前言:中文期刊网精心挑选了网络安全态势范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
网络安全态势范文1
【关键词】 安全态势感知 数据融合 态势可视化
引言
随着信息和网络技术的快速发展,计算机网络的重要性及其对社会的影响越来越大,网络安全问题也越来越突出,并逐渐成为Internet及各项网络服务和应用进一步发展所亟需解决的关键问题。此外,随着网络入侵和攻击行为正向着分布化、规模化、复杂化、间接化等趋势发展,对安全产品技术提出了更高的要求。网络安全态势感知的研究就是在这种背景下产生的,旨在对网络态势状况进行实时监控,并对潜在的、恶意的网络行为变得无法控制之前进行识别,给出相应的应对策略。
一、网络安全态势感知概述
网络态势是指由各种网络设备运行状况、网络行为以及用户行为等因素所构成的整个网络当前状态和化趋势。态势是一种状态,一种趋势,是一个整体和全局的概念,任何单一的情况或状态都不能称之为态势。
网络态势感知是指在大规模网络环境中,对能够引起网络态势发生变化的安全要素进行获取、理解、显示以及预测未来的发展趋势。
基于网络安全态势感知的功能,将其研究内容归结为3个方面:网络态势感知、网络威胁评估和网络态势评估。
态势评估和威胁评估分别是态势感知过程的一个环节,威胁评估是建立在态势评估的基础之上的。态势评估包括态势元素提取、当前态势分析和态势预测。威胁评估是关于恶意攻击的破坏能力和对整个网络威胁程度的估计,是建立在态势评估的基础之上的。威胁评估的任务是评估攻击事件出现的频度和对网络威胁程度。态势评估着重事件的出现,威胁评估则更着重事件和态势的效果。
2 网络安全态势感知关键技术
网络安全态势感知作为未来保证信息优势的两大关键技术之一,众多学者、研究机构纷纷在此领域展开了广泛的研究,提出了各种各样的分析模型,其中影响最大,也最被普遍接受的是基于数据融合理念的JDL模型。该模型通用框架主要包括多源异构数据采集、数据预处理、事件关联与目标识别、态势评估、威胁评估、响应与预警、态势可视化显示以及过程优化控制与管理等7个部分。
大规模网络节点众多,分支复杂,数据流量大,并且包含多个网段,存在多种异构网络环境和应用平台。随着网络入侵和攻击正在向分布化、规模化、复杂化、间接化的趋势发展,为了实时、准确地显示整个网络态势状况,检测出潜在、恶意的攻击行为,网络安全态势感知系统必须解决相应的技术问题。
2.1 数据挖掘
数据挖掘是指从大量的数据中挖掘出有用的信息,即从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律的、人们事先未知的,但又有潜在用处的并且最终可理解的信息和知识的非平凡过程。所提取的知识可表示为概念、规则规律、模式等形式。数据挖掘是知识发现的核心环节。
从数据挖掘应用到入侵检测领域的角度来讲,目前主要有4种分析方法:关联分析、序列模式分析、分类分析和聚类分析。关联分析用于挖掘数据之间的联系,即在给定的数据集中,挖掘出支持度和可信度分别大于用户给定的最小支持度和最小可信度的关联规则,常用算法有Apriori算法、AprioriTid算法等。序列模式分析和关联分析相似,但侧重于分析数据间的前后(因果) 关系,即在给定的数据集中,从用户指定最小支持度的序列中找出最大序列,常用算法有DynamicSome算法、AprioriSome算法等。分类分析就是通过分析训练集中的数据为每个类别建立分析模型,然后对其它数据库中的记录进行分类,常用的模型有决策树模型、贝叶斯分类模型、神经网络模型等。与分类分析不同,聚类分析不依赖预先定义好的类,它的划分是未知的,常用的方法有模糊聚类法、动态聚类法、基于密度的方法等。关联分析和序列模式分析主要用于模式发现和特征构造,而分类分析和聚类分析主要用于最后的检测模型。
2.2 数据融合
通过数据融合方法的引入,网络安全态势感知系统才能做到对攻击行为、网络系统异常等的及时发现与检测,实现对网络整体安全状况的掌握。而网络安全态势感知系统中的数据融合正是通过如下几项关键技术得以体现的。
(1)特征提取。特征提取是在尽量不降低分类精度同时又减小特征空间维数的前提下,为了避免融合大量数据可能造成系统检测率不能满足高速网络实时检测需求而提出的。目前有许多特征提取算法,如基于主成分分析的方法,基于信息增益的决策树学习方法和流形学习方法。主成分分析基于方差最大、偏差最小的思想来发现数据集的主要方向,从而实现约简。基于信息增益的决策树学习方法,则引入熵和信息增益的概念,分别作为衡量训练样例集合纯度的标准和用来定义属性分类训练数据的能力。典型的决策树学习算法,如ID3算法就是根据信息增益标准从候选的属性中选择能更好区分训练样例的属性。流形学习是一种新的降维方法,可以有效地发现高维非线性数据集的内在维数。
(2)事件聚类。聚类是将物理或抽象的数据对象,按照对象间的相似性进行分组或分类的过程。聚类是一种无监督学习的过程。不同的数据类型,相应的聚类处理方法也有所不同。目前聚类方法大体上可以分为基于层次的方法、基于划分的方法、基于密度的方法、基于网格的方法以及其他类型的聚类算法。基于层次的聚类算法主要以样本之间的相似度(或距离)为基础,根据类间相似度的大小对不同类进行合并或分裂,从而逐步完成对数据集的聚类。典型的层次聚类方法分为凝聚的方法和分裂的方法。常见算法有COBWEB,BIRCH,ROCK和Chameleon等。基于划分的聚类算法以样本与类(原型)之间的距离为基础,且通常将聚类结果的评判标准定义为一个目标函数。典型算法有k一均值法,k一中心点法,CLARANS等。除了层次和划分聚类方法外,比较有影响力的算法还有DENCLUE,CLIQUE等基于密度的方法,以及STING,WaveCluster等基于网格的方法。另外还可以借助其他领域的方法,如神经网络方法,SOM,演化计算法,遗传算法,模拟退火法等。
(3)事件关联。事件关联是指将多个安全事件联系在一起进行综合评判,重建攻击过程并实现对整体网络安全状况的判定。对安全事件进行关联处理的方法大致可分为两类:一类是借助于专家知识构建安全事件关联专家系统。典型的如:Valdes等提出的基于概率相似度的入侵告警关联系统,Peng等基于逻辑谓词的方法,将前提和目的吻合的入侵事件关联形成入侵者攻击轨迹等。另一类是借助于自动知识发现或者机器学习的办法来发现事件间的隐含关系并实现入侵事件的关分析。典型例子有:Stefanos将关联技术用于入侵检测报警信息的频繁模式提取,Klaus也将此思想用到了多个异类IDS报警信息的关联中,穆成坡w提出用模糊综合评判的方法进行入侵检测报警信息的关联处理,集成不同的安全产品信息,以发现入侵者的行为序列。前者用专家系统的方式实现事件关联,高效且直观,但是关联需要的知识依赖人工完成,效率低下;后者获取知识比较容易,但没有人工参与的情况下获得的知识质量不高,难以满足要求。
2.3 态势可视化
态势可视化的目的是生成网络安全综合态势图,以多视图、多角度、多尺度的方式与用户进行交互,使网络安全产品分析处理能力在多个指标有较大幅度的提高。
对数据进行可视化是一个层层递进的过程,包括了数据转化、图像映射、视图变换三个部分:数据转化是把原始数据映射为数据表,将数据的相关性描述以关系表的形式存储起来;图像映射是把数据表转换为对应图像的结构,图像由空间基及属性进行标识;视图变换则是通过对坐标位置、缩放比例、图形着色等方面来创建能够可视化的视图。此外,用户与可视化系统的交互也是必不可少的,用户通过调控参数,完成对可视化进程的控制。
态势可视化的方法有很多,根据显示效果,可以分为动态可视化和静态可视化。根据显示数据纬度,可以分为二维、三纬以及多纬可视化。根据现实数据内容,可以分为内容可视化、行为可视化和结构可视化。
三、结束语
为了保障网络信息安全,开展大规模网络态势感知是十分必要的。网络态势感知对于提高网络系统的应急响应能力、缓解网络攻击所造成的危害、发现潜在恶意的入侵行为、提高系统的反击能力等具有十分重要的意义,对于军事信息战意义更为重大。网络安全态势感知研究刚刚起步,目前大量的研究工作还只处于对网络安全态势的定性分析阶段,缺乏标准的概念描述和具体的定量解决方法,但它已经毫无疑问的成为网络安全领域一个新的研究方向。
参 考 文 献
[1] 陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法.软件学报.2006,17(4).
[2] 北京理工大学信息安全与对抗技术研究中心.网络安全态势评估系统技术白皮书.网络安全态势评估系统技术白皮书,2005.
[3] 潘泉,于听,程咏梅,张洪才.信息融合理论的基本方法与进展.自动化・学报.2003,29(4).
[4] 郁文贤,雍少为,郭桂蓉.多传感器信息融合技术评述.国防科技大学学报.1994,16(3).
网络安全态势范文2
[关键词]网络安全态势;模型;感知
引言
目前应用最为广泛的IDS系统只是运用Agent获取数据再经过融合分析后检测到相关攻击行为,当网络带宽提高后,IDS很难检测到攻击内容,同时误报率也较高。而网络安全态势感知技术综合了多种技术更加突出了整体特征,如IDS,杀毒软件以及防火墙等,对网络进行实时检测和快速预警。网络安全态势感知评估运行网络的安全情况并且可以做出未来一段时间的变化趋势,提高处理安全威胁的能力。
1、网络安全态势感知概述
1.1网络态势感知定义
1988年,endsley率先提出针对航空领域人为因素的态势感知的定义,态势感知是指“在一定的时空范围内,认知、理解环境因素,并且对未来的发展趋势进行预测”。直到1999年,bass等指出,“下一代网络入侵检测系统应该融合从大量的异构分布式网络传感器采集的数据,实现网络空间的态势感知。常见的网络态势主要有安全态势、拓扑态势和传输态势等,但目前学者主要研究网络的安全态势感知的。
1.2网络安全态势概念
所谓网络安全态势就是对在多种网络设备处于工作状态、网络变化以及用户的动作等安全态势出现变化的状态信息进行理解,分析处理及评估,从而对发展趋势进行预测。网络安全态势强调的是一个整体的概念,包含了当前的状态,历史的状态和对未来的状态预测。根据研究重点的不同,给出的概念也不尽一致。
1.3网络安全态势感知体系构成
(1)网络安全态势要素的提取。要素的提取主要通过杀毒软件、防火墙、入侵检测系统、流量控制、日志审计等收集整理数据信息,经筛选后提出特征信息。
(2)网络安全态势的评估。根据选择的指标体系定性和定量分析,搜素其中的关系,得出安全态势图,找到薄弱环节并制定出解决方案。
(3)网络安全态势的预测。根据已有的安全态势图,分析原始的数据信息,预测未来一段时间的运行状态和趋势,给出预警方案,达到最终的网络安全的目的。
2、网络安全态势要素提取技术
由于网络的庞大、复杂以及动态的变化,要素的提取面临很大的困难,根据要素信息来源的不同进行分类提取,可以分为网络环境、网络漏洞和网络攻击等,生成网路安全态势感知指标体系,并根据指标体系来获取网络的信息可以有效的保证信息的全面性、准确性和模型化。
安全态势要素提取技术是态势感知的第一步,意义重大。TimBasst首先提出了多传感器数据融合的网络态势感知框架,进行数据精炼、对象精炼以及态势精炼三个步骤的抽象获取态势感知要素。卡内基梅隆大学开发了SILK系统,将数据转化为高效的二进制数据用分析软件来发现其中的攻击行为。国内此项研究起步晚,只是在聚类分析和分类分析上取得了一点进展。在提取要素过程中,属性约简和分类识别是这一过程中的最基础的步骤。使用粗糙集等理论对数据进行属性约简,并形成了算法。针对神经网络的收敛慢,易入局部最小值等特点设计了遗传算法来进行分类识别。
3、网络安全态势的评估技术
影响网络网络安全的评价有许多因素,各因素的作用不同且具有时变性,相互之间也不具有线性的关系,因此不能用精确的数学模型来表示。分析获取的要素,必须要对其融合,以便得到整体的安全态势,需要宏观上把握网络安全状态,获得有效的综合评价达到帮助网络管理人员的目的。从上可以看出融合技术是关键。目前常用的数据融合技术有以下几种:
(1)基于逻辑关系的融合方法根据信息的内在逻辑,对信息进行融和。优点是可以直观地反映网络的安全态势。缺点有确定逻辑难度大,不少如单一来源的数据。
(2)基于数学模型的融合方法综合考虑影响态势的各项因素,构造评估函数,建立态势因素集合到态势空间映射关系。优点是可以轻松的确定各种态势因素之间的数值比重关系,但是比重没有标准。而且获取的各个态势因素可能还存在矛盾,无法处理。
(3)基于概率统计的融合方法根据经验数据的概率特性,结合信息的不确定性,建立的模型然后通过模型评估网络的安全态势,贝叶斯网络、隐马尔可夫模型最常见。优点是可以融合最新的证据信息和经验数据,推理过程清晰。但是该模型需要的数据量大易产生维数爆炸进而影响实时性,而且特征的提取及经验数据的获取都存在一定的困难。
(4)基于规则推理的融合方法对多类别多属性信息的不确定性进行量化,再根据已有的规则进行逻辑推理,达到评估目的。目前d-s证据组合方法和模糊逻辑是研究热点。当经验数据难以获取而且不要精准的解概率分布,可以使用,但是需要复杂的计算。
4、网络安全态势的预测
预测是根据当前的网络状况,找出大量的网络安全隐患,进行分析,对未来一定时间内的安全趋势进行判断,给出相应的解决方法。网络预测技术目前也取得了重要的进展,主要有神经网络、时间序列预测法和支持向量机等方法。神经网络算法参数的选择缺乏理论基础,预测精度也不高。时间序列预测法由于网络状态的变化不是线性的,而且难以描述当前状态和未来状态的关系,导致预测精度不理想。支持向量机基于结构风险最小化原则,解决了小样本、非线性、高维度问题,绝对误差小,保证了预测的正确趋势率,能准确预测网络态势的发展趋势。
5、结束语
本文介绍了网络安全态势感知的概念,并分别就要素的获取、态势的评估和网络安全态势的预测所使用的技术进行了探讨,引导网络安全管理员研究和使用各种新技术关注网络安全隐患,保证网络安全运营。
参考文献
[1]席荣荣,云晓春,金舒原,张永铮.网络安全态势感知研究综述.计算机应用,2012年1期.
[2]郭剑.网络安全态势感知中态势要素获取技术的研究[学位论文] 计算机软件与理论.东北大学,2011.
网络安全态势范文3
在我国计算机技术不断发展的现阶段,信息时代的到来使得人们的日常生活与生产活动发生了天翻地覆的变化,对于社会的方方面面都产生了较大的影响,在信息技术的支撑之下,人们的生活变得更加便捷,社会生产变得更为高效,因此,各个行业领域都已经将信息化和智能化作为自身发展的主流方向。计算机网络的自身具有开放性的特点,人们能够实现信息的共享,但也是由于这种开放性的特点,使得信息的获取并没有具体的限制,一些不法分子会通过网络技术来非法窃取相关的个人或企业或国家的信息,给社会的发展带来了不可预估的损失。而且,由于网络黑客和木马病毒的增多,再加之人们自身的安全防范意识不高,使得计算机网络中存在着很多风险因素,对于人们的生活和社会生产带来了十分不利的影响。因此,对网络安全态势进行评估具有十分重要的现实意义。
2网络安全态势评估流程
网络安全态势评估实际上就是对计算机网络中存在的潜在安全风险因素进行科学、合理、有效的判断,主要包括网络信息的价值、系统运行的内在安全隐患、网络系统的脆弱性以及对安全防范措施的测试等,以实现对网络安全态势的评定。网络安全态势评估的流程主要包括监测、觉察、传播、理解、反馈、分析与决策。监测就是利用系统中相关的数据感知组件来实现对所监测的数据的采集和整理。察觉就是将所采集到的数据作为态势评估的依据,一旦发现有异常的情况,就实现安全事件的报告。传播实际上是一个分类评估的过程,即对异常事件的不同部分进行分析。理解的过程实际上就是一个对安全态势进行模拟建模的过程。反馈就是利用网络技术中的实时性特点,对数据的最新情况进行评估。分析的过程是在确定网络安全态势数据最新情况的前提下,来判断对其是否支持;如果支持,则能够确定网络安全态势的类型;如果不支持,数据感知元件就会继续进行监测。决策就是根据确定的网络安全态势类型和数据模型的具体特点,来对其态势演变的方向进行预测,并选择有效的解决措施。
3网络安全态势评估的关键技术
网络攻击行为逐渐呈现出广泛化、复杂化和规模化的特点,给网络安全态势的评估工作提出了越来越高的要求。计算机网络安全态势评估系统的正常运行是以信息技术为依托才得以实现的,因此,现就其中的若干关键技术进行详细的研究。
3.1数据融合技术
数据融合技术是网络安全态势评估系统中重要的技术支撑。数据融合技术主要是由数据级、功能级和决策级三个级别之间的数据融合所构成。其中,数据级的融合能够进一步的提高细节数据的精准度,但是由于受到计算机处理速度和内存大小等因素的影响,通常需要对大量的数据进行处理;功能级的融合处于数据级和决策级之间;而决策级的数据融合,由于数据具有抽象和模糊的特点,导致其需要处理的数据较少,且精准度较低。在计算机网络中,由于不同的设备功能和安全系统之间存在较大的差异,对于描述网络安全事件的数据格式也是不同的,要想实现不同设备、系统之间的相互关联,就必须建立一个多传感器的环境,而数据融合技术就是其最重要的技术。利用数据融合技术,能够将基础数据进行提炼、压缩和融合,为网络安全态势的评估提供科学的参考依据,主要应用于估计威胁、识别与追踪目标等。
3.2计算技术
网络安全态势评估中的计算技术就是通过相关的数学计算方法,来实现对大量网络安全态势数据信息的处理,将其集中于在一定范围内的数值,而且,在网络安全事件的频率、网络性能和网络资产价值发生改变的同时,这些数值也会随之发生变化。这些数值的大小变化情况能够直接、实时、快速地反应出网络系统的安全状态和威胁程度的大小,监管人员可以以此为根据来实现对网络安全情况的把握。通常情况下,如果数值在一定的范围内进行变化,说明态势是相对安全的;如果数值的变化呈现出了较大的上升或下降,则说明存在安全威胁。
3.3扫描技术
扫描技术是网络安全态势评估中最常用的一种方式手段。与传统的网络防护机制相比较而言,扫描技术更为主动,能够对网络动态进行实时的监控,以收集到的数据信息为依据,通过对安全因素的判断,来实现对恶意攻击行为的防范。扫描技术的主要应用对象包括了系统主机、信息通道的端口和网络漏洞。对系统主机进行扫描是实现数据信息整合的第一阶段,主要是通过网络控制信息协议(ICMP)对数据信息进行记忆与判断,通过向目标发送错误的IP数据包,根据其反应和反馈的情况来进行判断。对信息通道的端口进行扫描,实际上就是对内外交互的数据信息的安全性进行监测。漏洞扫描则主要是针对网络黑客的攻击,对计算机系统进行维护。
3.4可视化技术
可视化技术就是将采集到的数据信息转换成图像信息,使其能够以图形的形式直观的显示在计算机的主屏幕之上,在通过交互式技术对数据信息进行处理之后,管理人员可以直观地发现其中的隐藏规律,从而为数据的处理与分析提供科学依据。但是,由于网络安全数据中的关键信息常常不容易被提取出来,因此,利用可视化技术的时候还要注意解决这一实际问题。
3.5预测技术
网络安全态势评估的发展具有不可确定性,而预测技术则可以根据对象的属性,结合已有的网络安全态势数据和实际经验来实现对未来安全态势发展的预测。预测技术主要包括了因果预测、时间序列分析和定性预测等内容,既能够通过历史数据和当前数据之间的关系进行态势预测,又能够通过因果关系的数据建模来实现对结果变化趋势的预测。
4结语
网络安全态势范文4
关键词:网络安全态势预测; CMAES优化算法; RBF神经网络; 时间序列预测
DOI:1015938/jjhust201702026
中图分类号: TP3930
文献标志码: A
文章编号: 1007-2683(2017)02-0140-05
Abstract:A method for network security situation prediction is proposed, where the covariance matrix adaptation evolution strategy algorithm (CMAES) is used to optimize the parameters of the radial basis function neural network forecasting model (RBF), which makes the forecasting model have superior ability, and can quickly find out the rules of the complex time series The simulations results show that the proposed method can accurately predict the network security situation, and has better prediction accuracy than traditional prediction methods
Keywords:network security situation prediction; covariance matrix adaptation evolution strategy algorithm; Radial basis function neural network; time series prediction
0引言
随着网络技术的广泛使用和快速发展,网络系统开始呈现出越来越复杂的趋势。所有复杂的系统都要面临严峻的安全问题,网络平台也不例外,任何一个小的漏洞都有可能被黑客利用,从而导致整个网络的崩溃。传统的安全技术属于被动防御技术,例如入侵检测系统是在攻击来临时进行识别并作出反应。相比之下,管理人员更需要一种能够宏观描述并预测网络整体状况的技术,以此能够做到未雨绸缪主动防御。针对这个问题,Bass T 在1999年提出了网络安全态势的概念[1-2],他指出网络安全态势是一组能够反映网络系统宏观状态的数值,通过它可以让管理人员快速的了解网络运行的基本情况。获取并处理网络安全态势的技术称为网络安全态势感知[1,3-7],它包括3个层次[8]:①网络底层态势要素的提取(态势提取);②网络安全态势的评估(态势理解);③网络安全态势的预测。态势要素的提取主要依靠神经网络和支持向量机等分类技术将威胁网络安全的数据分类,然后在由网络安全态势评估技术按照不同攻击种类的重要程度加权平均得出网络安全态势值[9]。当收集到一段时间的历史网络安全态势值后,就可以建立预测模型预测未来的网络安全态势。可以看出,网络安全态势预测技术是网络安全态势感知中最为重要的环节,本文要解决的就是网络安全态势预测问题。
目前,已经有很多预测模型用于网络安全态势预测,例如灰色预测模型[10]、GABP预测模型[11]、RBF预测模型[12]、HMM预测模型[13]、EvHMM预测模型[14]以及HBRB预测模型[15-16]等。灰色预测模型是利用灰色理论对含不确定信息的系统进行预测的模型,但是它只能反映系统发展的大致趋势,并不能精确预测未来的数值。HMM、EvHMM以及HBRB等预测模型将安全态势视为隐含行为,优化过程复杂且具有s束条件,不适用于实时性要求高的网络系统。
神经网络模型是网络安全态势预测中最常用的方法,但是由于在训练模型的过程中需要优化大量的参数,且传统的优化算法往往会在优化过程中陷入到局部最优点,所以神经网络预测模型并不能精确的预测样本数量小且规律性不强的网络安全态势。
针对上述问题,本文提出利用CMAES算法对RBF神经网络的参数进行优化,从而提高网络安全态势预测的精度。CMAES算法全称是协方差矩阵自适应进化策略[17-18],是目前最受关注的优化算法之一,它在高维非线性优化问题上表现良好,能够利用较少的个体快速收敛到全局最优点。RBF全称是径向基神经网络,它具备良好的泛化能力和逼近性能,并且可以处理复杂的非线性系统。RBF解决了BP的局部最小值问题,并已成功应用到众多的工程领域[19-24]。将两者结合到一起,可以克服神经网络模型的缺点,增加全局优化能力,提高预测精度。
本文的组织结构为:在第一节中,介绍了RBF及CMAES的相关概念及基本原理。在第二节中提出了CMARBF预测模型。在第三节中,利用所提出的方法对实际网络平台的安全态势进行预测,并将结果和其他传统方法进行了比较。在第四节中,对CMARBF预测模型进行总结。
1基本概念
11RBF神经网络的基本原理
RBF神经网络模型在结构上与BP相同,都属于前馈型式神经网络。区别在于RBF的隐层只有一个且使用径向基函数作为隐层神经元的激活函数,RBF的隐层可以将输入变换到高维空间中,从而解决低维空间线性不可分的问题。RBF神经网络模型具备良好的全局最优和逼近性能,并且结构不复杂,收敛速度快,可以作为系统辨识的、非线性函数逼近等领域的有力工具。典型的RBF神经网络模型结构如图1所示。
利用CMARBF预测网络安全态势的基本步骤如下所示:
Step1: 利用公式(9)确定模型的历史样本;
Step2: 确定RBF神经网络的初始参数Ω0;
Step3: 确定初始迭代次数t=0和最大迭代次数tmax;
Step4: 确定CMAES算法的初始⑹;
Step5: 建立形如公式(11)优化目标函数;
Step6: 进入循环:while t
Step 61: 利用公式(3)以Ωt作为期望meant生成新的种群;
Step 62: 利用公式(4)得到新的种群期望meant+1;
Step 63: 利用公式(5)(6)(8)更新种群的协方差矩阵,得到Mt+1;
Step 64: 利用公式(9)更新步长,得到st+1;
Step 65: 计算新种群的目标函数值,选出最优个体(参数)Ωbest;
Step 66: 重复执行step 61,直到t=tmax跳出循环;
Step7: 以Ωbest作为RBF神经网络的参数,历史样本做为训练数据,对RBF进行训练;
Step8: 用训练RBF模型对安全态势预测。
3仿真实验
31背景描述
我们以真实的网络平台为背景(如图3所示),收集了三个月共92天的攻击数据,并将它们利用层次化评估方法求出92天的网络安全态势值。
图3描绘的是某高校真实网络环境,全网可分为内网和DMZ区两大部分。其中内网包括图书馆、宿舍、行政楼和教学楼;DMZ区包括各类服务器及数据库。攻击数据的收集在防火墙及核心交换机上完成。
当作为网络安全要素的攻击数据收集完毕后,可以由专家确定各安全要素的权重,在利用常用的层次化评估方法获得全网的网络安全态势值,如图4所示:
从图4可以看出,该网络平台的网络安全态势在整体上呈现一定的规律,每个月的中期攻击强度增大,月底逐渐减小,但是在局部,态势值有一定的随机性。为了利用前述的CMARBF模型去预测网络安全态势值,我们将上述数据通过公示(9)生成了89组样本,前60组作为训练样本,后29组作为预测样本。模型的初始参数见表1:
32比较实验
为验证所提模型有效性,选取了没有优化RBF模型和GARBF模型与CMARBF模型比较,比较结果如图5和表2所示:
从图5和表2可以看出,CMARBF的预测精度要高于其他方法。
4结论
所提出的CMARBF预测模型是将新的进化算法CMAES引入到RBF模型中,利用CMAES高效的寻优能力去解决高维模型中参数优化问题。两者的结合使得神经网络的结构和参数更加合理,具有更好的预测能力。本文将所提方法应用于网络安全态势预测领域,得到了很好的效果。比较实验结果表明,CMARBF模型的预测精度高于其他传统方法。在今后的工作中,我们会继续探索更适应与网络安全态势预测的新方法。
参 考 文 献:
[1]BASS T Intrusion Detection System and Multisensor Data Fusion: Creating Cyberspace Situation Awareness[J]. Communications of The ACM, 2000, 43(4): 99-105
[2]王庚, 张景辉, 吴娜 网络安全态势预测方法的应用研究[J]. 计算机仿真, 2012, 29(2): 98-101
[3]胡冠宇, 乔佩利 基于云群的高维差分进化算法及其在网络安全态势预测上的应用[J]. 吉林大学学报(工学版), 2016, 46(2): 568-577
[4]鲁颖欣, 王健, 齐宏卓 模糊判断在网络安全风险评估中的应用研究[J]. 哈尔滨理工大学学报, 2014, 19(1):36-39
[5]高青波, 胡冠宇, 徐泽群 并行计算平台的网络安全态势感知系统[J]. 科技创新与应用, 2015(15): 4-5
[6]HU G Y, QIAO P Cloud Belief Rule Base Model for Network Security Situation Prediction[J]. IEEE Communications Letters, 2016, 20(5): 914-917
[7]HU G Y, ZHOU Z J, ZHANG B C, et al A Method for Predicting the Network Security Situation Based on Hidden BRB Model and Revised CMAES Algorithm[J]. Applied Soft Computing, 2016, 48:404-418
[8]王慧强, 赖积保, 胡明明等 网络安全态势感知关键技术研究[J]. 武汉大学学报-信息科学版, 2008, 33(10): 995-998
[9]陈秀真, 郑庆华, 管晓宏等 层次化网络安全威胁态势量化评估方法[J]. 软件学报, 2006, 17(4): 885-897
[10]马杰, 任望, 薛东军等 灰色灾变模型在计算机网络安全态势预测中的研究[C]. 第三届信息安全漏洞分析与风险评估大会,2010
[11]胡明明, 王慧强, 赖积保 一种基于GABPNN的网络安全态势预测方法[m]. 北京:中国科技论文在线, 2007
[12]任伟,蒋兴浩,孙锬锋 基于RBF神经网络的网络安全态势预测方法[J]. 计算机工程与应用 2006 31: 136-139
[13]MUTHUMANI N, THANAMANI A S Optimizing Hidden Markov Model for Failure PredictionComparison of Gaine’s Optimization and Minimum Message Length Estimator[J]. Int J Comput Sci Eng, 2011, 3(2): 892-898
[14]RAMASSO E Contribution of Belief Functions to HMM with an Application to Fault Diagnosis[J]. In: IEEE International Workshop on Machine Learning and Signal Processing, Grenoble, France, 2009: 2-4
[15]HU G Y, QIAO P L Cloud Belief Rule Base Model for Network Security Situation Prediction [J]. IEEE Communications Letters, 2016, 20(5): 914-917
[16]HU G Y, ZHOU Z J, ZHANG B C, et al A Method for Predicting the Network Security Situation Based on Hidden BRB Model and Revised CMAES Algorithm[J]. Applied Soft Computing, 2016, 48: 404-418
[17]HANSEN N The CMA Evolution Strategy: a Comparing Review Towards a New Evolutionary Computation[J]. Advances on estimation of distribution algorithms, 2006, 75-102
[18]HANSEN N, KERN S Evaluating the CMA Evolution Strategy on Multimodal Test Functions[J]. Parallel Problem Solving from Nature PPSN VIII, 2004, 282-291
[19]同光, 桂卫华 基于粒子群优化神经网络观测器感应电机定子电阻辨识[J]. 电机与控制学报, 2015, 19(2):89-95
[20]王建敏, 董小萌, 吴云洁 高超声速飞行器 RBF 神经网络滑模变结构控制[J]. 电机与控制学报, 2016, 20(5):103-110
[21]张旭隆, 曹言敬, 邵晓根 基于边界约束RBF网络的SRM磁链特性在线建模[J]. 电机与控制学报, 2015, 19(2):83-88
[22]宋清昆, 李源松 RBF神经网络锅炉燃烧系统建模[J]. 哈尔滨理工大学学报, 2016, 21(1):89-92
网络安全态势范文5
关键词:电力信息;网络安全态势;评估;预测方法
前言
近年来,随着电力工业迅速发展,信息技术为电力产业改革提供了极大的便利,但也带来了负面影响,严重情况下,威胁到电力系统安全运行,在很大程度上增加了电力系统运行不确定性。与此同时,智能终端接入方式多元化、大量数据信息之间交互等,都需要建立在电力信息网络安全基础之上。因此加强对本文的研究具有非常重要的现实意义,不仅能够提高系统安全性、稳定性,且能够促进电力系统综合效益有效发挥。
1网络安全态势评估概念
网络安全态势评估建立在网络安全态势评估模型基础之上,在评估过程中,评估算法按照具体的模型对网络安全态势进行评估。其中评估结果准确性与模型存在非常密切的联系。一般来说,对于网络安全态势的评估,需要收集大量数据信息,然后对数据信息进行预处理,借助模型及算法对网络的整体态势进行计算,为决策提供科学依据,可见,网络安全态势评估是一项非常重要的工作。现实中,电力信息系统会受到各种各样的威胁,针对众多影响因素来看,大致可以划分为两类,一是技术安全、二是管理安全。对于前者来说,物理安全主要涉及系统的设备安全,一旦设备无法正常运转,势必会造成线路故障,影响信息系统稳定运行。且网络、主机系统等也会出现不同程度的故障,不利于信息实时共享。对于信息网络受到的威胁来看,主要包括系统探测、非法访问等。面对不同方面提出的挑战,如何及时了解和掌握信息网络安全态势至关重要。
2电力信息网络安全态势评估及预测方法分析
电力是人们日常工作和生活中不可缺少的一部分,电力信息化快速发展,并渗透至发电、输电及配电等多个环节,保证电力信息系统安全非常关键。但电力信息系统在运行过程中,极易出现病毒、木马等问题,不利于电力系统稳定运行,因此我们有必要提前做好评估和预测,以了解和掌握信息系统运行状况,确定系统的安全级别,以达到防患于未然的目标[1]。
2.1权重计算方法
针对当前层次分析法过于偏向于主观,导致结果缺乏客观性。因此本文将引入三角模糊数代表专家对指标重要性的评判,然后基于群组决策的模糊层次分析法来确定各层因素的权重。采取这种方式,不仅能够避免评估误差,且能够提高评估结果准确性。在实践中,我们确定安全评估体系,按照隶属关系划分得到相应的层次化安全结构。然后进行两两对比分析,构建各层次因素的三角模糊判断矩阵。通过一致性检验后,运用加权平均法得出各个层次指标因素的综合矩阵。针对模糊权重向量,本文可以采取可能度方法对其进行相应的处理,并按照如下公式计算出各指标权值.对于电力信息网络安全的评估,主要分为硬件、网络、信息及软件四个模块,每个模块中包含多个细节,如硬件安全中,涉及计算机安全、设备安全及线路安全等。通过一致性检验之后,采用加权平均法综合专家信息得出模糊综合判断矩阵,将数值代入到上述公式当中计算出各个指标的相对权重值[2]。如表1是硬件安全相关指标权重情况。根据权重判断各个细节的安全性能更为准确,能够为电力信息安全管理提供支持。
2.2评估模型设计
目前,电力信息网络系统中已经设置了防火墙、入侵检测等设备,构建了一道防护墙,但这种方式非动态性,无法满足电力信息安全防护需求。因此我们将引入评估模型,实现对建立信息的动态监督和控制。为了减少冗余,我们在评估前,需要对相关数据进行预处理,为后续评估做好充分的准备。电力系统是一个庞大的体系,其涉及多个层次,针对不同的层次,我们构建的计算模型也应有所调整。如对于主机级安全态势指数计算公式如下通过这个公式能够计算得出电力信息受威胁程度。通过对安全态势评估概念分析得知,模型构建是否合理直接影响评估结果准确性。因此合理构建模型非常关键。本文采取层次性模型,以此来强调评估针对性。构建模型后需要将定性指标定量化处理,确定评估参数[3]。具体来说,第一,针对主机和子网权重来说,可以采取专家评估法,引入上文提到的三角模糊数计算方法,得出相应的数值。第二,对于时间重要性权重来说,应将天作为单位时间,并将一天划分为三个时间段,对各个时间的重要程度进行确定。第三,将对电力信息网络危害程度划分为中、高、低三个级别,量化威胁程度,如检测到木马的威胁程度为3级等,使得评估结果能够更具指导作用。
2.3安全态势预测算法设计
现有研究成果中算法有很多,如支持向量机,建立在统计理论基础之上的机器学习方法,专门针对有限样本情况,解决非线性数据,并结合预测核心思想,将非现象变换输入到高维特征空间范围内,得出全局最优解。再如粒子群优化算法,作为一种很强的全局寻优能力群智能优化算法,能够对每个粒子进行计算,朝着最优答案靠近[4]。此外,还有集成学习等方法。任何一种方法都各具优劣,将各个方法结合到一起,能够充分发挥其优势。为了最大限度上降低计算结果的误差,本文将提出一种综合性方法,将上述方法有机整合到一起。为了提高实践应用效果,我们将对综合算法进行评估。采用DARPA评估数据作为原始数据源,收集了150个数据,按照如下归一化公式进行处理。根据具体的计算值,通过滑动窗口方法对态势数据进行重构处理,形成集成学习样本。通过这种方式能够确保预测更加准确、客观[5]。经过比较,本文提出的算法能够在很大程度上提高预测精确度,更好地应用于网络安全态势预测,可以广泛推广和应用。在未来,电力系统将呈现规模化发展趋势,信息系统也会随之拓展。技术人员还要加大对评估及算法的研究力度,使得算法过程更加简便,并提高算法结果客观、准确性,为电力信息管理奠定坚实的基础。
3结论
根据上文所述,随着我国电力事业不断发展,信息网络系统安全问题受到了越来越多的关注和重视。针对当前存在的诸多风险,我们在实践工作中,要重视对评估和算法的分析和选择,合理的选择方法,能够在很大程度上提高评估结果准确性。本文通过对当前网络信息受到的各类风险,从预测算法等角度提出了具体的方法,能够帮助监控人员及时发现庞大的信息系统中存在的不足和隐患,并安排人员对其进行针对性调整,使得电力信息系统始终处于良好的状态当中,确保系统内部各类信息之间的交互和共享,不断提高电力信息系统运行有效性,从而促进电力产业持续健康发展。
参考文献:
[1]陈虎.网络信息安全风险态势预测分析方法探讨[J].网络安全技术与应用,2014.
[2]李菁.一种新型网络安全态势评估及应用方法的探讨[J].新经济,2014.
[3]石波,谢小权.基于D-S证据理论的网络安全态势预测方法研究[J].计算机工程与设计,2013.
[4]范渊,刘志乐,王吉文.一种基于模糊粗糙集的网络态势评估方法研究[J].信息网络安全,2015.
网络安全态势范文6
【关键词】网络安全 审计 态势预测
目前网络已经在各行业中被广泛地普及,人们对网络的依赖日益增加。然而网络攻击事件却也是愈发频繁。面对大量的病毒入侵,传统的防火墙、入侵检测等技术逐渐呈现出疲态,已满足不了现阶段的网络安全防御需求。
1 网络安全审计技术
1.1 网络安全审计系统的问题
1.1.1 日志格式无法兼容
不同厂商的系统产生的日志格式一般是无法兼容的,这就对集中网络安全事件进行分析,增加了难度。
1.1.2 日志数据管理困难
日志的数据会随着时间不断地增加,但日志容量有限,一旦超出容量,数据不能轻易地处理掉。
1.1.3 日志数据集中分析困难
如果攻击者针对多个网络进行攻击,由于日志不能兼容,就只能单个进行分析,这样不仅工作量大,而且很难发现攻击者的踪迹。
1.1.4 缺少数据分析和统计报表自动生成机制
日志数据每天都会有所增加,工作内容过多,管理者就只能一个个查看下去,所以数据分析和统计报表的自动生成机制是必要的,能够最大程度减少管理者的工作量。
1.2 网络安全审计系统的主要功能
1.2.1 采集日志数据类型多样化
如入侵检测日志、防火墙系统日志、操作系统日志、应用和服务系统日志等。
1.2.2 多种日志统一管理
便于将采集的各种复杂的日志格式转化为统一日志格式,实现多种日志信息的统一管理目标。
1.2.3 日志查询
可以支持大部分查询方式对网络的日志记录信息进行查询,并将信息以报表的形式显示。
1.2.4 入侵检测
利用多种相关规则对网络产生的日志和报警信息进行分析,能够有效地检测出较为隐蔽的安全事件。
1.2.5 集中管理
审计系统建立统一的集中管理平台,将日志数据库、日志、安全审计中心集中起来进行管理。
1.2.6 安全事件响应机制
根据事件类型,可以选择相应的报警响应方式。
1.2.7 实时监控网络动态
对有的特定设备可以实施监控到日志内容、网络行为等。
1.2.8 安全分析报告自动生成
通过分析数据库中的日志数据、网络安全性,自动输出分析报告。
2 网络安全态势预测技术
2.1 网络安全态势预测技术的作用
大数据时代互联网可以利用光纤、无线网络接入终端、服务器设备,实现信息化系统共享数据、传输的目的。但随着科技不断发展,网络面临的攻击力度和方式愈发强了,以致网络随时面临着病毒的侵入。然而网络安全事件发生动态不明,所以需要采用态势预测措施,其通过分析过去以及现在网络安全事件的走势,预测未来网络安全事件的走势,以此协助安全管理人员作出正确的判断。目前,态势预测技术属于网络安全防御手段中最有效的技术之一,其采用了先进的分析技术,能够随时对不确定的信息进行统计,建立科学、高效的网络安全态势预测趋势图,进而彰显安全态势预测的实用性。
2.2 网络安全态势预测技术的研究
态势预测技术的效果获得了国内外许多学者的认可,目前已经在很多领域中广泛的应用和研究,从而延伸出许多态势预测技术,其中最为关键的技术有自回归移动平均模型、神经网络预测模型。
2.2.1 自回归移动平均模型
自回归移动平均模型体现方式是非常常用的随机序列构建而成的模型,其建模过程包括序列检验、序列处理、模型识别、参数估计以及模型检验。识别序列中存在的相关性以及只通过数学模型详细记录序列的连续性是自回归移动平均模型的主要目标。在执行自回归移动平均模型中,序列检验主要针对数据的随机性和平稳性进行检测;序列处理通常采用差分运算法、函数变换方法、周期差分法等对序列进行处理;常用的参数估计方法有矩估计、最小二乘估计等;模型检验的目的是为了检验参数的序列类型,若是属于白噪声序列,则可以通过检验。自回归移动平均模型在应用过程中,需要存在态势序列满足平稳性假设的条件,但要完成这个条件极为困难,所以限制了该模型的使用范围。
2.2.2 神经网络预测模型
神经网络采用学习算法模仿正常的网络数据行为,能够利用模仿数据提取查询相关正常数据,并储存在网络数据库里,方便识别不正常的数据行为,所以神经网络预测模型是一种网络安全态势预测算法,且非常具有有效性。神经网络能够训练数据学习的自主性、自适应性,且能够区分正常数据以及掌握最流行的网络攻击行为特征,进而掌握正常的安全事件行为模式。完成训练后,神经网络可以对网络事件行为特征进行分析和识别,并记录行为特征的变化,从而检验出可能存在的异常行为。由此可见,神经网络可以在训练时通过调整神经网络参数权值实现分布式存储、并行处理和容错的能力,其还具有较强的适应能力和非常强的抗干扰能力。神经网络在网络安全审计系统应用过程中,存在一些问题,如样本数据获取困难、检验精度对神经网络训练次数的依赖性强等。
3 结语
态势预测技术作为新兴的网络安全防御技术,可以通过分析过去以及现在安全事件走势,进而预测未来一定时期网络安全事件的走势。而安全审计系统虽然存在一些需要考虑的问题,但其具有很好的兼容性,能与其他防御系统联合运用,以此配合态势预测技术,必定能够协助安全管理员解决问题,从而降低网络攻击次数。
参考文献
[1]薛丽敏,李忠,蓝湾湾.基于在线学习RBFNN的网络安全态势预测技术研究[J].信息网络安全,2016(04):23-30.
[2]郑士芹.大数据时代网络安全态势预测关键技术探讨[J].黑龙江科技信息,2015(32):204.
作者简介
黄瑜帅(1982-),男,广东省惠州市人。硕士研究生学历。现供职于惠州市公安局网络警察支队(惠州市电子数据检验鉴定中心)。