化学反应速率的意义范例6篇

化学反应速率的意义

化学反应速率的意义范文1

化学平衡移动意义在于,当改变外界条件比如温度、压力和反应物、生成物浓度时,打破了原有化学平衡状态使其最大限度的向正方向进行,这在工业生产具有重要的意义。

(1)浓度对化学反应的影响

从化学平衡常数定义分析来看,当反应温度不变时,增加反应物浓度必然会使化学反应向正方向移动,从而引起生成物浓度的增加这样才能达到最终的平衡状态;同样将生成物移走,对于原有的平衡状态来看,相当于增加了反应物的浓度,反应也会向正方向移动,提高反应物的利用率,这在工业生产上应用比较广泛。例如,对于N2+3H2=2NH3可逆反应来讲,让化学平衡向生成NH3的方向移动,在其他条件不变的前提下,可以在反应容器中充入N2或者H2使它们的浓度增加。在实际的生产中为了获得多的NH3,需要将生成的NH3尽快的移走,降低NH3的浓度。这样反应就能向正方向移动。

(2)温度对化学平衡的影响

改变浓度是在化学平衡常数不变的情况下遵循的规律,但是当化学反应温度发生变化会引起化学平衡常数的变化。经过物理化学家们的潜心研究,终于发现了温度对化学平衡的影响,其满足克拉伯龙方程,即当升高温度化学反应向吸热的方向移动,降低温度化学反应向放热方向移动。所以,在工业生产中根据化学反应的吸、放热采取相应的措施,让其向着生成物方向移动。

(3)压强对化学平衡的影响

压强对化学反应的影响主要针对反应物中有气体或者是生成物有气体反应,由化学平衡常数来看,化学方程式中分子数增加和减少的反应,压强对其产生的影响也不同。经过试验证明,在其他条件时,增大压强有利于向化学分子数小的方向移动,减小压强有利于向化学分子数增大的方向移动。

二、化学反应速率理论

不同化学反应其反应速率有着明显的区别,比如,酸碱中和以及爆炸反应比较猛烈,部分氧化反应进行缓慢。为了将化学反应更好的为化工生产服务,需要对化学反应详细的研究,经过研究最终用化学反应速率来衡量化学反应进行的快慢。

1、浓度对化学反应速率的影响浓度对化学反应速率的影响,是通过影响化学平衡进行过程实现的。对于大多数化学反应,增加生成物或者降低生成物浓度有利于向正方向移动,但是并不是所有的化学反应都遵守这个规律。比如,某组分对化学反应速率的分级数是零,不管增加还是减少该组分都不会对化学反应速率造成影响;当某组分反应分级数是负数,增加其浓度不会提高原反应的速率,相反会降低其速率。对于某化学反应,当确定了催化剂和外界温度后,浓度就成为影响其反应速率是重要因素。

2、温度对化学反应速率的影响很早以前人们就发现温度对化学反应速率有重要影响。化学反应除了浓度对反应速率有影响外,和化学速率常数也有着密切的联系,温度对化学反应的影响主要通过影响反应速率常数实现。反应中如果整个体系的活化能降低,其反应温度就越高,反应速率也就越快。但是对于复杂的反应体系来讲,温度升高有利于向活化能高的方向移动。

3、催化剂对化学反应速率的影响催化性具有选择性,比如某种物质在一个反应中是催化剂,在其他反应中就不一定是催化剂。对于具有主副反应的体系,可以选择合适的催化剂达到促进主反应抑制副反应的目的。另外,在化工生产中需要研究影响催化剂中毒的因素,避免由于使用工业设施不慎,导致催化剂中毒情况的发生。催化剂中毒使催化剂不能发挥最佳的催化效果,影响反应的进行。

化学反应速率的意义范文2

化学平衡状态的标志可概括为“一等五不变”,现以mA(g)+nB(g)?圳pC(g)+qD(g)为例,化抽象为具体,提高学生对此标志的理解。

1.一等

“一等”即正反应速率等于逆反应速率,其意义是针对反应体系中同一反应物(或生成物)而言的,而不是同一反应中的不同物质。若用同一反应中不同物质来表示正反应速率和逆反应速率,必须要求两速率反向(切忌单向速率)且两速率之比等于其对应的化学计量数之比。在试题中可有以下几种具体形式出现:

⑴同一物质的正反应速率等于逆反应速率,如υA(消耗)=υA(生成)或υD(消耗)=υD(生成)。

⑵某反应物的正反应速率与另一反应物的逆反应速率之比等于化学计量数之比,如υA(消耗):υB(生成) =m:n,或υC(消耗):υD(生成) =p:q。

⑶某反应物的正反应速率与某生成物的逆反应速率之比等于化学计量数之比,如υA(消耗):υC(消耗) =m:p,或υB(生成):υD(生成) = n:q。

⑷对同一物质而言,断裂化学键的物质的量与形成化学键的物质的量相等。

2.五不变

“五不变”即反应混合物中各组分的浓度保持不变,其意义是指各组分的物质的量不变;各组分的浓度不变;各组分的百分含量不变;反应物的转化率不变;对于全为气体的可逆反应,当m+n≠p+q时,混合气体总物质的量不变。在试题中可有以下几种具体形式出现:

⑴各组分的物质的量不变,如一定温度的密闭容器中,各物质的分子数不再改变。

⑵各组分的浓度不变,如外界条件不变时,对于有颜色的物质参加或生成的可逆反应,混合气体的颜色不随时间发生变化。

⑶各组分的百分含量不变,如各组分的体积分数、物质的量分数、质量分数保持不变。

⑷反应物的转化率不变,如在一定条件下,A或B的转化率不再改变。

以上各项既适用于反应前后气体化学计量数之和不相等的可逆反应,又适用反应前后气体化学计量数之和相等的可逆反应。

⑸对于全为气体参加的前后化学计量数改变的可逆反应,混合气体总物质的量不变。如当m+n≠p+q时,恒温恒容时,体系的总压强不发生变化;当m+n≠p+q时,恒温恒压时,体系的总体积不发生变化;当m+n≠p+q时,恒容时混合气体的平均相对分子质量不发生变化。

化学反应速率的意义范文3

关键词:教学模型;化学反应速率;教学设计;教学转化

中图分类号:G633.8文献标识码:B文章编号:1672-1578(2013)03-0288-01

化学反应速率是化学动力学的重要内容。化学反应速率内容隶属于对化学反应的认识。高中阶段自主学习方法的运用、抽象思维能力的形成都需要一定的锻炼机会。通过本节课的学习、实践,探究,学生已经初步涉及物质的本身性质,浓度,温度、催化剂以及反应物的颗粒大小等因素对反应速率的影响,并已经掌握了一些实验基本能力(操作技能、观察能力、分析能力、简单运用实验解决问题能力、评价简单实验能力等)。可见,这样的编排符合学生的能力发展水平。从而为学习本内容奠定了基础。

1."化学反应速率"模型的教学设计

图1化学反应速率的学生认识发展层级

数学模型是对所研究问题进行一种数学上的抽象,即把问题用科学的符号语言表述为一种数学结构。通过数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论。化学反应速率方程是在大量实验经验的基础上得出的数学模型,是浓度与化学反应速率之间的数学关系。不同的化学反应,其反应浓度与化学反应速率的定量关系是不同的,速率方程实际上是一个经验公式。因此这一数学模型的建立过程有助于扩展学生对规律研究的认识。

2.建立从具体知识的教学向为以观念构建为核心的教学转化

观念建构为本教学在内容上也选择和讲授事实性知识,但事实性知识的作用更多的是观念建构的工具和载体,最终目的是要在这些事实性知识基础上通过不断的概括提炼而形成的深层的、可迁移的观念或观念性知识。由于观念的整合作用,能很好的把本来孤立和零散的知识联系起来,形成一个有意义的整体。与此同时,观念建构为本教学强调要把学生置于真实有意义的学习环境里,通过问题解决和活动探究去建构观念而不是仅仅记忆事实。观念建构为本教学强调学习要在具体性知识的基础,通过不断的概括提炼而形成深层的观点和思想。要达到这一目的,就需要学生对具体性知识进行深入理解,找出知识之间的内在联系,并通过不断应用知识把知识功能化,挖掘知识的认识价值和方法价值,从而把具体性知识转化成观念性知识。

由于本部分内容的教学中涉及到的碰撞理论、活化能理论、速率方程等都是针对基元反应的,在应用于复杂反应时,可能会出现某些矛盾或错误,因此在教学中如果不涉及反应历程和基元反应的内容,就会影响学生对反应速率的本质的理解,但是在本部分内容的教学中加入反应历程和基元反应,又会给学生增加学习的难度。因此,在化学反应速率的教学中是否要涉及这些相关内容有待于进一步讨论。

参考文献

[1]高瑛,马宏伟,颜桂琴,化学教学,2005,(5):8-9

[2]陈瑞芝,化学教育,2007,28(8):48-50

[3]龚国祥,马春生,刘江田,化学教育,2012,,33(3):12-24

化学反应速率的意义范文4

长期以来,我国中学物理教学一直强调概念规律及其应用,而不太重视图像的教学,物理图像只用来呈现概念规律的直观表征.在实际教学中,图像更多地被部分教师仅仅用作处理实验数据的工具,还有些教师则只关注如何利用图线更简单地解题.实践表明,学生对概念规律的理解总处于很不理想的状态;甚至相当多物理高分的或所谓学得好的学生,也并非是真正处于对概念规律的物理学理解的水平上.实质上,这已经使物理课程的学习偏离了对物理科学的学习.[1]

就物理学本身而言,图线与图像本身不仅是一种重要的物理语言,也是一种重要的研究方法[2],它与文字、公式、各类简图等物理语言相互转化,相互补充,有逻辑地把物理世界及物理量间的相应变化全面、生动地展现在我们面前.相比之下,物理图像较文字、公式更具有直观、形象的特点,更能量化地反映出多个物理量的状态变化及其相关性的特征,它能直接反映观察的结果(定性或定量的);物理图像所呈现出的对物理量变化过程的整体性描述,不仅系统而且全面.特别是,在对变化过程所具有的细节性描述以及有助于学生理解概念深层意义方面,与其他物理语言相比,堪称特色独具.

笔者认为,之所以在长期的教学中没有重视将概念规律的教学与物理图像密切结合,除了外界的原因外,许多教师对物理图像的理解和如何将物理图像用于概念规律教学两方面都缺乏思考.本文将从这一角度讨论物理图像(图线)对中学物理教学的作用.

二、图像为物理概念的形成明示出一种可行方向,提供了一种思维方法

概念是关于事物本质属性及一般特征的抽象概括,它的形成需要大量相关感性材料的支撑.在需要时,个体将经验储备中相关现象的感官知觉材料,经由编码、组织、储存,从记忆中提取出来.而图像是对表象材料的排序、归类与整理后的整体图景反映,是对直接认知对象表象的条理化,是结合已有观念作出的对事物总体特征的描绘.两者都是为进一步抽象概括材料准备的认知内容.由于图像是对研究现象或过程的秩序整理,显示的是整体特征,于是从资料呈现的完整角度而言,物理图像对物理概念的形成指出了一个明确的方向.又由于图像直接表征的是物理量间的变化,借助数学知识,探究变化中隐含着的不变因素;在某种层次上说,不变是一种特征,表明一种本质――这就是概念所要表征与描述的内容;或者说就是需要引入或产生的那个概念.于是从这种意义上说,图像提供了概括抽象事物本质的一种思维活动方法.

例如加速度概念的学习.学生对生活中直线运动的物体运动速度在不断地变化是有零散但丰富的经验储备,对摩托车与小轿车的启动阶段的速度变化差异亦有着真切的认知表象.因此给出两车启动开始一段时间内一系列时刻的速度值,让学生进行比较研究是符合学生的认知的.若将两车的速度变化利用给出的数据用速度-时间图像表示出来,让学生直观地看到每一辆车运动变化的特点,在变中寻找不变,学生可发现:速度与时间都在变化,但速度变化与所用时间的比值、单位时间内的速度变化、速度的变化率等都是不变的,即速度图线的斜率等都是不变的.进一步,引导学生由图像表现出的两车速度图线的斜率不同,实质就是两车运动本质的不同――速度的变化率不同,就自然地成为我们需要引入的新概念:加速度.

又如,电场强度概念的引入,利用检验电荷的相应测量数据,实验得出:放入电场中某点的检验电荷电量变化,其受到的电场力也随之变化. 但检验电荷受到的电场力与检验电荷的电量图像是一条过原点的直线. 由于直线的斜率不变,直接得出电场力与电量的比值不变,体现出电场在该点力的本质特征. 而在电场中的不同点,力与电量的比值一般又不相同. 可见,这一比值反应了电场力的本质特征在不同点的不同――“场力”的强弱不同,电场强度不同.

三、图像提供的直观的情境,为理解物理概念搭建了一个符合认知规律的平台

(一)借助图像的直观特点,深化理解相关物理概念间的相互关联

中学生还处于经验型抽象思维的阶段,对抽象内容的理解往往需要直观内容的支持.显然,相对概念来说,图像是直观的.因此,教学的关键就在于要引导学生将二者联系起来.例如在各种复杂的直线运动中,可利用位移图像对各种速度概念(用文字与数学式描述的)加以认识上的深化.如图1所示,物体运动的s-t图像中的曲线M,分析t1至t2这段时间内物体的运动,公式定义的平均速度在这里得到了直观的诠释:直线AB的斜率.若t2逐渐向t1靠近,对应直线AB斜率的变化昭示着所分析的时间段内相对应的平均速度不同,当t2无限地趋向于t1时,公式的物理意义是物体在t1时刻的即时速度,就是图像在A点处的切线l的斜率.可见平均速度及其变化以及即时速度与平均速度的关系,在这里得到了逼真的动态直观性演示.

同样,利用图2与图3所示的v-t图像可从以下四个方面深化理解加速度:只有速度图线是不与两轴平行的直线时,它表示的运动才是匀变速直线运动;图2中的速度图线是直线,直线的斜率为该段匀变速直线运动的加速度;由于斜率为正,加速度方向与运动方向相同,物体做匀加速直线运动;图3中速度图像直线的斜率为负,该段匀变速直线运动的加速度方向与物体的运动方向相反,物体做匀减速直线运动.

此外,当速度图线是曲线时,对该图线表述的运动只能计算平均加速度.如图4所示,速度图线在某时刻切线的斜率表征着该位置时刻的瞬时加速度,即t2时刻的加速度即为曲线在该处的切线斜率,由于加速度为正,物体t1到t2时间段做的是加速运动.利用这些速度图像还可以方便地解决初学者由于运动认知材料积累不足带来的对相应运动产生的理解困难.例如,图3中的t1时刻物体的速度为零,但加速度不为零;图4是加速度逐渐减小的加速运动;图5物体做加速度逐渐增大的减速运动,等等.

(二)借助对图线间关系的分析,理解复杂运动中的相关概念

对描述多体复杂运动的物理概念,教学中遇到的困难多是由于学生缺少对相关运动的认知经历,对运动发生的过程及其特点没有形成对应的想象储备.例如因波源与观察者相对运动而使观察者接收到的波频率发生改变的多普勒效应现象.对此现象理解的支持是,想象出波源与观察者之间有相对运动时,观察者接收到波的周期(频率)会发生何样的变化呢?对学生的想象困难,可用位移图像给予直观支撑.设波在介质中直线匀速传播速度为v0,波的振动周期为 T.简单地,分析波源静止、观察者相对波源运动的情况.先对静止的观察者而言,若只关注波动的特殊状态(比如波峰),将看到从波源位置处每隔时间 T就有一个波峰状态以速度v0匀速向外传播.若观察者再以速度v向波源方向匀速靠近,各对象的运动位移图像将如图6所示.

由图6,观察者接收到的波峰1与波峰2的时间间隔DB自然小于波源发出两峰的时间间隔CB.即观察者在此运动状态下接收到波的周期小于波源振动周期.直观可见多普勒效应是物体由于相对运动而出现的不同参考系中观察到的同一事件发生时间间隔不同的一种自然结果.进一步,还可利用图线形状呈现出的几何关系,计算出频率变化的数量关系.

观察者接收到两个波峰信号时间间隔t的值可由下求出:

在ACD和ABD中,有

CD×tanα=DB×tanβ,(T-t)v0=tv得,t=T.

频率为f0=波动信号(以波源连续发出波的两个波峰为标志).在波传播方向的直线上,以速度v向波源运动的观察者接收到波的频率f=将发生改变,且结果为:

t=T,f=(1+)f0.

四、通过图像中物理量的变化读出概念的深层次物理意义,为发现新概念提供了直观的依据

(一)从图像中物理量的变化读出概念的深层次物理意义

由于图像中呈现出的连续性曲线,是对过程中相应物理量的细节性描述,由此便可以引导学生理解概念的深层次意义.例如匀速运动的v-t图线,利用平面内坐标点可描述物体在某一个时刻的速度;于是可帮助学生理解:速度乃是描述物体运动状态而非运动过程的物理量,速度随时间的推移就可描述一个运动的过程;进而,物理学中说的匀速运动则一定是个理想过程,因为在任一时刻都具有相等速率的运动在实际中并不存在.又如从小灯泡的U-I图线,如图7所示.所给出的关于小灯泡灯丝材料的电阻信息,不但比直接用文字语言表述或数据列表等方法梳理出灯丝电阻要简单得多,而且特别值得注意的是,该图线所揭示出的“冷灯丝电阻随温度呈现的动态变化”几乎是用语言与公式分析难于发现的.

(二)为发现新概念提供了直观的依据

在光电效应现象的研究中,实验得出的光电子的最大初动能,与入射光的频率关系图像,如图8所示.不仅使我们感受到了光电子的最大初动能与光的强度无关(光子个数),是与光的频率线性相关的粒子.由直线与横轴的交点位置,更使我们认识到极限频率概念的存在及其意义.

研究等压条件下,一定质量的理想气体的体积随温度变化的情形,利用描点法画出实验得到的等压线如图9,图线并未通过原点表明0℃时气体的体积并不等于零这一事实.直线反向延长交t轴于d点,得到t1=-273℃,从而外推到零体积,产生了理想气体温标,定义出了绝对零度这一“极限”概念,并明确了它的物理意义.

五、图像为概念间的联系积累材料,丰富了物理规律建立的途径

概念是规律的基础,规律反映了概念间的联系;但是学生对这一点的理解通常依靠对错题原因的反思来实现.实际上,从实验物理走进理论物理,规律的建立方法已发生了根本的改变.在中学物理教学中,如果借助不同图线间的物理关系来建立规律,则可以在一定程度上对这一方法的变化提供隐喻性的支持.

例如,通过对合外力与时间的曲线及加速度与时间的曲线的综合分析来推导动量定理.设质量为 m的物体做直线运动,其受到的变化的合力F随时间的变化如图10所示,该物体运动的加速度随时间的变化图像如图11所示.由牛顿第二定律可知,图11只是图10中每一相同时刻的对应点的纵坐标值与m之比所形成的图形;即图11中曲线与横轴所围面积的m倍应与图10中曲线与横轴所围面积相等,这一点可以通过方格法计算两个面积验证.由图像的物理意义可知,图10中曲线与横轴所围面积表示力在时间 t内的冲量I;图11中曲线与横轴所围成的面积表示时间t内物体速度的增量Δv.若物体时间t=0时刻速度为v0,t时刻速度为vt,则Δv=vt-v0 ,比较两幅图形有:I=mΔv=mvt-mv0.

对动量定理进行这样有“直观证据”支撑的认识,不仅促进了对概念规律的真理解,还会潜移默化地为具体问题的解决找到新的途径,形成新的方法.

参考文献:

[1] 马广明. 加强物理图像教学 提高对概念规律的学习效率[J]. 物理教师,2014(11).

化学反应速率的意义范文5

关键词:"图象法";轴;斜率;截距;面积;转折点

中图分类号:G633.7 文献标识码:B 文章编号:1672-1578(2016)07-0296-01

1.方法介绍

物理规律可以用文字来描述,也可以用数学函数式来表示,还可以用图象来描述。利用图象描述物理规律、解决物理问题的方法称之为图象法。物理图象有很多类型,如模型图、受力分析图、过程分析图、矢量合成分解图、函数图象等。图象具有形象、直观、动态变化过程清晰等特点,能使物理问题简化明了。

2.高中物理涉及的物理图象类型

高中物理常涉及到的图像有:受力分析图、矢量合成分解图、物理过程分析图,常规函数图象有:V(速度)-t(时间)图象、S(位移)-t(时间)图象、a(加速度)-F(力)图象、a(加速度)-1/m(质量倒数)图象、振动图象、波动图象、P(压强)-T(温度)图象、V(体积)-T(温度)图象、P(压强)-V(体积)图象、U端(路端电压)-I(电流)图象、i(电流)-t(时间)图象、u(电压)-t(时间)图象等。从图象形状看,有直线型、正弦、余弦曲线型、双曲线型、抛物线型和其他型等;从图象的层次看,有"点"、"线"、"面"、"形"四个不同的层次。

3.图象的各个层次的物理意义

图象的物理意义主要通过"点"、"线"、"面"、"形"四个方面来体现,教学中应从这四方面入手,予以明确。

3.1 物理图象中"形"的物理意义:"形":指图象的形状。由图线的形状结合其斜率找出其中隐含的物理意义。例如在V-t图象中,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象中,可通过微小的平移能够判断出各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测出在不同电压下通过小电珠的电流,作出U-I图线,得到的是一条曲线,通过对图线斜率的分析可得出:在实际情况下,小电珠的电阻随着温度的变化而发生了变化。

3.2 物理图象中"线"的物理意义:"线":主要指图象的直线或曲线的切线,其斜率通常具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往代表另一物理量值.如S-t图象的斜率为速度,V-t图象的斜率为加速度、Φ-t图象的斜率为感应电动势、U-I图象的斜率为负载的电阻等。

3.3 物理图象中"面"的物理意义:"面":是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.学习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如V-t图象中所围面积代表位移,F-S图象中所围面积为力做的功,P-V图象中所围面积为气体压强做的功。S-(1/V)图象与1/V轴所围的面积代表时间等。

3.4 物理图象中"点"的物理意义:"点"是认识图象的基础。物理图象上的"点"代表某一物理状态,它包含着该物理状态的特征和特性。从"点"着手分析时应注意从以下几个特殊"点"入手分析其物理意义。

⑴截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图3中,图象与纵轴的交点反映出当I=0时,U=E即电源的电动势;而图象与横轴的交点反映出电源的短路电流。

⑵交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图4中的P点表示甲、乙物体运动位移相同的时刻和位移。

⑶极值点。它可表明该点附近物理量的变化趋势。如图5中的D点表明当电流等于E/(2r)时,电源有最大的输出功率。

⑷拐点。通常反映出物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,学生能一眼看出其物理量发生了突变。如图6中的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,学生往往察觉不到物理量的突变。如图7中P点看起来是一条直线,实际上在该点速度方向发生了变化。

4.图象应用的注意事项:

为使学生能正确理解图象法在高中物理中的应用,我们在平时的图象教学中应特别注意以下几点:

4.1 首先必须搞清楚纵轴和横轴所代表的物理量,明确要描述的是哪两个物理量之间的关系。如辨析简谐运动和简谐波的图象,就是根据坐标轴所表示的物理量不同进行区别的。

4.2 其次要认识图线并不表示物体实际运动的轨迹。如匀速直线运动的S-t图象是一条斜向上的直线,但物体实际运动的轨迹可能是水平的,并不是向上爬坡。

4.3 最后要从物理意义上去认识图象。由图象的形状应能看出物理过程的特征,特别要关注截距、斜率、图线所围面积、两图线交点等。很多情况下,写出物理量的解析式与图象进行对照,将有助于对图象物理意义的理解。

通过长期的训练,使学生能正确利用图象解决问题,开拓了思路,提高了能力。当然在应用图象法解决物理问题的过程中。并非要削弱解析法的应用。在物理教学中应提倡解析法与图象法的有机结合。这是因为数与形是反映事物间关系的两种不同形式,但数与形又是统一的,它们都可以用来描述物理变化的规律。两种形式之间是可以相互补充、相互转化的,数缺形时少直观;形少数时难入微。总之图象法是解决物理问题的一种重要手段,我们在平时的教学中要善于培养学生识图、建图、用图的能力,努力提高学生的基本素质。

参考文献:

化学反应速率的意义范文6

1 资料与方法 

1.1 一般资料 

选取2014年9月~2015年8月因NST两次无反应入住深圳市妇幼保健院产科待产的78例孕妇作为实验组,同时随机选取同期NST有反应的86例孕妇作为对照组。所有孕妇均满足下列条件:初产妇,孕周为37~41+6周,宫内孕,单活胎,头位,胎儿估计体重<4000 g,无产科合并症,无内外科及其他疾病并发症,无传染病病史。实验组孕妇年龄为21~32岁,平均(26.31±3.37)岁,对照组孕妇年龄为22~30岁,平均(25.69±2.97)岁。两组孕妇上述各项指标差异无统计学意义(P>0.05),具有可比性。 

1.2 胎心监护方法 

入院时行NST,两组孕妇均采取侧卧位、坐位,应用电子胎心监护仪以3 cm/min速度走纸记录胎心变化,常规检查时间为20 min,如未出现满意加速则予振动刺激唤醒胎儿继续检查20 min,以最大程度减少假无反应型结果的出现,检查前48 h内均未应用任何药物。临产后宫口开3 cm时,行持续胎心监护。 

1.3 NST判断标准 

依据文献[7]对NST结果进行评判。NST有反应型:检查时间内出现加速>2次,且每次胎心加速在基线水平上≥15/min、持续时间≥15 s;NST无反应型:连续检查40 min仍未达到标准的胎心加速。胎心减速等异常图形的评判标准如下。变异减速:与宫缩无明显关系的胎心减速,恢复迅速;晚期减速:出现宫缩后胎心减速,减速幅度常>30/min,持续>2 min,恢复较慢;早期减速:与宫缩对称的胎心减速,减速幅度小。 

1.4 观察指标 

1.4.1 胎心 比较两组入院时NST与临产后持续胎心监护结果的变化趋势,观察两组孕妇临产后胎心异常图形的发生情况,包括早期减速、晚期减速、变异减速或其他异常图形。 

1.4.2 母婴结局 观察两组孕妇阴道分娩、剖宫产、脐带扭转、脐带缠绕、羊水污染、新生儿窒息等指标的差异。 

1.5 统计学处理 

采用SAS 9.3统计软件进行统计学分析,计数资料用%表示,采用χ2检验,以P<0.05为差异有统计学意义。 

2 结果 

2.1 两组临产后胎心异常情况的比较 

实验组临产后出现异常胎心图形的发生率显著高于对照组,差异有统计学意义(P<0.01)(表1、图1)。 

2.2 两组母儿结局的比较 

实验组的阴道分娩率低于对照组,剖宫产率、脐带异常率(包括脐带扭转、脐带缠绕)、羊水污染率、新生儿窒息率均高于对照组,差异有统计学意义(P<0.01)(表2)。 

3 讨论 

NST试验中,胎心加速是良好胎心监护图形的重要表现,NST图形上反应的胎心率变化并不是单纯地反映胎心功能,而是多系统、器官共同作用的结果[8]。胎儿对心率的调控,受到交感神经与副交感神经等自主神经的共同作用,当胎动或受到刺激时,胎儿交感神经兴奋并调节心率加快,表现为NST图形加速;副交感神经兴奋时可导致胎心率减低,两类神经正常交换作用时则呈现出胎心的变异与加速。胎儿宫内缺氧时,自主神经功能受抑,胎心率神经调控受抑制,此时胎心搏动仅受窦房结的节律调控,胎心图形表现出现加速、变异减少或缺乏,仅出现规律的窦性心率,为胎心无反应型[9]。当临床胎儿缺氧进一步加重时,可使神经、心脏功能严重受抑制,出现各类异常减速[10-11]。然而NST无反应型还受到胎儿睡眠期及其他因素的影响,因此本研究尽力排除相关因素,并且选择NST连续监测40 min两次无反应型作为研究对象,最大程度地排除了假性无反应型。本研究中,实验组的阴道分娩率低于对照组,剖宫产率高于对照组(达到32.05%),且脐带缠绕、脐带扭转等脐带异常发生率高于对照组(P<0.01),由此可知,脐带缠绕特别是脐带紧绕可影响胎儿的血供,而压迫脐带会致使脐静脉压力明显上升,胎儿胎盘血液交换减少,最终可致胎儿缺氧,抑制胎儿植物神经功能,使胎心监护图形呈现无反应型。胎儿在羊膜腔内旋转活动时,脐带可随胎儿扭转,正常情况下胎儿活动可使脐带扭转6~11周,当扭转>30周时围生儿不良并发症显著上升[12],脐带过度扭转可影响胎儿脐血流通畅性,使血流变慢,在严重扭转处甚至出现短时断流的严重危象,同时也可使脐静脉压力明显上升,胎儿胎盘血液交换减少,并出现NST无反应型胎心图形,当临产后子宫规律收缩,宫缩时子宫内血液明显减少,此时使原本已减少的胎盘胎儿血液交换进一步减少,胎儿处于严重缺血缺氧的危险环境可使神经、心脏功能严重受抑,致使胎心出现变异减少、晚期减速等典型的胎儿窘迫图形。王丽珍等[13]分析了7例脐带扭转患者,其中1例死亡,2例有明显的后遗症,分析病因时提出产前NST反复无反应型是脐带扭转的重要特点,这与本研究结果一致。姚金艳等[14]对23例脐带扭转病例进行分析,其中13例胎儿发生死亡,进一步分析病因时发现,死亡病例中脐带存在血栓形成、管腔闭塞等病理变化。脐带过度扭转是造成新生儿窒息、胎死宫内或死产的重要因素,因此胎心反复无反应型孕妇临产后出现典型胎心减速,应考虑胎儿存在脐带过度扭转情况,应及时终止妊娠以避免新生儿窒息甚至死产等情况出现。

胎心监护的普及与应用,提升了产科质量,增加了围生儿安全,但也不可避免地增加了剖宫产率[15]。本研究中,实验组有25例采用剖宫产终止妊娠,行剖宫产术指征中绝大多数为可疑胎儿窘迫,而对可疑胎儿窘迫的诊断依据,主要来源于对临产时监护中胎心减速图形的判断。本研究实验组出现规律宫缩后,有30例出现胎心异常图形,发生率最高的为变异减速。变异减速发生的主要机制与脐带受压有关,这与实验组脐带缠绕发生率最高相符合,而晚期减速、基线抬高等异常图形各4例,主要为脐带扭转所致,与脐带扭转的发生率也基本相符。实验组中出现新生儿轻度窒息6例,而无重度窒息出现,其原因估计是及时发现胎儿窘迫并及时行相关处理。 

综上所述,足月妊娠NST反复无反应型孕妇临产后可出现以变异减速为主的各类异常图形,其剖宫产率以及脐带扭转、脐带缠绕、羊水粪染、新生儿窒息等发生率均高于NST有反应型孕妇科论文,临床上应足够重视该类孕妇,及时发现宫内不良环境因素并处理,以改善母婴妊娠结局。 

[参考文献]