作为人工智能、自动控制和运筹学的交接,可以用下式来表示:

IC=AI∧AC∧OR

式中,各子集(或合取项)的含义如下:AI―人工智能(Artificial Intelligence);AC―自动控制(Automatic Control);OR―运筹学(Operation Research);IC―智能控制(Intelligent Control);∧表示连词“与”符号。

在提出三元结构的同时,萨里迪斯还提出分级智能控制系统,指出它主要由3个智能级组成。

第一级:组织级,它代表系统的主导思想,并由人工智能起控制作用。

第二级:协调级,是上一级(第一级)和下一级(第三级)间的接口,由人工智能和运筹学起控制作用。

第三级:执行级,是智能控制系统的最低层级,要求具有很高的精度,并由控制理论进行控制。

(3)蔡自兴教授根据信息技术的飞速发展,发现信息论是解释智能的一种手段,控制论、系统论和信息论是紧密相互作用的,信息论已成为控制智能机器的工具,信息熵成为智能控制的测度,信息论参与智能控制的全过程,并对执行级起到核心作用,基于此,蔡自兴教授提出四元智能控制结构,把智能控制看作自动控制、人工智能、信息论和运筹学4个学科的交集,可表示如下:

IC=AI∧AC∧OR∧IT

式中各子集(或合取项)的含义如下:AI―人工智能(Artificial Intelligence);AC―自动控制(Automatic Control);OR―运筹学(Operation Research);IT―信息论(Information Theory);IC―智能控制(Intelligent Control);∧表示连词“与”符号[7]。

从学科结构的观点看,智能控制的四元交集结构是最具有代表性的一种集成思想。在智能控制领域内已集成了许多不同的控制方案,如模糊自学习神经控制就集成了模糊控制、学习控制和神经控制等技术。

智能控制获得迅速发展,并已初具学科体系,包括基础理论、技术方法和实际应用诸方面。在基础理论方面,涉及传统人工智能的知识表示和推理、计算智能(如模糊计算、神经计算和进化计算等)和机器学习等。在技术方法方面,从递阶控制、专家控制、模糊控制、神经控制、学习控制、仿人控制和进化控制等系统加以研究。在实际应用方面,从实验室到工业现场,从家用电器到火箭制导,从制造业到采矿业,从飞行器到武器控制,从轧钢机到邮件处理机,从工业机器人到康复假肢等等都具有十分广泛的应用。

在智能控制的各种理论中,从普遍适用和统一观点出发的宏观综合方法最具有吸引力,但目前缺乏统一的描述和基本理论框架。虽然以信息熵为测度的思想方法与有关传统控制的方法论和专门技术不同,有着广泛的实用性;信息和熵的内涵刻画了复杂系统的有关特性,控制理论的信息熵方法以传统理论方法为特例,具有普遍性,但是,在以信息熵为基础的同时,必须以马克思主义的世界观与方法论为指导,采用宏观综合方法研究复杂系统控制问题,才有实际的意义,这是解决复杂系统控制问题颇有前景的方向,将有助于智能控制基础理论的形成与完善。按照辩证唯物主义的认识论的观点,我们应该认识到,在今天具有更多微观知识和更先进研究工具的条件下,再把基于模型的控制理论发展成为基于信息控制理论,便是在高一个层次上从微观到宏观研究的一次回溯。

三、最新研究成果

英国科研人员在2008年8月13日宣布,他们已经将成千上万的老鼠神经元“缝合”进原始的生物大脑,而这些神经元已经具备控制机器人运动的能力,由此推出一个由老鼠的脑组织控制的机器人。机器人名为“戈登”,它的“大脑”拥有5万到10万个活神经细胞,由英国雷丁大学科研人员设计。科研人员将人工培养的老鼠神经细胞同机器人的一些部件结合起来,“戈登”大脑是活的组织,因此必须装在特定温度控制的器具中。“戈登”大脑通过蓝牙无线连接同自己的“身体”联络。除受自身大脑支配外,“戈登”不受额外的人为或电脑控制。

试验一开始,神经细胞便忙碌起来。“大约24小时内,它们(神经细胞)开始彼此试探,建立联系。”主要设计者之一的雷丁大学教授凯文・沃里克说。

某种程度上说,“戈登”在自学。比如,撞到墙时,它会从传感器得到电子刺激。再遇到类似情况时,它就会记住。

这一开创性研究旨在探索自然智能和人工智能的分界问题,可能有助人类弄清楚记忆和学习机能的根本构架,据报道,这可能是世界上首个完全由活体脑组织控制的机器人[8]。

四、人工智能、智能控制在未来社会的纵深发展

当代科学技术革命和社会发展要求哲学回答和解决复杂系统的控制和管理及人工智能、智能控制发展所提出的认识论和方法论问题,回答当代社会的发展规律问题。同近代科学技术发展时期相比,今天人类思维所面临的对象和客体具有极大的综合性、总体性,系统性。

随着人类自然智能和人工智能相结合,创造型思考的逐步实现,人工智能越来越多地承担着各种脑力劳动,把知识生产者同人类先前创造的全部知识财富联系起来,把数以百计、千计的专家、学者、知识劳动者联系、组织成一个有机的知识生产机体,使得知识交流和知识鉴定的速度和准确性比使用以往的普遍手段快出、高出几个数量级,可以使整个社会从事创造性劳动的人数比例得到极大的提高。人脑思维活动中的创造性工作和非创造性工作是互为前提、互相制约、互相转化的。创造性是在非创造性工作基础上进行的,创造性工作又可以不断转化为非创造性工作。当一种创造性工作转化为非创造性工作并转交给人工智能与智能控制进行之后,人脑又可以去从事和开拓新的创造性工作。这种情况的发展不仅会导致人工智能与智能控制水平的普遍提高,而且使得人们不断创造出适应创造性思维活动方式[9][10]。在未来社会里,智能控制将向更高的技术水平发展,包含多层级、多变量、非线性、大时滞、快速响应、分布参数和大规模系统等。

五、结语

随着科技的不断进步,人工智能、智能控制对未来社会的推动力是不可或缺的。但人工智能与智能控制专家也警告说,现在必须为有关研究制定道德规范,以确保未来社会的发展能够帮助人类而不是危害人类。“人工智能奇点研究所”的创办人之一伊利泽・尤德库斯基目前正在研究所谓的“友好人工智能”。他说,他最担心的是,在未来社会里,如果一些科技怪才发明一种能够自我进化但却没有道德感的机器人,这将给人类带来灾难。在未来社会里,人工智能、智能控制与社会文化、物质生产、经济发展、社会文明、社会变迁、社会结构、社会进步等方面存在越来越密切和复杂的关系,马克思主义同样面临越来越多需要认识或解释的新的社会现象和问题,分析现代科技革命发展情况也是认识马克思主义的基础。马克思主义一贯认为科学技术是社会革命的重要力量,是推动社会进步的巨大杠杆,是直接的革命力量。在未来社会里,我们需要立足于人工智能与智能控制的发展趋势,从马克思主义与近现代科学技术革命交汇点出发,深刻理解当代社会主义与现代科学技术革命汇流的历史必然性,并从分析现代科学技术革命的巨大物质功能、经济功能和精神功能入手,了解人工智能、智能控制的最新进展和前沿动态,使自己在所从事的科研领域不断有新的发现、新的发明。

参考文献

[1]朱松山,任容.现代科学技术革命与马克思主义[M].国防大学出版社,2001.

[2]宋健.现代科学技术革命基础知识(干部选读本)[M].中央党校出版社,1994.

[3]Gevarter W B. Artificial Intelligence Applications: Expert

Systems, Computer Vision and Natural Language Processing. New Jersey: NOYES Publications, 1984.

[4]姚锡凡,李.人工智能技术及应用[M].中国电力出版社,2008.

[5]蔡自兴,徐光.人工智能及其应用[M].北京:清华大学出版社第三版,2003.

[6]易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,1999.

[7]蔡自兴.智能控制(第二版)[M].电子工业出版社,2004.

[8]傅云威.英国诞生“鼠脑”机器人[N].南方都市报,2008-08-15.