计算机程序设计论文范例6篇

计算机程序设计论文

计算机程序设计论文范文1

关键词:编译原理;计算思维;课程改革

中图分类号:G642 文献标识码:B

1编译知识在计算机学科中的作用

自从20世纪50年代中期诞生世界上第一个高级语言编译器――Fortran语言编译器以来,编译技术不断进步,已经成为计算机科学中发展最迅速、最成熟的一个重要分支。自1966年以来的所有55位图灵奖获奖者中,有近1/3的科学家是因为在程序设计语言和编译方面的成就而获得该项奖励,可见程序设计语言和编译的发展集中体现了计算机科学发展的重要成果与精华。计算机应用能发展到今天,编译技术的发展有着极其重要的、不可替代的作用。

五十多年以来,随着编译技术的发展,有关编译原理和技术的内容被逐步引入到了计算机专业本科教学中。从早期各阶段ACM和IEEE的计算机专业教学计划,到近年ACM和IEEE联合制定的CC 2005,再到我国教育部高等学校计算机科学与技术教学指导委员会2006年编制的《高等学校计算机科学与技术专业发展战略研究报告暨专业规范(试行)》,直至最新的ACM和IEEE联合制定的CS2008,都把有关编译原理和技术的知识作为重要教学内容列入。目前,我们编译原理课程的教学内容覆盖了CS2008体系中程序设计语言领域、算法和复杂性等领域的多个知识单元。

2编译原理课程的理论性和技术性特点

编译程序的构造原理和技术可以说是计算机科学技术中理论和实践相结合的最好典范。在许多课程的教学中,经典理论和先进技术之间的联系往往缺乏具体而形象的例证,而“编译原理”课程在这方面具有得天独厚的优势。形式语言和自动机理论为编译程序的设计提供了坚实的理论基础,正是在科学理论的保证下,才形成了一系列先进的编译程序设计方法和工具,使得编译程序的构造具有很高的系统性和自动化程度。例如,正是有了有限自动机的经典理论,才有了LEX这样的高度自动化的词法分析器的自动产生器;正是有了Knuth提出的LR分析方法,才有了YACC这样的高效的语法分析器产生器,将程序员从繁琐的代码编写中解放出来。编译课程的教学既要强调经典理论在计算机科学中的重要作用,又要注重介绍利用这些基础理论来设计和构造编译程序各模块的先进方法及工具,可以具体形象地说明经典理论与先进技术的关系。理论和实践相结合是“编译原理”课程的鲜明特色。

“编译原理”课程特别强调运用理论知识进行实践的能力和素质,以突出计算机专业人才培养的特色。“编译原理”是每个优秀的计算机专业人员必修的一门课程。通过编译程序这一具体的案例,学生可以综合理解和运用计算机的程序语言、操作系统和体系结构等各种软硬件知识,形成计算机专业人才特有的系统的专业知识结构。在系统学习编译的理论和技术的过程中,学生一方面对科学理论的基础作用有了充分的认识,提高了学习经典理论的兴趣,形成了较高的理论素养;另一方面,通过课程综合性的实践,分析或改进简单或复杂、原型级或产品级的各种编译程序或工具,也可以提高灵活运用理论知识、设计较大规模的软件来解决实际问题的能力。在课程的学习和实践中,学生可以深刻体会到理论学习的意义和动手实践的乐趣。

有许多人认为,如果今后不从事编译器的开发,编译知识就显得并不重要了――事实上并非如此。编译课程鲜明的理论性和技术性特点,使得这些知识对于计算机专业人员来说具有重要作用,甚至可以说是计算机专业人才区别于一般计算机人员的重要知识结构。对于将来从事编译系统设计工作的学生来说,编译课程的学习当然可以使他们掌握和理解编译系统的结构、工作流程以及编译程序各组成部分的设计原理和实现技术,获得分析、设计、实现和维护编译系统的初步能力,打下坚实的能力和知识基础;而对于那些将来不从事编译器研制的学生来说,编译课程的教学对于提高他们对计算机系统总体认识也具有重要的意义。通过学习编译的理论和方法,学生可以提高对程序设计语言的设计与实现等知识的综合理解,而这些知识对于准确掌握程序设计语言,学习新的编程范型,理解程序,开发出正确的软件都是不可缺少的基础。图灵奖获得者Perlis教授的名言“To understand a program you must become both the machine and the program”就精辟地说明了这一点。此外,编译课程介绍的经典语言分析方法和工具,对于一些实用的工具和软件,如自然语言理解、网络信息处理、网络协议的分析与实现等领域的软件或工具的研制,都是很好的基础。更为重要的是,编译课程中介绍的一些经典的理论和方法,对于传授计算机科学研究的方法、训练学生的思维都是难得的生动案例。因此,不能把编译课程片面地理解成为一个介绍编译程序的课程,而应当把该课程的教学放在培养专业素质、训练思维的层面加以认识,特别是应当强调如何在编译的教学中培养学生的计算思维。

3计算思维及其在编译理论和技术发展中的作用

计算思维(Computational Thinking)是卡内基梅隆大学计算机科学系Jeannette M. Wing教授在2006年提出来的先进的教育理念,被认为是近十年来产生的最具有基础性、长期性的学术思想,并将成为21世纪计算机科学研究的热点。

计算思维是运用计算机科学的基础概念去求解问题、设计系统和理解人类的行为,它包括了一系列广泛的计算机科学的思维方法。Wing教授认为,计算思维不仅仅属于计算机科学家,它将和阅读、写作和算术一样,是21世纪每个人必须具备的基本技能。计算思维已经在其他学科中产生影响,而这种影响在不断拓展和深入。例如计算生物学、计算博弈理论、纳米计算和量子计算等新兴研究领域的发展正在深刻改变生物学、经济学、化学和物理学领域研究的思考方式。

典型的计算思维包括一系列广泛的计算机科学的思维方法:递归、抽象和分解、保护、冗余、容错、纠错和恢复,利用启发式推理来寻求解答,在不确定情况下的规划、学习和调度等。显然,这些计算思维方法都可以在许多编译理论和技术的发展中找到痕迹,很多编译成果正是运用计算思维的结晶。例如,抽象和自动化是计算思维的两个重要手段,也是编译理论和方法产生的基础。编译课程中介绍的语法知识描述、词法分析、语法分析、属性文法、乃至优化等知识点,都体现了面向具体应用、从实际问题中抽象出科学问题并运用科学的思维方法进行问题求解的思想,其成果根植于坚实的经典理论,并应用于实践,以推动技术的进步。因此,在编译课程的教学中,结合编译理论和技术中经典的案例培养学生的计算思维,是一条值得探索的途径。

4结合编译案例的计算思维培养

如何培养“计算思维”,是目前计算机教育界非常关心的问题。例如,在计算机专业的教学中,有些学校在专业核心课程中融入计算思维的培养;在非计算机专业的教学中,对计算机导论类或程序设计类的课程进行改革,针对学科交叉的需求,从教学内容和方法上进行改革,培养学生的计算思维。总体来说,计算思维的培养应该贯穿在大学教育的全过程,甚至在大学之前的教育中。计算思维对于计算机专业的人才培养提出了新的要求,我们必须在专业课程教学中结合计算思维的培养。

编译课程的知识体系完整,既有经典理论成果奠定的坚实基础,又有在实践中发挥巨大作用的先进技术,其中很多知识点都为计算思维提供了很好的诠释和生动的案例。下面,我们从抽象、自动化、递归、问题分解和权衡等典型计算思维方法出发,探讨结合编译案例培养计算思维的可能途径。

(1) 抽象

“抽象”是科学研究的重要手段,也是计算机科学研究的重要工具。在编译理论和技术的发展中,正是运用“抽象”这一有力工具,才获得了一系列的重要成果。例如有限自动机、形式文法等都是重要的抽象工具,有了这些工具,才能够把握词法分析和语法分析等问题的本质,发现其中规律,最终形成一系列的自动分析方法。

(2) 自动化

将抽象思维的结果在计算机上实现,是一个将计算思维成果物化的过程,也是将理论成果应用于技术的实践。有限自动机、预测分析程序、算符优先分析、LR分析等编译经典方法,都是在抽象的基础上将知识和控制分离(即分析表加控制程序),从而获得了经典的分析工具,而这种知识和控制的分离也为分析工具的自动产生提供了可能。自动化的思维方法不仅体现在编译程序本身的工作机制上,更体现在编译程序的生成工具的研究和设计上。

(3) 递归

许多编译中的问题都具有明显的递归特征。运用递归思维解决复杂的问题,通常是对问题进行逐步化简,最后得到了一个规模非常小、非常简单、更容易解决的类似问题,将该问题解决后,再逐层解决上一级问题,最后解决了较复杂的原始问题。编译中的递归下降分析是最直观的对递归思维的运用,此外,基于树遍历的属性计算、语法制导翻译都是典型的递归问题求解。

(4) 问题分解

程序设计中的“自顶向下、逐步求精”的思想就是一种典型的问题分解的计算思维方法。运用问题分解这种思维方法进行问题求解,首先须做出对问题本身的明确描述,并对问题解法做出全局性决策,把问题分解成相对独立的子问题,再以同样的方式对每个子问题进一步精确化,直到获得对问题的明确解答。在编译程序的设计中,通过引入中间语言,将编译程序划分成前端和后端,就是一种典型的分解问题的思路。

(5) 权衡

“编译原理”课程是一门理论性和技术性都非常强的课程。理论研究重在探寻问题求解的方法,而在编译程序的设计和实现过程中,对于理论成果的研究运用又需要在能力和运用中做出权衡。这方面一个典型的例子是,我们知道,虽然高级语言的大部机制都可以由上下文无关文法来描述,但是上下文无关文法不能完全刻画高级程序语言的所有规范,有些语言机制甚至存在二义性。但是上下文无关文法的分析是高效的,所以我们在编译程序设计中依然采取上下文无关文法来描述高级语言语法,但是在具体实现时,通过改造分析表消除冲突、符号表操作、语义检查等手段,去实现上下文无关文法分析所不能完成的功能――这正是在具体实践中结合具体问题进行权衡的结果。

5结束语

计算思维的培养不是哪一门课程的教学能解决的问题。对于计算机专业教育来说,应当关注在各专业课程中的计算思维的培养,强调对各种原理和方法进行提炼,从思维方法的高度培养学生,使学生能够应用计算思维解决问题。大学计算思维的教育应贯穿于整个大学教育,做到学习期间不断线。

参考文献:

[1] Jeannette M. Wing. Computational Thinking[J]. Communications of ACM, 2006,49(3):33-35.

[2] 何炎祥,伍春香. 计算机专业不需要编译原理课程吗?[J]. 计算机教育,2009(4):61-62,85.

计算机程序设计论文范文2

高等学校的计算机教育,特别是广大非计算机专业的计算机基础教育,在很大程度上决定着未来社会人们应用计算机和信息化技术,解决来自自身领域问题的能力高低,所以计算机基础教学备受社会各方面的关注。本文结合作者在海外数所著名院校执教十年的工作经历,介绍海外高校关于非计算机专业计算机课程设置的研究与实践经验。

1非计算机专业学生对计算机课程的需求特点

在学习计算机知识的过程中,非计算机专业学生的思维方式不同于计算机专业的学生。非计算机专业学生对计算机课程学习有其自身的需求,我们必须根据现代教育思想和教学理论,针对非计算机专业学生对计算机课程的需求特点,选择正确的教学内容,设立相应的课程体系,运用恰当的教学模式与方法,将理论与实践紧密结合,以提高非计算机专业计算机基础教学的效果和质量。

通过与计算机专业学生的需求对比,Kapland就非计算机专业对计算机课程的需求特点作出如下归纳总结[1]:

1)(1) 非计算机专业学生通常与诸如信号、图像、方程、表格等实体打交道比较多。为了能够对非计算机专业的学生有所帮助,计算机基础课程须教会他们如何表示这些工作中会用到的数据,以及如何操作这些数据,而对学生不太会感兴趣的,诸如AVL树和B树之类的复杂数据,则可以略去不讲。

2)(2) 非计算机专业学生往往将计算机看成是一种工具而非自身的兴趣所在,更非其职业追求的目标。他们通常对计算机已有所接触,能够在家里轻松自如地使用计算机进行一些图像编辑、音乐合成等简单的操作。一旦转到课堂,让他们学习如何打印从1到10的数时,计算机知识则变得复杂得多。强烈的对比很容易让他们产生一种错觉:大学的计算机课程过时了,没有实际应用价值。

3)(3) 非计算机专业学生有着不同的专业背景,将来也会从事各行各业不同种类的工作。课堂上引用的例子必须是不同专业的学生都可通过直觉所接受的。

4)(4) 非计算机专业学生的导师往往自身也不具备很强的计算机使用能力,不可能去很好地帮助学生改善其计算机使用能力。学生从导师那里得到的帮助十分有限。

5)(5) 非计算机专业学生用在计算机课程上的学习时间十分有限,他们不太可能系统地学习计算机课程。有相关统计数据表明,一个计算机专业的学生在计算机课程上所花的时间通常是非计算机专业学生的十倍。

6)(6) 非计算机专业学生会频繁地使用各类标准的图表,如点线图、直方图、散点图、轮廓图、投影图,等,即便是在一个很初级的阶段也是如此。

7)(7) 非计算机专业学生大都不常写软件包,但是会经常使用它们。他们写程序往往是为某一特定用途,而不是写给别人使用。

8)(8) 非计算机专业学生通常不用设计二进制格式的文件,而是直接采用现成的电子表格、图像、声音等形式来进行操作。他们迫切需要知道如何组织和操作存储在各类表格和数据库中的数据,但可惜的是,这些知识在大多数计算机基础课程中并未涉及。课堂上,教师们常常教给他们线性表、栈、队列、树、集合和图,但并没有教会他们如何进行数据库的选择、投影和连接等典型操作。

9)(9) 如今用于科学计算的软件包非常多。我们很难预测非计算机专业学生在将来的科研工作中会需要哪些具体的计算机知识。与此相反,计算机专业的学生会非常确定地使用计算机程序语言,如C++和Java。

2非计算机专业计算机课程的典型设置

应非计算机专业对计算机基础知识的迫切需求,当前,海内外高校为非计算机专业开设了多种不同类型的课程,大体上可分为三种:(1)计算机导论课程 (着重计算机文化基础);(2)计算机应用课程 (着重案例解答);(3)计算机编程课程 (着重程序语言与软件包使用技巧)。具体讲授方式也依照学校规模、教师队伍与学生分布的不同而各具特色,总体上有如下三种授课方式:(1)同时面向计算机专业和非计算机专业,统一授课;(2)计算机专业和非计算机专业分开授课;(3)面向某一特定的非计算机专业(如医学),专一授课。这样,可根据不同专业需要的侧重点不同,传授相应的计算机基础知识。下面,我们通过具体的案例,分别就海外非计算机专业计算机课程的设置经验作进一步介绍。

案例一:荷兰蒂尔堡大学(University van Tilburg, the Netherlands)

笔者曾经在荷兰蒂尔堡大学信息系统与管理系任教3年。蒂尔堡大学为非综合性院校,共设置有五个学院――经济商学院、法律学院、社会与行为科学学院、人文(艺术、哲学、神学、宗教学)学院和天主教神学院。该校的经济商学院是最早、最大的学院,其经济学科居世界前列。信息系统与管理系附属于经济商学院,所开设的课程面向本系信息管理专业的学生,同时对校其他专业的学生开放,属上述统一授课类型。该系开设的主要课程包括商业工程(Business Engineering)、计算机与因特网技术、计算逻辑、计算机体系机构、数据库、e-商业(e-Business)、电子商务、信息技术、商务信息技术、计算与通信技术、经济与计算通信技术、运筹学与计算通信技术、信息管理、信息系统的质量管理、Linux、面向对象程序设计、面向对象模型、信息技术讲座、软件工程、系统与程序开发、网络资讯,等。

2.1计算机导论课程的设置

该类课程的目的在于让不同系科的学生懂得计算机科学的基本原理,教给学生计算机科学中一些伟大的思想与发明,通过这些预备知识,让学生能够最大限度地为将来理解计算机的能力和局限性打好基础,使之能在所从事的行业中学以致用。与此同时,在不要求学生今后从事计算机方面工作的前提下,教给学生很多计算机方面实用的知识,培养一些实用(如软件包的操作及其在实际情况下的应用)。那种只有通过学院式计算机课程的学习才达到的对计算机科学的深入理解并不是此类课程的目的。根据参考文献[3],对计算的深刻理解是可以通过非编程的教育手段获得的。

案例二:美国卡耐基梅隆大学(Carnegie Mellon University, USA)

美国卡耐基梅隆大学的Cortina认为现在的非计算机专业计算机课程为了让学生能写出正确的程序,过分强调了程序设计中的细节及其严谨性。很多时候,学生修这类课程并不是因为他们在实际工作中会用到编程,而是因为这是必修课 [2]。为此,他提出计算机导论课应教给学生计算机科学的原理而非编程,课程应着重强调从计算角度看计算机科学中的主要贡献,学生着重对计算能力的理解以及在计算机科学中会遇到的可能影响其他学科的问题。在设计课程的过程中,教师不应该通过某一门程序设计语言或者某一个特定的应用领域贯穿始终地讲授,而应该从计算的角度,讲述计算机科学的主要贡献和事件。学生学习算法以及建立计算机科学的思维方式,可以通过使用流程图、模拟器来演示一些简短算法的流程,使得能够在不涉及程序设计语言语法的情况下,就可写出一个简单的小游戏。Cortina在其所讲授的计算机导论课程里,覆盖了如下几方面的内容[2]:

(1) 计算机科学的发展史。例如:早期的设备,欧洲中世纪计算机科学的缓慢发展进程,Babbage 和Hollerith在19世纪的贡献,以及战争(二战、冷战)对计算机科学飞速发展的影响和促进,等。

(2) 用算法表达计算程序。例如:采用伪代码表示算法,用Raptor工具模拟计算过程可视化流程图,等。

(3) 数据的组织。例如:基本数据结构(数组、链表、栈、队列、树和图)、数据库和算法的典型构成(赋值、条件语句、循环和子过程,等)。

(4) 用计算机可执行的程序表达算法(即计算自动化)。例如:程序设计泛型(命令式、面向对象式、函数式和逻辑式)、编译器与解释器。

(5) 算法设计的技巧。包括递归、分而治之(如归并排序、汉诺塔)、贪心算法(如Huffman编码、最小生成树)和动态规划(如Fibonacci函数、所有顶点的最短路径)。

(6) 优化,让计算更完美。包括正确性(常量的使用,用数学归纳法证明算法的正确性)以及有效性(算法复杂度)。

(7) 计算的极限。例如:难解性、不可判定性和通用计算模型(图灵机和计数器程序)。

(8) 并发性。包括多处理器(同步、最大加速比和负载)、流水线技术和多任务(操作系统、死锁与饿死)。

(9) 应用。例如公钥密码学、人工智能(图灵测试和博弈树),等。

(10) 计算的未来。包括量子计算、纳米科技等客座讲座。

2007学年,共65人选修该课,分别来自人文与社会学院、商学院、工程学院、计算机学院和理学院。根据学生的反馈[2],80%的学生赞同客座讲座,55%的学生期望继续启用但应使用更多的图例进行讲解,85%的学生会将这门课推荐给朋友。

案例三:香港理工大学(Hong Kong Polytechnic University, China)

考虑到医务人员通常需要使用计算机工作者开发的远程临床设备。很多时候,这些临床设备启用了一段时间,但使用者却经常因为基础电脑知识的缺乏而遇到各式各样的问题。为解决此问题,香港理工大学计算机系专门为医务工作者开设了一门名为“计算机开明”(computer literacy)的课程,听课者包括医生、管理人员、市场销售人员以及经理,等。课程教案几经修改,每次修改均安排在实战训练课程后或者研讨会之后进行。该课程旨在概述计算机的基本运作、资讯科技在医疗系统中的应用,以及计算机的基本操作常识。授课内容包括:

1)(1) 计算机系统导论,包括计算机系统的基本组成(CPU、存储设备、媒体和I/O设备)和工作原理。

2)(2) 系统软件,包括系统软件的功能和操作,MS Windows的基本特点和命令,等。

3)(3) 汉字的输入方法。

4)(4) 数据库,包括数据库系统的体系结构,数据库系统的操作,等。

5)(5) 资讯科技的应用,根据计算机组织结构,介绍计算机的应用。

案例四:美国波士顿大学(Boston College, USA)

美国波士顿大学Parker and Schneider认为非计算机专业课程应该超越计算机语言的语法讲授,重点介绍计算机学科的整体情况,让学生明白计算机编程只是整个计算机学科的一部分。课程所要达成的目标在于向学生传递一种计算机“感觉”,在讲解计算机的一些主要概念及其相互联系的同时,让学生真正地在实验室里操作实践[4]。他们所设计的课程内容涵盖了计算机理论、硬件与逻辑设计、计算机组成、算法与数据结构、程序设计语言、操作系统与虚拟机、应用以及社会等诸方面。其教学风格是在每一个层次上,介绍重要的原理并引出在这个层次上学习的关键问题,然后,迈向下一个层次在一个新的抽象层次上对新问题展开讨论,同时和前一个层次的内容相结合。

2.2计算机应用课程的设置

由于上述计算机导论课程依然着重于计算机系统本身而非计算机应用,或多或少地强调计算机编程,就好像教一个想学开车的孩子如何修汽车,因而,那些受好奇心驱动的非计算机专业学生往往觉得此类计算机导论课程困难且乏味。为解决此问题,另一大类偏重于实际应用的计算机基础课程孕育而生,即计算机应用课程。

案例五:美国哈佛大学(Harvard University, USA)

美国哈佛大学Leitner等人提倡在非计算机专业的计算机基础教学中,讲授计算机应用而非计算机本身,强调计算机应用程序的使用而不是单调的程序设计练习[5]。课程的目标在于让学生学会用软件系统刻画和解决实际问题,以加强对相应计算机概念的理解与认识。课程设计应围绕计算机科学中最让人感兴趣的应用领域(如人工智能、计算机图形学、计算机视觉、信息检索、人机交互,等)来组织。在授课的过程中,每一种应用可从两方面来讲授:首先,给出计算机科学概念的一个直觉性概观;其次,强调应用的特定细节,务必每一个实例都和一个特定的软件系统联系在一起。学生不需要程序设计的基础,在课堂上也不讲授程序设计。在选择具体的应用案例时,注意选题必须覆盖计算机应用的关键领域并提供这些领域特点概念的代表性举例;需用到的软件必须易学、易用、易引起学生的兴趣,适合新手使用和实验,需假定学生除了用过Word或浏览器这类的基础软件之外没用过其他软件。这些系统既可以是商业软件、自由软件,也可以是自己开发的。参考文献[5]中给出了几个案例及其分析说明。

(1) 光线跟踪。运用计算机图形学原理(几何建模和光线传输与反射)、计算几何(计算交叉、几何搜索)等计算机知识。

(2) 动画粒子系统。涉及离散时间系统驱动(随机数)、数值方法(数值积分)等计算知识。

(3) 交互优化。涉及计算复杂性(算法与问题的复杂度、旅行商问题和NP完全)、人工智能(启发式搜索和优化)、概率论和统计(算法的经验分析)、人机交互(协同用户界面的设计)等计算技术。

(4) 图像增强。涉及电子成像(图像感知与表示)、图像处理(点操作、图像过滤、噪音去除)等计算技术。

(5) 人脸识别。涉及计算机视觉(形状识别、图形跟踪和运动分析)、人机交互(基于照相设备的界面)等计算技术。

(6) 万维网上的信息检索。涉及经典数据处理(关系数据库和有效排序和查找)、信息检索(名词集合的向量空间模型、倒排索引、链接分析法、语义网和协同过滤)等计算技术。

案例六:美国坦普大学(Temple University, USA)

美国坦普大学Aiken等人为非计算机专业学生设计了一门计算机案例课程,期望通过具体案例,结合特定领域的知识和逻辑,运用解决科学问题的一般性计算和数学方法,借助信息工具,引导学生解决关键的科学问题,达到让学生了解不同领域专家如何使用信息技术解决问题的目的[6]。在选择案例时,所考虑的依据为:①案例所表述的问题必须能激发不同专业学生的兴趣;②案例必须是一些实际工作中可能会遇到的;③通过案例阅读和分析,学生能迅速把精力集中到解决问题的策略和信息技术上,而不会被其他一些困难所牵制;④案例所表达的问题必须涉及计算机科学的主要概念和相关工具。参考文献[6]中详细地绘出了案例分析的模板,包括如下八个组成部分:

1)(1) 任务描述。包括问题陈述、动机、背景、研究与验证所采用的模型、边界条件、作为一般性问题解决策略的解题过程、学习目标、陷阱与失败的范例,等。每一个案例应代表某一类问题以及与其相关的解决方案。

2)(2) 课程计划和讲义。包括课程内容、特定目标、讲解与实验、独立活动、讨论专题和小组活动,等。

3)(3) 试验计划、活动与讲稿。描述学生在实验前应该作哪些思考、应该在实验室里做些什么工作以及这些工作的目的。

4)(4) 作业、课程项目、考试题和讨论问题。应留有足够的各类问题,用于自我评估并可供学生进一步自学。

5)(5) 数据。应有与案例分析相关的数据(如文件、数据库、图像、动画和演示)。

6)(6) 程序与工具。在案例分析中所用到的每一个程序和工具,在网上都应该有足够的文档,以及为什么选择这种工具的陈述。

7)(7) 额外的资源,供进一步学习之用。包括参考文献、信息网站、相关项目,以及项目完善的建议。

8)(8) 评价体系。对于案例分析中的每一种活动,指出学生应达到的程度。

参考文献[6]给出了如下几个案例供参考。①模拟时空下人类的行为,通过GIS模拟,跟踪2000年前到9000年前巴拿马中部热带森林里农民的扩张和随之而来的巴拿马森林的减少。②工业发展对职业年龄等造成的一系列影响,自1980到现在,审查、评价和解释美国职业分布的变化。③用计算方法探秘有机分子的结构,教给学生简单有机分子的物理性质和结构之间的关系,让学生利用物理定律和特定的计算方法预测简单分子的结构和性质。

2.3计算机编程课程的设置

在鼓励向非计算机专业开设计算机导论课和计算机应用课的同时,当前仍然有很多高校认同计算机程序设计课程的必需性。这是因为科学计算普遍存在于当今绝大多数的科学领域中,科学家们倾向于使用应用软件包而非程序开发环境。掌握基本的计算机程序设计概念、学习一般性程序设计技巧对使用这些软件包非常有帮助。如今,越来越多的科学软件包采用脚本语言、或更为完善的程序设计语言(如Matlab,Mathematica,等)。另外,教给学生一门程序设计语言对于将来想从事计算机科学工作的学生也是有用的。

一般意义上,计算机编程课的目的在于培养学生清晰思考的能力、通过编程解决实际问题的能力、以及感知计算机可以解决哪类问题的直觉能力(如计算机的最大能力以及计算的极限)。程序设计课程的讲授一般需遵循下列准则:①因时间有限,所讲授的程序设计语言必须容易学习和掌握;②程序设计语言必须能清晰反映计算机编程概念;③程序设计语言必须提供科学工作者常用的基本运算,例如将程序设计语言与图形集成在一起,学生就可以较为容易地学会画统计图表;④程序设计语言必须具有一般性,可以通过程序设计语言来解释计算机科学中遇到的重要概念,如语言必须可以用自然而简单的形式去表达树,也可以支持递归;⑤应用程序和例子必须经过认真、仔细地挑选,向学生展示这些例子与所学知识的内在关联,教给他们将来从事科学工作的技巧,且所选应用对于每个理工科学生来说都应是有趣、易掌握的。

案例七:美国杜克大学(Duke University, USA)

美国杜克大学Biermann在讲授计算机编程课程时,兼顾了两大部分的内容:计算机硬件/软件部分和高级专题部分[7]。计算机硬件/软件部分着重让学生理解计算是一个机械的过程,从开关电路和机器基本部件的连接开始,讲授晶体管和超大规模集成电路技术,以及如何将大规模电路集成到小芯片上,然后展示一个典型的机器系统结构,机器的运转以及如何用它编程,最后,解释一个小的编译器如何把高级语言翻译成机器可以执行的语言。在高级专题方面,主要介绍一些当今热门研究问题,让学生认识到计算机科学的局限性,包括计算机程序的时间复杂度、并行结构、不可计算性和人工智能,等。

案例八:美国马可雷斯特大学(Macalester College, USA)

美国马可雷斯特大学Kaplan 在讲授Matlab 程序设计课程中,一半用来介绍Matlab编程,包括数据类型、函数的参数传递、索引、读取标准文件的操作(如文本文件,电子表格)、构造函数、条件和函数;一半用来介绍理工科的实例,如声音(音乐合成、降噪音、速度变化,等)、图像(颜色调整、图像分片、边缘检测,等)、与数学的联系(公式的运用)、计算机科学(Fibonacci函数、汉诺塔、最优匹配、生物信息,等),以及图形用户界面(识别图像上的点),等[1]。

3结束语

一门优秀的非计算机专业计算机课程带给学生的影响与作用力将超过一个学期。纵观海外各大高校关于非计算机专业计算机课程的研究与实践经历,我们认为在设计一门非计算机专业计算机课程时,应遵循如下五大方面的设计准则:

1)(1) 设定目标。根据学校教学大纲的要求,同时参考ACM推荐的课程(/sigcse/cc2001),达到以下的目标。

目标1:让课程内容更相关,所有课程内容和作业都和学生的职业目标相关;

目标2:为启发学生的创造力提供机会,提供机会引导学生把计算看作是有趣而又富有创造性的活动;

目标3:让理论更为实践化,让学生把计算机科学看作是一项社会活动,而不是把它看作一项如进行黑客活动一样的非社会活动。

(2) 选择上下文。许多有力证据表明,如果不讲授一些抽象的概念,如某一具体领域内的程序设计,学生根本学不会。因此选择特定上下文是改进学习的一个关键点。如果以深度代替广度,我们可以教授更多的可转化的知识,同时,使得学生在某门课程结束后仍然可以应用这门课程所学到的知识。最好的方法就是在某些可以实际应用的特定环境中教他们编程。

(3) 设定反馈渠道。不仅从授课教师中取得反馈,而且也应通过多种论坛渠道,获取学生的反馈。

(4) 制定课程的基本结构。选择语言和编程环境是关键的问题,甚至在有些时候是非常谨慎的问题。对非专业课程中所使用语言的选择过程,与社会、文化极其相关,这种相关性甚至不亚于教法的相关性。

(5) 定义课程。确定课程讲授内容、作业和实践操练的详细内容。

参考文献

[1] D. Kaplan. Teaching Computation to Undergraduate Scientists. In Proc. of the SIGCSE 2004, Virginia, USA, 2004, PP 358-362.

[2] T. Cortina. An Introduction to Computer Science for Non-majors Using Principles of Cmputation. In Proc. of the SIGCSE 2007, Kentucky, USA, 2007, PP 218-222.

[3] Mark Urban-Lurain and Donald J. Weinshank, “Is there a role for programming in non-major CS courses?”, Michigan State University, USA, in Proc. ofFrontiers in Education Conference, 2000.

[4] J. Parker andG. Schneider. Problems with and Proposals for Service Courses in Computer Science. In Proc. of the SIGCSE 1987, MO, USA, 1987, PP 423-427.

[5] L. Marks, W. Freeman, and H. Leitner. Teaching Applied Computing Without Programming: A Case-Based Introductory Course for General Education. In Proc. of the SIGCSE 2001, NC, USA, 2001, PP 80-84.

计算机程序设计论文范文3

【关键词】计算思维 C语言程序设计 教学改革

引言

C语言一直在等级考试和实际应用中占有不可或缺的地位,逐渐也成为国内各高校工科专业广泛使用的教学课程。它作为一种优秀的结构化程序设计语言,其功能丰富、表达能力强、使用灵活方便、应用面广、目标程序效率高、可移植性好、既具有高级语言的优点,又具有低级语言能够直接操作底层硬件的特点,既适于编写系统软件,又能方便地用来编写应用软件。

《C语言程序设计》课程处于非计算机专业计算机基础课程3个层次(大学计算机基础、计算机程序设计基础、计算机应用基础)中第二层次,是一门理论性和实践性很强的课程。所以,教学工作者单纯利用传统的教学模式,并不能有效帮助学生在这一课程上获得大步提升。相反,可能增强学生的抵触心理。因此,改革C语言程序设计课程教学模式改革刻不容缓。

一、计算思维的含义

2006年3月,美国卡内基・梅隆大学计算机科学系主任周以真教授在美国计算机权威期刊上提出:计算思维是运用计算机科学的基础概念进行问题求解、系统设计以及人类行为理解等涵盖计算机科学之广度的一系列思维活动。所以,在这里的“计算思维”不是狭义的计算机编程,而是运用计算机基本概念去求解问题、设计系统和理解人类行为。

二、C语言程序设计课程的现状

《C语言程序设计课程》作为高校理工类非计算机专业本科学生的一门的计算机基础课程,重要性不言而喻。C语言课程更是数据结构、C+面向对象程序设计、操作系统和软件工程等课程的基础,并可为这些课程提供实践工具。但是,一般而言,C语言程序设计所涉及的课程内容较为抽象,而大量的概念及语法更使得这门课程乏味无趣,降低学生的学习兴趣。并且,即便学习了这门课程,很多学生在处理问题时,仍不能利用C语言进行思维、表达,仍未建立起程序设计的计算思维模式,不会运用计算机基本概念去求解问题。

(一)无意识计算思维教学

传统教学模式的教学方式是:用大量的时间讲定义、语法、概念、语句,对学生的要求是注重接受、理解、记忆,讲课方式是老师讲、学生听。学生掌握的只是比较抽象、机械、静止、片面和孤立,他们不知道如何灵活地综合运用这些知识去解决实际问题,缺乏计算思维的培养。

(二)教学形式陈旧忽视整体思维培养

在教学过程中,教学工作者重视理论,轻视了《C语言程序设计》课程的实践性。理论教学与实验教学是两个相互依存、相互促进的教学体系。实验教学相对于理论教学更具直观性和创造性,可以让学生在实验中更好地理解理论知识。《C语言程序设计》虽然已经有了相对独立的实验教学计划,但实验内容脱离实际,导致理论和实际教学相分离,不能有效培养学生的实践能力和创新能力,制约学生整体思维能力的提升。

(三)教学内容偏重语法细节轻视而忽视算法思想

在讲解《C语言程序设计》课程时,教师过分注重C语言的一些语法规则,忽视程序设计部分,从而致使语言与程序设计不能有机结合,忽视了对学生算法思想和能力的培养。如此,突出了C语言程序设计枯燥的一面,难以调动学生的积极性和主动性,同时,对培养和锻炼学生的逻辑思维能力具有局限性,影响学生的问题分析理解和求解能力发挥。明确该课程的重点并非一些语法细则,而是培养学生思考问题、分析问题的思维能力和思维模式。

三、《C语言程序设计》课程的教学改革

《C语言程序设计》是典型的计算思维课程,其中的教学内容也成了计算思维能力培养的重要内容。任课老师可以以解决实际问题为引导,讲授C语言程序设计中最基本的方法,将程序设计中的语法知识有机融入,避免知识太过零散,影响学生的记忆和思维能力,进而消磨学生习积极性。

《C语言程序设计》课程是C语言与课程设计相结合的一门课程,这就要求教师既要讲解C语言的一些语法规则,又要重视程序设计。而对于计算机专业的学生来说“程序设计”应该是重点。所以,在整个学习过程中,就要让学生感觉是在学习“程序设计”,学习如何分析问题,解决问题,而不仅仅是在学习语法规则。相反,如果学生对于C语言的语法规则不熟悉,也会影响编程学习,进而影响学生的积极性。因此,将C语言与程序设计有机结合,是对于教师的基本要求。也是培养学生计算思维能力的一种方式。

在教学过程中,教师应一改传统固化的教学模式,采用多种灵活的教学方法和手段,提高教学效率,加强学生对于计算思维的培养。上课时,教师可以在短时间内把课本的主要思想和问题作引导性的讲授,然后有目的的布置具有一定代表性和实际意义的课题或小型项目,并简单提示解决思路,让学生通过讨论、查资料、做实验等方式完成任务,借此来理解相关知识及应用,达到融会贯通知识的目的。这种方式不仅提高学生学习的积极性和主动性,锻炼学生解决实际问题的能力,而且培养学生的思维方式和能力。

针对形式单一的考试制度,可以加大平时成绩和阶段性考核成绩在课程总成绩中所占的比重。将实践环节和理论环节相结合,加强实验考核,在规定时间内上机并完成实验习题,根据完成习题的数量、质量,记录成绩。如此,实验教学和理论教学同步进行,利于培养学生的思维能力。

四、结论与展望

计算思维不单单关联C语言程序设计课程,更与我们的生活息息相关,在到处都有计算机存在的时代,计算思维也越发重要。《C语言程序设计》课程的教学改革,是希望学生在学习C语言的同时,计算思维同样得到训练,从而提升学生的认知能力,为其专业课程的学习打下良好基础。当然,以计算思维为基础的C语言程序设计课程教学改革也并非是一蹴而就的事情,在这个过程中,我们仍需要不断学习、研究、实践、总结和优化。

参考文献

[1]郑爽,王全民,李秀荣. C语言程序设计课程中培养计算思维的案例教学法研究[J]. 计算机光盘软件与应用,2013,21:210-212.

[2]丁岩,张宇昕. C语言程序设计课程改革与计算思维的培养[J]. 重庆与世界(学术版),2014,01:84-86.

计算机程序设计论文范文4

论文摘要:成人教育是我国高等教育办学模式的一种创新体制,计算机程序设计课程是成人教育计算机教学中的必修课程,其主要目的是培养学生的程序设计能力和算法分析应用能力。本文从教学实际出发,针对当前成人教育计算机专业程序设计课程的实践教学进行了探索和研究,并提出一些建议。

1计算机专业程序设计课程实践教学的主要范畴

计算机专业程序设计课程实践教学主要包括上机实验、综合练习、课程设计、软件开发实训等几个方面。上机实验是最基本的实践教学,由任课教师根据理论教学的具体进度,设置一些简单的实验,要求学生在规定时间内完成,通过这些实验加强学生对理论知识的理解和掌握。综合练习一般在经历了一定的学习阶段之后,任课教师根据现阶段学生的学习情况,结合日常生活、工作中面临的实际问题,设置一些难度较小的综合性练习题,要求学生在规定的时间内进行调查分析,然后应用所学知识解决问题。综合练习主要侧重某一方面具体知识的应用。课程设计是在本门课程学习完毕后,任课老师根据教学大纲的要求,结合课程的特点和实际应用,设置一些难度适中、综合性强的课题,要求学生按要求完成课题任务。课程设计主要考查学生对知识综合运用的能力,培养学生利用所学知识来分析问题、解决问题的能力。软件开发实训则是通过实际软件项目来提高学生的职业综合技能。计算机程序设计实践教学都采取由浅入深的原则进行,其过程为:上机实验综合练习课程设计软件开发实训。

2计算机专业程序设计课程实践教学的重要性

2.1加强实践教学是实现计算机专业程序设计课程教学目标的要求计算机程序设计课程的主要目的是培养学生的程序基本开发能力、程序代码编写能力和程序调试应用能力,重点培养学生的算法应用分析能力和数据综合处理能力。其主要任务是通过日常教学,使学生掌握程序设计的一般方法和程序设计的具体过程,掌握计算机程序设计语言的语言特征,具备程序设计师的基础应用能力。在教学过程中,任课教师应以人才培养为目标,侧重编程综合应用能力的培养,通过具体的实践教学来提高学生的职业技能。

2.2实践教学是提高程序设计课程教学质量的重要手段实践教学是培养学生动手能力的重要手段,是提高学生的动手能力和职业技能最有效的方式,是对学生理论知识掌握程度的检验。“知识来源于实践”,“实践是检验真理的唯一标准”,计算机程序设计课程的理论知识应通过编程实践体现,通过具体的程序设计案例和实际编程来提高学生对理论知识的掌握,学生

综合编程能力的强弱是检验计算机专业程序设计课程教学质量的基本标准。

3成人教育业程序设计课程实践教学存在的问题

我国成人教育业程序设计课程的实践教学存在问题的体现在下述方面:①实践设施不足,教学条件不完善;②对教学认识不足,实践教学不受重视;③实践教学方法陈旧,考核方式单一。 转贴于

4积极探索,构建合理的程序设计课程实践教学模式

4.1实践教学要符合教学目标的需要计算机专业程序设计课程实践教学必须紧紧围绕专业培养目标、人才培养规格进行。要结合专业特点更新教学内容,调整实践教学内容、方法和手段。实践教学内容的更新,要注重对学生编程综合能力的培养和创新能力的培养,要对已有的实践教学内容进行筛选、整合,改变单一的演示性、验证性实验,增加综合性、设计性、创新性实验,要充分利用计算机课程的教学特征,提高实践教学效果。

4.2以社会就业需求为主导,开展多种形式的实践教学程序设计课程实践教学主要有上机实验、课程章节综合练习、大作业、课程设计、软件项目实训、校外软件基地实习、软件合作企业顶岗实习、校内软件课题研发等。其中实训、实习和研发都是采用“真题真做”。通过上述这些实践过程,学生的程序设计综合应用能力和软件开发能力都能得到良好的锻炼。

4.3程序设计课程实践教学设计一般要求定教学的具体内容。大多数情形下,采用实例教学效果比较明显,通过实例的演练促进学生对知识的掌握。实例式实践教学设计一般应包括教学目标、课时要求、教学组织、教学内容、实践方式、实践总结、成绩评定等几部分内容。在设计实践教学内容的过程中,应做好三个方面工作。一是要结合学生实际情况,尽量体现知识性、实用性,激发学生的灵感和创造欲,使学生对实践内容感兴趣,以充分调动学生的学习积极性和主观能动性,促进学生积极创新,完成实践内容。二是应注重理论教学与实践教学相结合,保证实践教学与理论课教学相适应,加深学生对基本理论、基本知识的理解和掌握。三是保证实践题目难度和工作量适中,学生通过自己的努力,可以在规定时间内完成实践任务,实践方式可以灵活多变。

4.4改变实践教学的考核方式学习程序设计课程的真正目的在于应用,是为了能正确编写出应用程序。因此,程序设计课程的考核要理论考核与实践操作考核并重,各占1/2,并要求理论考核与实践考核分离,只有理论考核和实践操作考核均合格后,整个课程成绩考核才算合格。实践教学考核主要考核学生综合运用所学知识解决实际问题的能力,不仅要考查学生的知识理解程度和基本操作技能,也要考查学生认知能力、动手能力、知识转化能力、再学习能力和创造能力,任课教师可以通过学生平时的学习情况和期末实践测验给出一个比较合理的综合成绩。这样,不仅可以对学生的学习情况给出一个客观的评价,还可以鼓励学生平时认真学习。

计算机程序设计论文范文5

关键词:数学地质,数值分析,C语言程序设计,教学方法

 

数学地质解决地质问题的一般步骤或途径如下:第一,进行地质分析,定义地质问题和地质变量,建立正确的地质模型;第二,根据地质模型选择或研究适当的数学模型;第三,运用数值分析理论对数学模型进行求解;第四,运用C语言设计计算机程序,并上机试算;第五,对计算机输出成果进行地质成因解释,对所研究的地质问题作出定量的预测、评价和解答。为了很好地解决地质问题,需要同时学好《数学地质》、《数值分析》和《C语言程序设计》三门课程。本文将对《数学地质》、《数值分析》和《C语言程序设计》三门课程的教学内容和方法进行研究,并介绍瓦斯危险性预测数学地质软件的开发。

1数学地质的教学内容及方法

数学地质(mathematicalgeology)是六十年代以来迅速形成的一门边缘学科。它是地质学与数学及电于计算机相结合的产物,目的是从量的方面研究和解决地质科学问题。它的出现反映地质学从定性的描述阶段向着定量研究发展的新趋势,为地质学开辟了新的发展途径。数学地质方法的应用范围是极其广泛的,几乎渗透到地质学的各个领域。

1.1 数学地质的教学内容

数学地质的研究对象包括地质作用、地质产物和地质工作方法。通过建立数学模型查明地质运动的数量规律性。这种数量规律性具体表现为地质体的数学特征、地质现象的统计规律以及地质勘探工作中存在的概率法则。其内容可概括为以下3个方面:①查明地质体数学特征,建立地质产物的数学模型。例如矿体数学特征是指矿体厚度、品位等标志变化的数量规律性。按其属性可划分为矿体几何特征、空间特征、统计特征和结构特征等4类。比如,尽管矿产有多种多样,但矿石有用组分品位的统计分布却服从正态分布、对数正态分布等有限的几种分布律。从它们的分布特征可以分析判断其成因特点,而且各类数学特征还具有不同的勘探效应。②研究地质作用中的各种因素及其相互关系,建立地质过程的数学模型。如盆地沉积过程的数学模型,地层剖面的计算机模拟,岩浆结晶过程的马尔柯夫链分析等。③研究适合地质任务和地质数据特点的数学分析方法,建立地质工作方法的数学模型。论文写作,C语言程序设计。例如,对于地质分类问题,可根据研究对象的多种定量指标,建立聚类分析或判别分析的数学模型,对所研究的地质对象进行分类或判别。又如针对大量的描述性的地质资料,通常可将其转化为0~1变量,建立各种二态变量的多元分析模型(逻辑信息模型、特征分析模型、数量化理论模型等),以解决地质成因分析和成矿远景预测等各类地质问题。论文写作,C语言程序设计。

1.2 数学地质的教学方法

数学地质的教学方法可概括为:①数学模型法。应用最广泛的是各种多元统计模型。例如用于地质成因研究的因子分析、对应分析、非线性映射分析、典型相关分析;用于研究地质空间变化趋势的趋势面分析和时间序列分析方法等。②概率法则和定量准则。由于地质对象是在广阔的空间、漫长的时间和复杂的介质环境中形成发展和演变的,因此地质现象在很大程度上受概率法则支配,且具有特定的数量规律性,这就要求数学地质研究必须遵循和自觉运用概率法则和定量准则。同时,地质观测结果不可避免地带有抽样代表性误差,因此对各种观测结果或研究结论都要做出可靠概率的估计和精度评价。以矿产定量预测为例,不仅要求确定成矿远景区的空间位置,而且应给出可能发现矿床的个数及规模,发现矿床的概率,查明找矿统计标志的信息量、找矿概率及有利成矿的数值区间等。

数学地质的主要研究手段是电子计算机技术,其中包括:①地质过程的计算机模拟,该项技术可以弥补物理模型法和实验地质学法的不足;②建立地质数据库和地质专家系统,以便充分发掘和利用信息资源和专家经验;③计算机地质制图;④地质多元统计计算及其他科学计算。

2数值分析的教学内容及方法

数值分析(numericalanalysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。为计算数学的主体部分。

2.1 数值分析的教学内容

运用数值分析解决问题的过程:实际问题→数学模型→数值计算方法→程序设计→上机计算求出结果。数值分析的教学内容包括插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。论文写作,C语言程序设计。

数值分析具有如下特点:第一,面向计算机。第二,有可靠的理论分析。第三,要有好的计算复杂性。论文写作,C语言程序设计。第四,要有数值实验。第五,要对算法进行误差分析。

2.2 数值分析的教学方法

根据数值分析的特点,教学时首先要注意掌握方法的基本原理和思想,要注意方法处理的技巧及其与计算机的结合,要重视误差分析、收敛性及稳定性的基本理论;其次,要通过例子,学习使用各种数值方法解决实际计算问题;最后,为了掌握数值分析的内容,还应做一定数量的理论分析与计算练习,由于数值分析内容包括了微积分、代数、常微分方程的数值方法,学生必须掌握好这几门课的基本内容才能学好这一课程。

3C语言程序设计的教学内容及方法

C语言是一种计算机程序设计语言。论文写作,C语言程序设计。它既有高级语言的特点,又具有汇编语言的特点。它可以作为系统设计语言,编写工作系统应用程序,也可以作为应用程序设计语言,编写不依赖计算机硬件的应用程序。因此,它的应用范围广泛。

3.1 C语言程序设计的教学内容

C语言程序设计主要有两方面教学内容:一是学习和掌握C语言的基本规则;二是掌握程序设计的方法和编程技巧。“规则”和“方法”即语言和算法,是本课程的两条主线,二者不可偏废其一。从一定意义上说,“方法”更重要,因为它是程序的灵魂。一旦掌握,有助于学生更快、更好地学习和使用其他的程序设计语言。

3.2 C语言程序设计的教学方法

C语言程序设计是一门实践性很强的课程,对C语言初学者而言,除了要学习、熟记C语言的一些语法规则外,更重要的是多读程序、多动手编写程序。学习程序设计的一般规律是:先模仿,然后在模仿的基础上改进,在改进的基础上提高。做到善于思考,勤于练习,边学边练,举一反三,学会“小题大做”,一题多解,这样,才能成为一个优秀的C程序员。

4瓦斯危险性预测数学地质软件的开发

瓦斯危险性预测包括瓦斯含量预测、瓦斯涌出量预测和瓦斯突出预测。在利用数学地质技术进行瓦斯危险性预测时,需要进行大量的计算工作,一般要求用计算机完成其数学建模和未采区预测工作。随着计算机软硬件和可视化技术的发展,编制高速、高效、准确、灵活、用户界面友善的数学地质预测软件,是瓦斯地质研究向定量化发展的需要。论文写作,C语言程序设计。

4.1 数学地质模型的建立

瓦斯含量预测和瓦斯涌出量预测采用回归分析建立数学模型,即通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。

瓦斯突出预测采用判别分析建立数学模型,即按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。据此即可确定某一样本属于何类。

4.2 数学模型的求解

对建立的数学模型,采用迭代法对线性方程组进行求解,即利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

4.3 数学地质软件的开发

采用C语言编写计算机程序,开发数学地质软件。瓦斯危险性预测软件的操作较为简便,功能较为齐全。在软件主界面菜单栏的菜单项下面,可分别进入瓦斯含量预测,瓦斯涌出量预测、瓦斯突出预测的对话框模块。在对话框里分别输入变量数据和数据文件,运行数据文件,按下详细资料或判别结果按钮,可以查看运算结果。按下预测未知单元按钮可进入预测对话框。

5结论

1)对数学地质、数值分析、C语言程序设计教学内容及方法的研究为解决地质问题提供了便利途径。

2)瓦斯危险性数学地质软件的开发较好地运用了数学地质、数值分析、C语言程序设计的理论和方法,为数学地质、数值分析、C语言程序设计的教学提供了应用实例。

参考文献:

[1]韩金炎.数学地质[M].北京:煤炭工业出版社,1993.1-282.

[2]姚传义.数值分析[M].北京:中国轻工业出版社,2009.1-373.

[3]贾宗璞,许合利.C语言程序设计[M].徐州:中国矿业大学出版社,2007.1-378.

计算机程序设计论文范文6

关键词:就业;计算机;程序设计;教学

中图分类号:TP3-4 文献标识码:A 文章编号:1007-9599 (2012) 18-0000-02

1 引言

伴随着社会和企业信息化的快速发展,社会对程序设计人才的需求量不断增长。面对这种就业形势,各级教育部门也加大了计算机程序设计[1]人才的培养力度,包括高职院校,由于高职院校在我国教育结构中所处的地位,使得其对计算机人才培养有一定特殊性。高职院校必须认清自己的教育使命,只有了解自身的教育状况和社会对人才的需求特征,才能科学地设计出计算机程序设计人才的培养模式。

2 软件行业就业需求与培养目标

当前软件行业的就业形势总体还是需求大于供应,随着社会和企业信息化的快速发展,软件行业人才缺口很大,由于计算机程序设计人才培养模式的落后,使得软件行业的人才结构呈现“两头小,中间大”的现象,即从事软件行业初级技术人才(软件蓝领)和高级技术水平(软件金领)的人才数量小,大部分人才都处于中等水平。根据这种就业市场的现状,作为高等职业院校,我们应该主要集中软件领域初级人才的培养,加强中级人才的训练,同时兼顾高级人才的开发。

要满足企业对程序设计人才的要求,我们应该提出有特色的培养目标。要对学生有精准的定位,尤其是专业技能水平的定位,要以培养初级水平软件人才为主要目标,加强校企联合,以实现学生专业对口就业,在实现专业理论知识教学的同时,加大学生实践能力的培养。实践教学是能实现这一培养目标的良好模式,实践教学的总体规划就是在教学中要重视实践的地位,使理论教学与实践教学相互渗透,同时加强教师对学生的实践指导,不断地提高实践教学的质量、方法[3]。

3 程序设计人才培养模式的重构

目前,我国高职院校计算机专业课程设计严重和社会实际需求脱节,主要表现在以下几方面:缺乏循序渐进地教学规划,将计算机类课程粗略地向学生讲授,甚至出现在学生快毕业时,还要教学理论课程;没有根据当今社会对计算机程序设计人才的具体需求安排课程教学,学生应对工作岗位的能力培养严重不足,如有的学校现在还教授早已被淘汰的FoxPro;学生缺乏实践操作能力,不能快速地融入实际工作中去。因此,实践教学和先进课程的安排也就显得尤为重要。在传统的高职教育中,针对计算机程序设计人才的培养,主要是讲授课本知识,然后是实习,在课本学习的过程中,缺乏实践的训练,而在实习过程中,也大多是流于形式,学生并不能在所实习的企业中获得较多的实践。因此[3]高职院校的教材应根据社会需求做出相应调整;加强课后上机实验和课程设计以弥补学生实践能力的不足。

在实际教学中所面对的学生的层次是不同的,因此我们只有从实践出发,让学生明白课程学习的目的和意义,同时让他们产生学习的兴趣,带动他们的积极性,只有这样才能够有效达到人才培养的目的,为此我重构出以下培养模式,如图1所示。

从图1中可以看出计算机专业培养模式体系结构从纵向看主要由两部分组成,即课程内容和课程安排。从横向看主要由三部分组成,左边是理论课程,包括前沿的技术原理和最新的概念、技术名词,中间是上机实验,主要安排课后习题的上机操作,如数据库系统安装,算法编程实现等,右边是项目实践,主要是较为完整的程序设计和系统开发。通过这样的课程安排,就可以使得学生通过循序渐进地学习方式提高自身的理论水平和实践能力。

该培养模式的核心思想就是在加强理论知识培养的同时,注重学生课后的练习,尤其是上机实验,计算机教材一般都有课后实践习题,让学生在课后通过实践操作进一步加深对理论知识的理解和认识,理论和实践相辅相成。同时教师也可以根据自己的经验,为学生布置一些趣味性的程序设计题,从而进一步带动学生的学习热情。在学期末,可以针对课程的特征布置一个较大的课题,比如软件工程课程,可以就某一特定的领域问题,为学生布置软件设计的课题,其中包含需求分析、概念设计和UML建模等,使学生对软件工程有一个整体而直观的认识。同时可以对学生们的作品做一个评选,选出优秀的作品加以点评,在增进学生荣誉感的同时,也为他们提供了知识共享的机会。

在具体的教学过程中,教师应该要善于采用启发式教学方法,加强课堂讨论,与学生进行互动,在解疑答惑的过程中,了解学生的学习进度和对知识的理解程度,要启发和引导学生独立思考问题和解决问题的能力,培养他们积极思维的良好习惯。充分调动学生学习的自觉性和积极性,从而提高他们分析问题和解决问题的能力。高职院校的课程要根据企业的实际需求来进行科学地设置,要加强校企联系,只有通过从企业获取到最新的人才需求的特点,才能设计出满足社会需求的计算机程序设计高职教育模式。

4 实践教学对程序设计人才培养的重要性

高职院校应该充分认识到实践教学对程序设计人才培养的重要性。实践教学被安排到了高职计算机专业课程设计中,是社会发展对教育影响的必然结果。实践教学除了针对专业课程的练习题和上机实验之外,还应该安排针对整个课程的课程设计和针对专业培养的项目实践两大部分,课程设计主要安排在学期末,主要是训练学生对某专业课程的综合应用能力,而项目实践则可以安排在学生毕业前,项目实践是根据实际案例进行特别设计的,使学生对软件工程有一个整体认识,对就业中的工作模式有所了解。理论和实践相辅相成,通过这种模式培养出的毕业生将更能满足企业的需求。

5 结束语

本文在传统理论教学模式上引入项目实践,加强了实践教学力度,突出项目实践是使毕业生快速满足企业要求主要方法,通过对课程的科学调整和加强学生的实践能力的培养,从而设计出新的以就业需求为导向的计算机专业程序设计人才的培养模式。

参考文献:

[1]许丽.高校人才培养方案研究综述[J].新课程研究:高等教育,2009(06):19.

[2]卢晓娟.高等学校计算机科学与技术专业实践教学体系与规范[M].北京大学出版社,2009.10