铁路勘察设计论文范例6篇

铁路勘察设计论文

铁路勘察设计论文范文1

【关键词】铁路工程;地质勘察;作用

我国新旧地质构造体系复杂多变,铁路工程在建设过程中,容易因地质问题而受到不同程度的影响。工程地质勘察工作,为工程人员提供最直接的工程地质资料,如提供地下水的活动、地质隧道围岩的分级提供了原始的数据信息。随着新一轮铁路建设高潮的实施,工程地质勘察在铁路建设中的地位越来越突出,更面临着勘察质量与进度的矛盾;本文也将就工程地质勘探在铁路建设中的作用、特殊性及如何提高其质量与效率展开探讨,以提高对地质勘探的重视,从而进一步推动其进步,更好地服务于铁路建设。

1 工程地质勘察的重要作用

地质勘察在工程建设中的作用主要包括,一是提供地质构成信息,决定基础处理方案的选择;二是提供土体的力学指标,这对对工程造价影响很大。此外,工程地质勘察工作的质量如何,对工程方案的设计与建设的展开有着关键性作用。实践表明,发生的工程事故多,不少是由于地质问题引起,这决定了工程地质勘察是铁路工程建设中不可少的一个重要环节。以下将从两方面探讨工程地质勘察工作在铁路工程建设中的作用。

1.1 工程建设与工程地质勘察工作密切相关

就铁路工程地质勘察而言,其工作主要包括四个环节,并与设计过程中的四个流程对应,即“踏勘(设计阶段的预可行性研究)、初测(可行性研究)、定测(初步设计)、补充定测(施工图设计)”。通过以上一系列的勘察工作,不断加深对建设工程的区域化及场地施工条件等相关问题的认识,从而为设计阶段提供综合的工程地质勘察资料依据。具体作用可从它的流程中了解,大致可归为四点:①规划规划环节,即初步判断所建设工程可能出现的地质问题,这可通过地质勘察工作来了解区域地质构造格局及特点;②设计环节,地质勘察工作可为设计选择合理的基础位置提供可靠的数据支持;⑨施工环节,主要是在施工过程中,施工单位要策划科学的施工及预处理方案时,需要地质人员的配合;④后续环节,为了更好地了解工程建筑与地质体存在的作用情况,就有必要要求勘察人员需要长期观测水文地质工程及各种原位测试。

1.2 水文地质勘察对工程建设质量的影响

由于地下水文地质环境是基础工程的环境,也是岩土体的一个组成部分,所以工程地质勘察中不可缺少水文地质的调查。若工程设计阶段与建设阶段过程中,处理不当,将直接影响岩土体的工程特性,进行使工程的稳定性与耐久性受到影响。但实践中,水文地质调查却在工程勘察过程得不到重视,甚至只是为了应付国家规范检查的一项任务。但水文地质的工程勘察作用,应引起铁路工程建设部门的重视,因为研究表明,自然状态下地下水的动水压力作用较弱,地面工程受其不利影响较小,日益增加的工程建设活动,使水文地质状受到的区域范围扩大,结果导致严重的工程水文地质危害。所以工程建设部门及相关人员应正确意识到水文地质勘察工作在工程建设中的重要作用。

2 如何提高工程勘察工作的质量与效率

工程地质勘探,是最客观、直接地体现工程建设区域的地质情况。从以往的工程地质勘探实践,建议从以下几点提高工程勘察工作的质量与效率。

2.1 勘探前的准备阶段

地质勘探前期,要根据铁路工程设计情况:首先,挖宝切实可行的勘探计划,主要是收集相关资料,分析并确定工程重点,确定勘探技术方案等;其中,地基方案的选择在工程建设,它对剪切破坏使地基失稳的防止、软弱地基的承载能力的提高及不均匀沉降与沉降量过大产生的防止都有着重要的作用,这也使它满足上部结构对地基的要求。所以好的地基方案,在一定程度上,它能消除地基土的振动液化沉陷、减轻膨胀土的胀缩性等的不利影响;其次,地质点不仅要突出代表性特点,数量及对勘探深度要满足重要地质界线的控制需要;再者,应根据地基复杂程度与成因类型确定勘探点布置,当土层变化复杂时,勘探点的间距应予加密,一般情况下宜小于30m;还要应综合可能的基础类型、工程特点及地质条件等信息计算勘探点的深度,而不难简单了事;此外,在工程勘探的运作布置上,应讲究投资资金的经济性,科学合理布置工程的运作方案,同时要确保施工安全进行;最后确定了工程的类型、工程勘探点及勘测技术手段,为勘测工作的展开奠定了理论信息的基础。

2.2 勘探过程中的控制阶段

在勘探施工的过程中,并根据预先审核通过的相关工程地质勘察监理规定文件实施控制和管理。在在工程地质勘探的过程中,应重点重视工程的地质调绘、观测点、当地地貌、勘探点、测试点的布置以及相应资料的分析报告;以保证策划的勘探方案真正落实到位;同时,应根据工程所在区域的地形、不同的勘察阶段、成图的比例等情况综合判定地质点。若在勘探过程中出现工程本身有特殊要求的或特殊地质条件,就要选择服从特殊性,并采取相应方法,使工程建设的需求得到满足。还有,地下水埋藏状况的也要重点调查,在实行过程中,应先设置必要的调查指标体系,明确调点,尤其是地下水位的类型、变化幅度与规律及补给、排泄条件等基础情况;进而涉及基坑工程,主要是调查土层的渗透性质,需要做些抽、压水试验,以客观评价地下水对建筑材料的腐蚀性情况,同时预估地下水可能潜在的威胁,如流沙、突涌或管涌等危害,以提前制定相应的行之有效的防治措施。此外,工程地质勘察应尽可能采用遥感图像地质解释,其中应重点了解特殊岩层的自然特征及分布,以认识水文特征、地层的岩性及地质的构造等情况;或者,通过比较分析不同时期的遥感图像来解译也可以。就铁路施工工程地质勘探中,为了满足工程设计的要求,提供符合实际的地质参数,就要确定岩层的工程地质特性,具体应通过综合分析钻探、动力触探、标准贯入试验和其它试验资料以及地区经验等一系列勘察环节。

2.3 地质勘探工程的核实阶段

钻孔技术在地质勘探的应用过程中,其涉及的大部分都是一些隐蔽性工程,所以工程地质勘察监理工作,不仅要核实各项工程的量及投资,也更要重点根据相关的规定对现场施工钻机的钻探质量及相关记录,进行随时检查与随机抽查,以做到钻孔的质量的严格把关工作;此外,要注意检测实际施工中有没有比超出原设计中工程量的问题出现,以保证工程的进度、造价及质量。

铁路勘察设计论文范文2

本系统以GoogleEarth为三维地理信息数据来源,在GoogleEarth实现铁路工程地质勘察,通过Access数据库管理勘察成果并将勘察成果输入AutoCAD成图。因此要通过数据库管理技术建立统一的数据接口,实现GoogleEarth与AutoCAD的相互通信。GoogleEarth和AutoCAD分别是Google公司和Autodesk公司开发的软件产品,要实现二者集成,需通过其提供的二次开发接口,在C号环境下编程实现。具体步骤如下:(1)在C号环境下,利用GoogleEarthCOMAPI和AutoCADAPI分别获取GoogleEarth和AutoCAD的窗口句柄;(2)利用WIN32API将获取的窗口可视化地管理起来[5];(3)建立统一的线路和地质数据库,实现二者之间的数据共享。集成GoogleEarth窗口和AutoCAD窗口后的系统如图2所示。窗口有上下切分模式、左右切分模式、单GoogleEarth模式和单Auto-CAD模式。

2铁路定线与方案展示

作为一个铁路工程地质勘察系统,铁路定线功能是不可或缺的,这就要求在GoogleEarth三维地理信息平台上,能够进行铁路定线以及方案展示,以便能为铁路沿线的地质勘察提供参考和依据。基于GoogleEarth进行铁路选线,目前国内已经有较成熟的系统。本实验室刘江涛等[5]研发的“基于GoogleEarth的铁路三维空间选线系统”[5]提供了交互式定线、平面设计、纵面设计、桥梁、隧道、站场设计等众多功能(图3)并且取得了较大的实际应用价值,因此本系统对其中铁路定线模块予以直接引用。

3遥感解译与空间分析

3.1遥感解译GoogleEarth可以提供多分辨率卫星影像、地形数据,不同地质、地物在遥感图像上的光谱及纹理特征是不同的,因此可以实现从宏观-局部多尺度的遥感地质信息解译,其解译要素可分为地貌单元、地质构造、不良地质、水文地质、特殊岩土等,包括断层、地质界线、不良地质体、岩溶区、产状、观测点、钻探、试坑、水文点、水准点、照相点、区域地质图、工程地质平面图、环境保护区划图等[6-7]。KML是Keyhole标记语言(KeyholeMarkupLanguage)的缩写,是一种采用XML语法与格式的语言,用于描述和保存地理信息[8],如Placemark、Path、Polygon和GroundOverlay,可以被GoogleEarth识别并显示。因此,可建立地质信息与KML元素的对应关系,如表1所示,实现解译成果在GoogleEarth上的可视化表达。不同类型的地质信息通过不同的颜色、比例、符号、粗细和描述信息进行区分。解译成果通过Access数据库管理,并实时显示在GoogleEarth三维地理信息平台上,如图4所示。3.2空间分析系统利用GoogleEarth三维地理信息平台,完成点线面测量、线路调查、产状测量、坡向测量、视倾角、真厚度计算等空间分析功能,能够快速获取区域性的地层断层产状、岩层厚度、边坡坡率及与线路空间位置关系,减少现场地质调查工作量,降低人力物力成本。以产状测量功能为例,产状测量是地质研究中的基础工作,在地质各领域应用广泛。随着遥感技术的发展,地学工作者要求能够快速、准确、批量的获取岩层产状,而地质罗盘、坡度仪等传统工具又存在工作量大、精度低,受限于野外条件等缺陷。而利用GoogleEarth遥感影像和地形数据,可以从宏观尺度上进行地表浅层岩层的判别,并确定岩层分界线。实现从GoogleEarth提取岩层分界点数据需要用到GoogleEarthCOMAPI接口技术。通过调用函数GetPointOnTerrainFromScreenCoords([in]doublescreen_x,[in]doublescreen_y,[out,retval]IPointOnTerrainGE**pPoint)即可返回选取点pPoint的经纬坐标和高程值。得到的岩层分界点数据为大地坐标,需转换为平面坐标,因此需要用式(1)进行高斯投影坐标正算[9]:获取岩层分界点的平面坐标后,可通过最小二乘法进行平面拟合,拟合出岩层面,如图5所示。最后根据拟合出的岩层面方程和产状计算公式,计算出走向、倾向、倾角等产状信息。

4铁路工程地质勘察成果展示与查询

铁路工程地质勘查数据最终通过Access数据库统一管理,为让设计人员、评审专家和决策者能全面了解勘察成果,系统基于GoogleEarth建立了三维综合展示平台,实现了遥感影像、地理信息、地质资料、线路方案、勘察资料等空间信息的集成,综合展示信息如图6所示。勘察成果综合展示平台实现了二维、三维混合以及多数据源的融合。整个线路的三维地形、影像、地形图、平面设计成果、线位、桥梁、隧道、车站、地质等各专业信息通过数据库统一管理,最终集成到同一个KML文件,将KML文件导入到GoogleEarth,便可实现勘察成果的综合展示。系统根据XML语法与格式以及KML文件的特点,为KML文件中点、线、面、图片等添加<description>标签,<description>标签具体描述各项成果的详细信息。这样,通过点击该图标,即可查询其详细信息。如需查询线路交点的设计信息,在GoogleEarth窗口点击线路交点图标,会出现一个属性对话框,对话框显示线路交点的曲线半径、缓和曲线长、交点坐标、转角等设计信息;如需查询勘察点的坐标信息,只要单击勘察,就会自动弹出勘察点信息窗口。为进一步增强综合展示信息的全局效果,可根据铁路线位设置三维游览路径,路径可根据线位自动计算,也可人工绘制。沿路径游览时,可设计相关参数,如游览速度、视点高度、视角和停留时间等,如图7所示,从而实现方案的全方位展示。在铁路工程地质勘察中,经常会遇到设计多个方案的情况,本系统提供了同时展示多个方案的功能,供勘察设计人员比选,提高方案比选质量和效率。基于GoogleEarth的铁路工程地质勘察信息展示平台,弥补了传统方法在立体综合展示能力上的不足,有助于对地形地貌、地质条件等的总体把握,特别是对于山区铁路,有更大的应用价值。

5应用与结论

铁路勘察设计论文范文3

譬如,我院在宜万线、向莆线、沪昆线等山区铁路各阶段的地质综合勘察中,对沿线越岭长大隧道采用三维可视化方法及高分辨影像进行遥感解译,特别是重点对长大隧道的断裂构造、不同岩体接触界限以及不良地质体空间分布的高精度解译,通过线性构造的准确定位,指导大面积地质调绘路线的设计、观测点、物探测线与钻探孔位的布置。其解译精确度可以达到20m,解译正确率达到90%以上。

大面积地质调绘

工程地质测绘是工程地质勘探的前提和基础,工程地质测绘工作的好坏直接关系到工程地质勘探的质量和数量。地质测绘是从宏观到微观、从现象到本质,由定性到定量观察分析问题的方法。它是以观察到的地质现象为依据,以地质理论为指导,对现场观察到的各种地质现象通过去粗取精、去伪存真、由此及彼、由表及里地归纳、推理和分析研究的过程。

通常,在对区域地质和遥感判释资料进行详细分析研究并建立沿线主要地层层序和构造轮廓的基础上,开展山区铁路长大、深埋隧道的大面积地质调绘工作。主要调绘内容为:地层岩性的分布、特征、时代划分(地层划分到组、段)及其组合关系;褶皱、断裂构造的展布、规模、性质及其对工程的影响;节理裂隙的发育特征;滑坡、岩堆、危岩、落石、采空区和岩溶等不良地质和特殊岩土的分布范围和规模等。调查方法以垂直地质界线的路线穿越法为主,重要地质界限采用沿线追踪法;调点为断裂构造、软弱岩层、节理密集带、较大地表水体及地下水与构造薄弱带的关系等;调查路线部署以线路中心两侧各500m范围内为重点追索区,线路中心两侧500~1000m范围为补充调查区;根据已有资料,加强线路中心部位的验证和补充调查,以获取相对客观真实、可靠实用的地质资料。根据大面积地质调绘结果,对调绘判断不清、对工程影响较大的断裂构造、重要的不良地质地段和重要部位,再结合物探、钻探等手段进一步查明、验证。

从山区铁路长大深埋隧道设计、施工的经验和教训来看,设计、施工中出现的各种工程地质问题,除了与大面积地质调绘的精度不够外,还与在外业勘察时,没有根据各种构筑物特点,结合既有的工程地质特征,有针对性、合理地采用勘探手段、布置勘探点,查清场地区的工程地质、水文地质条件等有关。山区铁路长大深埋隧道因其工程主于地下,且长度一般达数千米、埋深超数百米甚至上千米,经常穿越数个地貌单元、地质时代、地层岩性和区域构造等,仅仅凭借大面积地质调绘难以将其工程地质条件查清,故隧道工程施工中出现的工程地质问题也较多。主要有洞口边、仰坡变形,洞身不良地质(如坍方冒顶、挤出滑移、突水突泥、岩溶、采空区、岩爆、瓦斯等)以及衬砌开裂变形等。实践证明,隧道洞身要尽量绕避滑坡、岩溶、采空区等不良地质地段,实在不能绕避时,应在取得准确的工程地质资料的基础上,采取符合实际的工程措施。

对于山区铁路长大深埋隧道,应在大面积工程地质调绘和工程地质勘察工作的基础上,建议大力推行、提倡综合勘察,充分运用综合物探和遥感技术,并布置一定数量的地质钻探、综合测井和试验等工作,以查清隧道穿越区的地层岩性、地质构造特征、不良地质、地下水发育情况等。譬如,我院勘察设计的宜万铁路工程地质条件特别复杂,被国内外专家定义为世界上最复杂的山区铁路。全线隧道长约223km,其中岩溶隧道近160km,这些隧道中长大隧道埋深大,一般埋深在500~600m,隧道洞身大部分穿越地下暗河或在岩溶的水平发育带附近通过,施工中可能遭遇大型岩溶洞穴、暗河或管道流,发生大规模透水突泥和地面塌陷等地质灾害,因此查明地下岩溶、暗河的规模和空间位置,是宜万铁路建设成败的关键。为此,我院采用了大面积地质调绘、岩溶水文地质专项调查。从区域地质调查入手,对全线所有隧道均进行1∶1万大面积地质测绘,根据岩溶水文地质单元和地下水补径排范围的需要,扩大范围调绘;并对其中8座隧道均进行了专项岩溶水文地质调查。共计完成1∶1万大面积地质调绘340km2,1∶1万岩溶水文地质调查572km2。通过调绘,查明了宜万线长大复杂岩溶隧道区的岩溶地貌特征,可溶岩岩溶发育与地层岩性、地质构造、水动力条件的制约关系,岩溶发育的空间分布规律,岩溶水的赋存规律和补径排特征及其与隧道的关系、危害程度,为各隧道的岩溶水文地质条件评价奠定了基础。

综合物探

物探是一种间接的勘探手段,它是通过地质体的物性表现来推断解译未知的地质问题。其数据采集受地形、地质、物性不均等人文和自然环境多种因素影响,因此物探成果做出的地质推断需要其他直接手段如地质调绘、钻探等代表性的验证,以了解其真实的地质内涵。物探具有轻便、快捷、成本低等优点,但也有“精度不高”的缺点,甚至有误判的可能性。常用的物探方法有地震折射波法、地震反射波法、瞬变电磁法、高密度电法、音频大地电磁(EH-4)法及高频大地电磁测深(HMT)等。

1地震折射波法

它是研究地震波在速度分界面(波在这个界面以下地层中的传播速度v2大于波在其上面地层中的传播速度v1)产生滑行波引起的振动,通过研究在地表接收到的折射波的时距关系,求得地下界面埋深等参数的一种勘探方法。其特点是最大接收道小,一般为24道;勘探深度浅,一般在100m以内;测量精度不高,一般采用皮尺测量;覆盖次数不高(因其震源浅、药量小)等。浅层地震法主要作用包括:工程地质分层(第四系覆盖层、基岩风化带、基岩面的起伏状态,特别是对第四系的分层等);探测断裂构造、岩溶构造的空间分布及其发育特征;测定岩体的动弹性参数,如杨氏模量、剪切模量、泊松比等。浅层地震勘探主要应用于隧道进出口、浅埋地段等的纵、横剖面勘探及洞身各岩土层纵波速度的求值等。

2地震反射波法

地震反射波法勘探原理是当震源激发时,地震波以球状向地下半空间传播,在其遇到岩性分界面、断层、破碎带、岩溶等地质异常体时,地震波就折返回地面被检波器接收,接收的地震数据经过室内数字处理生成地震剖面,根据该剖面上的异常特征,就可以解译为对应的地质异常体,达到查明隧道围岩洞身勘探的目的[6]。地震反射波法的特点是最大接收道为120道以上,勘探深度大(可达3000m),要求的测量精度高(为了加快勘探速度,必须采用GPS仪器),覆盖次数高(由于其道数多,对地下同一点可达到6次以上采集信息,震源深、药量大,采用组合检波———即一个点用多个检波器接收信息)等,但是它在浅层(埋深0~100m左右)基本属于盲区,仅仅对埋深较深的地层有效。深层地震反射波法适用于地形起伏大、埋藏深度较深的长大深埋隧道勘探。

3瞬变电磁法(TEM)

TEM(TransientElectromagneticMethod)法是以接地导线或不接地回线通过脉冲电流做为场源,以激励探测目的物感生二次电流,在脉冲间隙测量二次场随时间变化的响应,进而达到解决工程地质问题的一种电磁法。TEM在时间和空间上的可分性,使其具有以下特点:(1)在高阻围岩地区不会产生地形起伏影响的假异常;在低阻围岩区,由于是多道观测,早期道的地形影响也较易分辨。(2)可以采用同点组合进行观测,使与探测目标的耦合最紧,取得的异常响应强,形态简单,分层能力强。(3)线圈点位、方位或接发距要求相对不严格,测地工作简单,工效高。(4)有穿透低阻覆盖的能力,探测深度大。(5)剖面测量与测深工作同时完成,提供了更多有用信息,减少了多解性。正是由于TEM法的这些特点,其主要用于解决深埋隧道、隧址区的断裂构造、岩溶构造、地层划分等问题,其探测深度可达400~500m。

4高密度电法

高密度电法与常规电法相比是向地下供电。不同的地质体、异常体对电流的吸引不同,这种吸引大小对应地质体、异常体的电阻率大小,根据测得的视电阻率在X和Z方向变化的剖面,分析剖面上视电阻率变化特征,将其解译为对应的地质异常体,解决地质问题。

就岩溶勘探而言,通常空腔岩溶为高阻,充填岩溶为低阻,渗水破碎带为低阻。不同岩性其电阻率值也不同,以此可对岩溶和地层岩性等作较好的判断。该法可依据获得的地下介质电阻率的分布情况,了解隧道围岩的性质和分布范围,推测断层构造和岩溶构造的空间分布及其发育特征等。譬如,向莆铁路武夷山隧道长14.658km,隧道最大埋深达350m。其中F5断层通过地层为里地单元(J3L)的少斑中粒花岗岩。遥感及现场地质测绘结果表明:F5断层为一硅化破碎带,出露于DK222+532附近,与路线夹角约50°,断层产状354°∠48°,断层破碎带及影响带宽约50m,带内岩石具硅化、并可见构造角砾岩,角砾呈次圆状,节理裂隙发育,石英脉呈不规则状,大致平行断裂面充填,为逆冲断层。经物探地震折射波法、高密度电法验证,F5断层产状倾向小里程,视倾角40°,破碎带岩体的弹性波速仅2920m/s,两侧完整基岩的弹性波速4862m/s。物探实际勘测及综合分析结果如图1和图2所示。

5音频大地电磁(EH-4)法

EH-4系统是20世纪90年代由美国EMI公司和Geometrics公司联合推出的新一代电磁探测仪器,它能观测到离地表几米至1000m内地质断面电性变化信息。它利用宇宙中的太阳风、雷电等天然电磁场信号作为激发场源,该场源不存在近场区和过渡场区[7]。音频大地电磁法具有抗干扰能力强、横向分辨率高、高阻屏蔽作用小、勘探深度范围大等特点。EH-4探测法在山区铁路长大、深埋、复杂的岩溶等隧道勘探中,对地层岩性、地质构造、岩溶等地质现象的反应较为齐全和准确,其勘探深度能够满足要求,且在野外受地形等限制较小,可以在长大、深埋、复杂隧道的综合勘探中应用。但同时应该注意到,其对地层岩性、地质构造的划分主要依据电性,一般而言,电性差异大,且有一定厚度时,其对地层、构造的分辨率也大大提高,根据资料推断的地质规律比较符合实际。同一岩性,或电性差异较小的岩性、构造等勘探对象就存在不确定性,因此,音频大地电磁资料必须结合地质测绘、钻探和综合测井等验证资料综合分析,才能取得较好的效果。

6高频大地电磁测深(HMT)法

高频大地电磁测深的概念是相对于可控源音频大地电磁(CSAMT,观测频率为0.25~8192Hz)和大地电磁(MT,观测频率为0.001~340Hz)的频率范围而提出的。对于灰岩地区,电阻率的变化范围一般在500~3000Ωm。如果取平均电阻率为500Ωm,隧道埋深在800m左右时,根据趋肤定理,要达到800m左右的观测深度,其观测频率的下限应在200Hz左右。

而当最高观测频率达到100kHz时,其穿透深度仅在11m左右,当地表覆盖有第四系低电阻地层时,其穿透深度将进一步减小。因此,对于隧道工程的勘察,要取得完整的地电断面,对于场源为天然大地电磁场的高频大地电磁,其观测频率范围在200~100kHz,该频率范围已超出了音频的范围,所以采用该频率段观测的方法称之为高频大地电磁测深(HMT)。在宜万铁路复杂的岩溶隧道工程勘察中,共布置了高频大地电磁测线198km。勘察结果表明,对于封闭性的溶蚀空腔,高频大地电磁呈低电阻异常特征;对于深度较浅或规模较大的岩溶地质体,高频大地电磁呈封闭圈式的低阻异常;当岩溶地质体的规模与埋深相比不是足够大时,在高频大地电磁视电阻率断面上,则不能形成封闭性的低电阻异常,而是等值线出现较大分离和弯曲的异常形态。在施工开挖的部分隧道中遇到的较大型岩溶地质问题共有76处,其中75处都位于大地电磁的异常区或异常的边缘。表明其勘察结果,为宜万线隧道施工设计和施工安全预警提供了准确的资料。

为了查明宜万线8座长大、深埋、复杂岩溶隧道的地层岩性、地质构造、岩溶发育程度、深度、规模以及暗河的位置,我院在遥感和大面积地质调绘的基础上,采用瞬变电磁法、音频大地电磁法、高频大地电磁测深法,并辅以地震折射和高密度电法,大致确定了这8座隧道的地质构造形态、部分断层的位置和产状,圈定了大的岩溶异常区,为隧道的深孔布置、地质资料的修正和岩溶发育规律特征的分析、隧道工程地质和水文地质条件的分析判断提供了依据,有效地缩短了勘探工期,大幅度地降低了勘探成本。

工程地质钻探和综合试验、测试

1工程地质钻探

根据工程地质调绘、综合物探勘探结果和设计意图,对山区铁路长大、深埋、复杂隧道进行有针对性的工程地质钻探,一方面可以准确地提供设计所需的各项岩土物理力学指标,另一方面也可验证物探和工程地质调绘结果。工程地质钻探是最原始也是最直接的勘察方法,其最大的优点在于能够直接钻取岩芯,取得定性的地质资料,直观地反映岩土体的颜色、塑性状态、风化程度等基本特性,准确地划分各种地层岩性、厚度、完整性和破碎程度,断层的位置、宽度、破碎和胶结程度,断层带的组成和性质,含水层深度、厚度、初见水位和稳定水位,岩溶发育程度等;也可以通过各种岩土试验获取岩土体的物理力学指标。此外,还可以作为地震、地应力等孔内测试的平台。正因如此,才使其不可替代地延用至今。其缺点是容易受勘察场地的限制,钻孔之间的地层关系需要依靠工程地质人员根据其所掌握的地质资料进行推断(钻孔的密度直接影响勘探成本和勘察资料的准确性),且周期长、费用高。

山区铁路长大、深埋复杂隧道的综合勘察是在充分搜集、分析研究既有区域地质资料的基础上,以遥感判译为先行,以大面积地质测绘和水文地质调查为基础,结合综合物探的勘探成果,针对性地布置适量的深孔钻探为主要勘探手段,并辅以必要的孔内测试试验等的综合性的勘察试验方法,以查明重大的工程地质问题。深孔钻探的选择和确定主要是为了解决如下几个主要地质问题:物探反映的重大异常区的验证,重大隐伏暗河、采空区等的探查,区域性大构造、断层的产状、破碎(软弱)程度、富(导)水性,地应力测试、瓦斯测试、水文试验以及单孔或多孔孔内测试,重要地质界面的控制(如可溶岩与隔水层接触界面、煤系地层的位置等)等。譬如,我院在宜万线综合勘察中共计完成深孔钻探51孔,共15304.23m。

2综合试验、测试

综合试验、测试工作分为孔内和孔外两类。孔内的测试、试验项目主要有水文试验、综合测井、孔内CT、地温、地应力测试、瓦斯测试(放散初速度、瓦斯压力等)、放射性测试等;孔外的测试、试验项目主要有水、土、岩石样品的物理试验和力学试验、示踪试验、煤层及瓦斯测试等。通过上述试验、测试结果,可为隧道围岩类别的划分、岩土体物理力学指标的选取以及岩体风化程度的划分、隧道风险评估等的施工设计和施工安全预警提供准确的依据。

综合勘察、测试成果的分析利用

每一种勘察方法和测试手段都不可避免地存在一些局限性或弊端,我们在得到各种分项的勘察、测试结果后,还需要对所获取的所有成果资料进行全面、系统的专题分析研究;综合分析各项勘探成果,并通过相互验证等手段剔除异常的错误结论,对可疑结论进一步做详尽细致的工作,对确定结论则寻找最经济有效的设计方案和施工措施。综合运用各种勘察手段相互指导、相互验证、取长补短,可以有效提高长大隧道的工程地质勘察质量。譬如,改建赣龙铁路扩能工程的汀州隧道长7.738km,隧道最大埋深达600m,其中F2、F3断层附近地层为下古生界奥陶-志留系(O-S)变质粉砂岩、板岩夹页岩:灰褐、灰黄色,全风化~弱风化,薄层状。在分析研究区域地质资料和遥感判译结果的基础上,有针对性地开展现场地质调查、测绘,发现了F2断层的地表露头,随后采用物探EH-4法进一步验证了F2断层的存在,查清了其工程特性:该断层属北西向断裂,倾向北东向,产状46°∠79°,断层破碎带宽约30.0m,与隧道相交于DK148+495附近,与线路夹角为17°。同样,通过现场地质测绘和物探EH-4法也揭示了F3断层。为进一步确定F3断层的工程特性,在地表布置了1个孔深340.10m的深孔,结合对钻探和孔内水文试验、地应力、地温等综合测井的测试结果综合分析,确定了F3断层的工程特性:属北北东向区域断裂,倾向北西西向,产状289°∠60°,断层破碎带宽约168m,与隧道相交于DK148+628附近,与线路夹角为80°。汀州隧道F2、F3断层工程地质特征如图3所示。

主要成果及效益

我院采用综合勘察技术在宜万铁路、向莆铁路、京福铁路、沪昆铁路和赣龙复线等数十座已经施工和正在施工的重点隧道工程所提供的地质资料不仅得到了施工验证,而且为施工提供了预警,保证了上述复杂性、风险性较大的重点工程施工的顺利进行。综合勘察技术可以有效地控制山区复杂隧道的地层分布、构造形态、断层要素、深部岩溶的发育位置、岩体应力、有害气体等工程地质问题。明显地缩短了勘探工期,大幅度地降低了勘探成本。

从我院对向莆铁路、宜万铁路、赣龙复线等复杂隧道的工程地质问题进行的综合勘察和施工过程中的施工地质工作来看,具有明显的经济效益和社会效益。譬如,对宜万线8座长大深埋隧道的岩溶发育情况进行的专项地质工作原定在大面积地质调绘的基础上以深孔钻探为主,计划投资4.8亿元。后来采用以大地电磁测深为主的综合物探方法,结合深孔钻探验证的方式完成了专项地质工作,共投资1.45亿元,取得了预期的地质效果,节约投资近70%,产生直接经济效益3.35亿元。

而其社会效益主要体现在以下几个方面:(1)设计质量明显提高。对向莆线、宜万线等复杂长大隧道施工地质设计中,将隧道按可能发生的工程地质灾害风险程度,划分为极高、高度、中度、低度四个等级。已施工地段的施工资料证实,隧道的主要工程地质问题都发生在极高风险等级地段。由于设计中已有相应的应急预案,从而降低了施工风险。(2)较好地指导了隧道施工过程中的地质灾害预报工作。根据隧道施工地质分级设计,优化了不同地段的地质超前预报方法,取得了较好的预报效果。(3)使大量的隧道工程地质灾害由不可预计变为可以预计,从而减少了隧道不可预计的工程地质灾害。

结论

(1)综合勘察是在充分搜集、分析研究既有地质资料的基础上,以遥感判译为先行,以大面积地质调查为基础,以综合物探和适量的深孔钻探为主要勘探手段,并辅以必要的孔内测试试验等的一种综合性的勘察方法,可以有效地控制和查明山区铁路长大、复杂隧道的工程地质和水文地质问题。我院的应用实践证明该方法是可行的,可明显地缩短勘探工期,大幅度地降低勘探成本。

(2)每一种勘察方法和测试手段都不可避免地存在一些局限性或弊端,因此,工程勘察中应根据工程实际需要的勘察范围、勘察深度和勘察精度,选择一种或几种恰当的勘察手段。

(3)山区铁路长大、深埋、复杂隧道工程地质勘察要求资料精度高、围岩分类准确,因此,采用综合勘察方法是必要的、恰当的。在工程地质勘察中,所选择的各种勘察手段要结合现场实际情况合理应用,并应对勘察成果进行系统地综合分析、研究,合理解释,提高勘察资料的质量,保证结论正确,为隧道工程的设计、施工提供合理、可靠的依据。

铁路勘察设计论文范文4

关键词:BIM技术;铁路勘查;设计;应用

中图分类号:P2 文献标识码: A

引言:在最近的几年来,随着我国城市建设的不断发展,进而很好的促进了我国铁路行业的不断进步,并且在日后的一段时间之内铁路行业将会处在一个高峰的时期,与此同时在对铁路工程的质量以及技术等方面的要求也在不断的增多,因此必须要通过新的技术应用到铁路工程当中,以此来使其能够满足社会的需要。

1.关于BIM技术的有关介绍

1.1关于BIM的相关概念

所谓的BIM主要就是建筑信息的模型简称,同时也是作为建筑工程项目有关信息数据模型的基础所在,在通过进行数字信息模型的仿真,进而使其能够更好的得到建筑的真实信息,BIM并不是一种软件,其仅仅只是一个概念以及能够用于工程建设过程中更好的对其进行设计、施工以及规划。并且BIM也是一个建筑项目的功能特性数字表达的一种形式,通过这种方式能够更好的为该建设项目提供可靠的依据,进而在不同的时期以及不同的阶段之内,通过在BIM当中进行提取以及修改信息。BIM不仅仅只是简单的对数据进行集成,同时也能够更好的对数字信息进行很好的应用,以此来对建筑工程中所存在着的风险进行降低,同时也能够更好的提高其效率。

1.2关于BIM的主要特点

第一是可视化,能够更好的将建筑物构成之间形成互动性以及反馈性的可视,同时也能够在BIM建筑信息的模型当中进行使用,因为在整个过程中都是具有着可视化的,因此其可视化的结果不仅仅能够很好的用于效果图的展示当中,同时在工程项目的设计以及运营的过程中也能够更好的进行沟通以及讨论,进而使其能够真正的实现所见所得。

第二是协调性,其主要是在建筑工程项目实施的过程中所遇到的各种问题时,需要工程项目的施工单位以及设计单位等进行组织开协调会议,进而找出问题出现的原因和有关解决的办法,之后在对其进行设计的变更,进而有效的找出有关补救的措施来对问题进行解决。然而BIM的协调性能够在问题出现之前便对其进行很好的解决,进而并且在建筑物前期便对每个专业所出现的问题进行有效的协调,进而使其生产数据的方式来提高可行性的方案,很好的避免了由于设计人员沟通不足所存在着的问题。

第三是模拟性,BIM 的模拟性并不是只能模拟设计出的建筑物模型,还可以模拟不能够在真实世界中进行操作的事物。在进行设计的过程中,BIM能够对设计过程中所需要模拟的东西进行模拟实验,并且在进行招投标的过程中对其进行4D的模拟实验,并且根据施工组织设计的实际情况来进行施工,最终使工程的施工方案能够科学合理的确定下来。与此同时也能够对其进行5D的模拟,进而使其对成本控制进行有效的实现,在对后期进行运营的过程中也能够很好的模拟紧急处理的方式,比如出现地震的过程中人员疏散等模式。

第四是优化性,BIM模型能够更好的为建筑物提供实际的信息,并且包括了物理、规则以及几何信息,同时也能够提供建筑变化之后的实际存在。其复杂的程度高到了一定的程度,所参与人员本身的能力是没有办法掌握所有的信息,必须要借助科学技术的帮助。目前建筑物的复杂程度也超过了人员自身的能力极限,然而通过BIM所提供的准确信息能够使其做出更加合理的优化结果。

2.关于BIM在铁路勘查过程中的应用

2.1关于案例的分析

主要是选择我国东南部地区某一条高速铁路项目作为研究实验区域,并且在该项目中,其设计的时速是在二百五十千米每小时,其隧道的长度是在八点九千米,在该条线路当中,线路穿越中国东南山区的崇山峻岭,其地形以及地质条件都相对来说比较复杂,因此该区域具有着一定的代表性。通过将BIM技术应用到这条隧道的勘查设计过程中,进而使其能够协同作业,并且其三维协同作业的周期是五个月的时间。

2.2关于BIM在线路前期规划过程中的应用

在对铁路项目建设的前期,必须要从宏观的理论方面去对项目的可行性进行论证,并且为项目的投资建设提供出一些必备的资料,同时必须要分析铁路沿线地区所存在着的社会经济等方面的内容进行整体的分析,进而提出项目的走向以及一些主要的技术标准。

在这个阶段当中,本次的三维设计主要利用的就是BIM的思想,并且通过对现有的GIS三维空间选线系统进行综合,进而来对铁路的线路通道进行科学合理的规划,以此来为后续的铁路勘查设计工作提供出良好的基础。通过对三维GIS平台的综合运用,进而很好的获取到了影像的数据、地形的高度以及有关的地理方面的信息,最终更加直接的对铁路线路的规划进行设计,同时也能够更好的对勘察设计方案进行展示,进而构建出铁路沿线的三维场景。

2.3关于BIM在铁路外业勘察过程中的应用

在对铁路进行勘察设计的过程中,其勘察主要是包括两个方面,一是初步的勘查测控,二是定测两个阶段,同时这也是铁路设计的基础所在。虽然在外业勘查的过程中并不能够进行具体一点的铁路建筑物细部设计,然而在对方案的确定以及资料收集的过程中主要就是在这两个阶段进行完成的,同时在外业阶段中,必须要对现场的选址以及设计进行有效的准备,比如对桥梁孔跨布置以及涵洞布置等等。所以,BIM 在外业勘察阶段的应用是 BIM 在铁路设计中应用的前提。

目前在对铁路的外业勘查设计过程中,其专业之间的相互提供资料和勘查结果的表达都是可以根据电子的形式或者是文档的形式来对其进行说明,同时每个专业技术人员在对本专业的现场进行选址的过程中必须要经常的和其他专业人员进行相互的沟通,如果没有做到良好的沟通,那么将会对外业勘查以及后续工作的进度以及效率等产生严重的影响。把BIM应用到铁路的外业勘查设计过程中,能够更好的起到改善每个专业之间沟通设计所存在着的问题,同时也能够使每个不同专业能够早同一个平台上面获得所需要的勘查信息,最终使其能够形成无障碍的沟通。

2.4关于BIM技术以及成果

在勘查成果展示交流的过程中,通过软件的利用能够更好的创造出三维铁路地形模型以及每个专业的专用三维设计工具,同时也能够创建出全专业的三维BIM模型,进而将其很好的在软件中进行组成以及分析,把所有的设计数据管理和协同作业的内容,进而很好的在项目数据管理和协同作业平台的软件中进行操作,从而使成果更好的展现在人们的面前。

总结:通过对铁路隧道实施了全过程的BIM技术的应用,进而使其施工以及进度能够得到更好的保证,同时也能够更好的提供出三维可视化的资料。在铁路全过程实行BIM设计还是一个长期的过程,必须要铁路勘查设计过程中每个专业进行全力的配合以及努力,BIM将会为铁路的勘查设计带来革命性的创新,同时也能够更好的促进铁路建设过程中在设计以及施工等方面的作业方式改变,最终将会对铁路工程的建设带来十分重要的影响。

参考文献:

[1]王玉泽.BIM技术在铁路勘察设计中的研究与应用[J].铁路技术创新,2014,02:26-28.

[2]陶玮.综合选线技术在宝麟铁路勘察设计中的应用[J].铁道标准设计,2013,06:17-21.

铁路勘察设计论文范文5

[关键词]遥感技术 ETM+图像 SPOT+图像 铁路工程勘察

[中图分类号] P237 [文献码] B [文章编号] 1000-405X(2014)-8-165-2

0引言

自20世纪60年代,遥感技术被提出并应用于人类第一次登月活动。随后,一些国家陆续建立了自己国家的遥感系统。随着科技的发展,遥感技术也在不断发展并提到了很大的提高。1957年,随着第一颗人造卫星的发射,遥感技术已进入太空时代。1972年,第一颗地球资源技术卫星的发射代表了地球遥感新时代的起航。随后,遥感技术继续着突飞猛进的发展。总体来说,遥感技术具备覆盖面较广,信息量十分丰富与动态监测能力强等特点。因此,该技术已经被广泛的用于工程勘察、资源调查、环境监测与灾害评估等不同的领域。针对铁路工程勘察,遥感技术首次被我国用于兰-新铁路工程中。随后,该技术被广泛用于公路与铁路的工程勘察和选线与地质条件评估工作中。

1遥感技术

1.1应用情况

针对铁路工程勘察技术的应用[1],遥感技术用于以下方面:针对铁路线路的地质情况进行评估与分析;针对地质情况进行条件评估;针对不良的地质条件进行具体分析,并深入研究地质情况的产生原因与发展趋势;针对砂石进行分析研究;进行地质灾害调查。自遥感技术出现以来,多条铁路使用了遥感技术进行工程勘察情况分析。随着遥感技术的发展,从最初的黑白航片预警发展到卫星图像与航空遥感图像,并可以使用数字图像等进行分析判断。2000年到2020年间,我国将大力发展遥感技术,这些新的遥感技术可以被更好的应用于我国铁路工程勘察中,进一步提高铁路运行的安全性。

1.2遥感图像三维可视化技术

遥感图像三维可视化技术[2]指的是使用计算机图像处理技术把科学计算过程与计算结果所获得的数据与结论转化成图形信息的技术。三维可视化技术是在计算机界面下可以实现的基于数字地形模型与数字高程模型的进行物体简化、显示与仿真的技术。该技术可以被应用于地理信息系统、地形穿越飞行等领域。随着遥感图像三线技术与影像动态分析技术的结合与发展,已经可以被用于铁路、公路、机场等基础建设的施工中。高精度的遥感三维技术通过可视化动画的应用,可以使宏观观察者更加容易的了解具体的情况,同时,也会反应最真实、连续的情况。同时,该技术的运用使得工程勘察信息的获取更加便利,同时,也使得计算工程量与参数设计等的结果更加精准。同时,再使用虚拟技术,可以使得三维模拟飞行、室内选线等先进观测方法在铁路工程勘察中得到应用。

2遥感技术在铁路工程勘察中的应用

随着遥感技术的迅速发展,具备各种形式的遥感数据不断的被接收下来,针对这些数据进行资源调查与工程建设等也就变得十分重要[3]。使用遥感技术进行铁路工程勘察的目的是针对遥感图像进行数字图像处理分析,进而得到高质量的图像,获取地质相关的信息,进一步提高铁路的安全性。

2.1遥感图像的选择

通常,遥感图像的资料主要有ETM+图像、SPOT+图像与雷达图像等[4]。随着遥感技术的发展,针对图像的选择也需要进行进一步的甄别。SPOT图像具备全面且连续的特点,可以清晰的反正地物情况,针对分析地物的变化情况比较有利,同时,花费大量金钱购买QuickBird也没有十分的必要。TM/ETM的影响精度不足以完成铁路遥感地质勘查的进行。因此,SPOT卫星影像便是现在铁路遥感成像的首选,只有在进行重大工程勘察的时候,才使用具体更高精度的影像。

ETM卫星影像相对于其他技术具备如下特点:

(1)控辩分辨率较高;

(2)几何精度较高;最大误差很小;

(3)具备三个可见光波段,一个近红外波段,两个中红外波段,一个热红外波段与一个全色波段;光谱分辨率较高。

2.2波段的选择与合成

通常情况下,人眼针对灰度只能分别一定的等级,但是,针对彩色,人眼的分辨能力要大很多。因此,借助人眼针对彩色的识别能力,应用RGB彩色合成图像作为目译解译的标准片。

3遥感图像的校正

在实际的铁路工程勘察中,由于得到的遥感图像往往会收到一定的干扰进而导致发生几个畸变,因此,必须在使用这些图像前,对其进行几何校正。几何变形是一种图像攻击过程,在获得图像的过程中,图像的元素有可能会发生一定的几何位移而导致几何变形。几何校正主要指的是通过图像处理技术使得发生位移的像素点得到复原的过程。通常情况下,几何校正主要包括消除图像误差与进行正射校正两个方面。

通常,建立校正变换函数具备两类方法。一种主要利用控制点数据建立各种方程,叫做控制点法。该方法具备原理直观,计算方便等特点,主要可用于平坦底面,具备校正精度高的优点。另一种叫做模型法,主要通过解析公式获得大地坐标。该方法具备时间利用率高的优点,但是,参数误差较大,精度不高。

3.1地面控制点的选择

地面控制点将原图空间与校正空间相联系,是几何校正的重要环节。

地面控制点的选择需要注意以下原则:注意考虑易识别的点,主要指的是具备明显标志的地物,如交叉部位与标志性建筑物;被选取的点应该尽量均匀的分布在图幅范围内;进行二次多项式校正的时候,图幅内的控制点不能少于6个,通常使用15-25个。

3.2ETM+影像几何校正

ETM+影像几何校正主要有以下两个步骤。第一,像元坐标转换,指的是在校正后的图像与被校正的图像进行一个几何变换关系的建立,进而产生一个零值像元图像,也就是校正矩阵。重采样指的是在原始图像上进行灰度赋值,从将要校正的图像上进行校正矩阵中各个像元亮度值的计算。通常使用如下方法:最近邻赋值,双线性内插法,三次卷积法,样条函数内插法等。

3.3遥感图像的融合

遥感图像的融合主要是通过高级的图像处理技术进行复合多源遥感图像,该技术的主要目的是把单一的传感器的多波段信息或者不同类传感器所提供的信息进行综合,进而消除冗余与矛盾,使得不确定性得到降低。同时,也使信息透明度得到进一步的增强,针对改善可靠性具备很好的性能。通过情况下,进行图像融合,有以下四个条件需要遵守。第一,被融合的图像数据之间应该包含不同的空间与光谱分辨率。第二,融合图像的数据应该属于同一个区域。第三,图像应该具备精准配准的能力。第四,针对在不同的时间所获得的图像,其内容应该没有明显的变化。

4结束语

本文主要进行了遥感技术在铁路工程勘察中的应用讨论。首先,本文在给出遥感技术的基本概念的基础上,分析了遥感技术在铁路工程勘察中的应用优势。然后,针对遥感技术的具体使用进行了分析,并介绍了该技术的注意事项,阐述了几何校正的基本步骤,讨论了遥感融合技术的基本概念与遵守原则。相信随着遥感技术的发展,该技术可以被更好的用于铁路工程勘察的过程中,以便更好地提高铁路建设与运行的安全性。

参考文献

[1]卓宝熙,甄春相.遥感技术在铁路工程地质勘察中的应用[J].铁道工程学报,2012(z1):398-406.

[2]高山,冯光胜.三维遥感铁路工程地质勘察技术应用研究[J].铁道勘察,2011,35(1):36-39.

铁路勘察设计论文范文6

[关键字]地铁 断裂 勘察

[中图分类号] U491.5 [文献码] B [文章编号] 1000-405X(2013)-5-117-1

随着城市化进程不断加快,城市规模不断扩大,广州市地铁建设发展迅猛,另一方面,由于地铁的网状分布特征,不可避免地穿越断裂破碎带。因此,查明线路范围内断裂破碎带的具置及其主要特征,预测断裂破碎带对工程的影响,对地铁建设是极其重要的。本文以广州十三号线A标段为例,运用地质调查、地球物理勘探、钻探等多种勘察方法,分析预测地铁场区内主要断裂走向及其影响,为工程设计与施工提供地质依据。

1 工程概况

广州市轨道交通十三号线A标段(鱼珠站至象颈岭),线路全长28.8km,均为地下线。地层从老至新有:泥盆(D)、石炭(C)、二迭(P)、第四系(Q)。第四系岩性为填土、粉质粘土、砂层等,一般厚度为3 m~10 m。该标段初、详勘阶段,在文园站、文园至庙头区间发现部分钻孔揭露有断层泥、角砾岩、硅化岩、硅化角砾岩、糜棱岩、碎裂岩、压碎岩等断裂迹象。根据区域地质资料,结合工可、初详勘阶段勘察成果,推测为瘦狗岭断裂和文冲断裂。关于瘦狗岭断裂和文冲断裂,前人曾有过较多的研究,在客观上论证了其在区域上的存在。然而具体到本项目,对其在线路的具置、性质、规模、产状等要素等却论述甚少。为此,决定进一步勘察查明断裂的具置及特征,查清断裂构造对工程的影响。

2 断裂预测走向及基本特征

根据初勘、详勘钻探揭露以及构造专题勘测,进行综合分析对比,确定断裂在文园站东侧及文园至庙头区间通过,大部分隐伏于第四系覆盖层之下。其中,F1瘦狗岭断裂发育于设计地铁文园至庙头区间,在黄埔大桥东侧螺壳山南侧山坡见有出露;F2文冲断裂发育于文园站及周边范围,在广新路牛山炮台公园南侧山坡坡脚见有出露,并在双岗村附近右旋错断瘦狗岭断裂形成断裂交汇区。F1、F2与地铁设计线路平面关系见图1。

根据区域地质资料与本次勘察成果,F1瘦狗岭断裂西起白云山南麓,大致呈东西走向,经瘦狗岭、五山、吉山至东部的横沙新村,被北西向的文冲断裂右旋错移至黄埔双岗、庙头一带(线路里程约YCK43+175右160m),至YCK44+120与线路斜交后,远离线路继续向近东向延伸至新塘以东。在平面上,断裂总体呈东西向展布,断裂破碎带宽窄不一,断裂起点段受后期文冲断裂影响,断裂破碎带宽度大,超过100m,往东变小,到文船东路剖面断裂带宽度最窄,小于1m;在倾向上,断裂呈波状起伏或台阶状变化,钻孔揭露构造带铅直厚度变化大,层厚0.7~45.4m,平均14.2m。F2文冲断裂发育于文园站及周边范围,在广新路牛山炮台公园南侧山坡坡脚见有出露,在平面上,大致呈北西至北北西向分布,总体南西倾,在YCK42+960和YCK+970处与线路斜交,斜穿文园站东侧后进入双岗村,并在双岗村附近右旋错断瘦狗岭断裂,总体走向北西330°,倾向南西,倾角50°~65°,影响宽度不一。垂向分布也相当不均,钻孔揭露断裂带层厚0.8~30.2m,平均9.9m,其厚度总体表现为往倾向方向越来越厚[1]。

综合区域地质资料、钻探揭露地层情况及取样光释光测年结果,F1瘦狗岭断裂带具有多期活动特点[2],总体上是早期为深层次的缓倾角韧性剪切,晚期为中-高角度脆性断裂活动;F2文冲断裂正发生于燕山运动末期,断裂带内岩性胶结性较好,全新世以来末发现有明显的活动迹象。

3 对地铁工程的影响

3.1 场地的稳定性对地铁工程的影响

综合调查和研究表明,勘察区第四系未发现新构造运动迹象,瘦狗岭断裂和文冲断裂自晚更新世以来,其构造活动明显减弱,区域稳定性较好,未发生中、强地震,地铁工程不会因地震活动产生破坏作用,地铁工程穿越构造破碎带,不会因断裂带本身突然错动而产生破坏。

3.2 断裂的工程地质条件分析

受F1瘦狗岭断裂和F2文冲断裂的影响,文园站及文庙区间围岩受破坏程度十分严重,岩石变形破碎。尤其是瘦狗岭断裂在YCK43+940~YCK44+310段与文园至庙头区间线路小角度斜交部位。文冲断裂在文园站东侧ZYCK42+730~ZYCK42+990段与线路斜交部位,对车站及线路区间影响大。

(1)断裂破碎带破坏了岩体的完整性,使隧道围岩降低了类别,增加了隧道开挖的难度。(2)经过多次构造运动挤压,岩体破碎且不均一,局部存在硅化岩,易造成盾构机刀具磨损破坏严重,影响施工进度。(3)断裂破碎带是地下水富集地带和导水通道,透水性好,常易成为地下水活动通道,施工开挖时常易产生突水和涌水现象。(4)断裂破碎带中连续分布的断层泥带,施工过程中宜开挖造成对隔水体的破坏,引起断裂破碎带渗透系数的突变。从而造成隧道发生突水、塌方,基坑边坡失稳等地质病害。(5)由于断裂的影响,局部混合花岗岩各风化带的岩面起伏变化大,形成风化深槽,可能导致主体结构纵向沉降差异显著增大。

4 结论

(1)根据场地所处的区域构造位置、新构造运动特点,结合场地及周边实地调查、勘察钻孔揭露以及其它探测试验等手段对场地隐伏断裂的活动性进行了分析评价,认为:本场地基岩中发现的F1、F2两条断裂均属非全新世活动断裂。(2)断裂构造破坏了地基岩石的完整性,软弱构造带无疑会增大地基处理难度和增大建设投资。

参考文献