计算机硬件概念范例6篇

计算机硬件概念

计算机硬件概念范文1

关键词:计算机组成原理;教学方法;教学研究;教学实践

作者简介:李济生(1957-),男,山西晋城人,北京交通大学计算机学院,副教授。(北京 100044)

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)10-0123-02

“计算机组成原理”是计算机专业的一门核心课程,在整个课程体系中具有承上启下的作用。学生通过本课程的学习,不仅能掌握计算机硬件系统各部件的内部结构和工作原理,而且还能掌握计算机硬件系统的分析和设计方法,为后续学习硬件课程或软硬件结合的课程打下良好的基础。

一、 课程教学面临的困境

作为计算机专业的一门核心课程,如果没有很好的教学效果,不仅会造成学生对课程的学习达不到教学要求和目标,而且也会造成学生对后续硬件课程的学习产生畏惧心理。出现这些问题的主要原因是:

1.课程的入门难度较大

“计算计组成原理”是计算机专业学生真正面临的第一门专业基础课,起初学生往往带着极大的兴趣和信心投入到课程的学习中来。但随着课程的进行,课堂的缺课率逐步增加,有一些学生甚至在课堂上表现出思维迟钝和跟不上课程进度的现象,加上硬件课程又不像软件课程那样容易进行实验验证,课后就不能及时通过实践的方法对理论知识进行消化和再认识,随着时间的推移,学生对知识点的理解和掌握欠账增多。另外,学生常常习惯于采用软件的学习方式来学习硬件,不能正确认识学习软件和硬件在学习方法上的差异,从而造成思维方式的错位。如果教师再不能对繁多和零乱的知识点及时准确地归纳和总结,很容易造成一笔糊涂账,从而使学生在硬件课程的入门上会遇到很多困难。

2.学生普遍畏惧硬件课程

在大学教学中,硬件课程教学效果普遍不如软件课程,就是学习较好的学生也普遍反映该课程比较难学,其主要原因如下:其一是该课程涉及的知识面广、概念多,其工作原理讲解又比较抽象,学生对其工作过程缺乏感性认识,理解起来比较困难。[1]其二是不能找到准确的方法对所学知识点进行归纳和总结,很难区分各知识点之间的关联性和适用性,很难通过贯通知识点来把握课程知识的体系结构。其三是学生已经学到的软件还没有涉及对硬件的编程,因此很难理解软件和硬件的互动关系,再加上对硬件的操作又很难产生与软件一样的直观效果,学生普遍对硬件课程学习有畏惧心理。

3.课堂教学师生互动偏少

由于课程涉及的概念很多,就是对同一个概念也可能因为涉及计算机硬件部件的不同,其解释也略微不同,而学生又很难在它们之间进行区分并建立联系。例如,“异步”的概念,在串行通信中有“异步”的概念,在动态存储器的刷新中有“异步”的概念,在总线的控制中也有“异步”的概念等等。另外,教师为了在有限的课时里讲清楚一个又一个的概念和知识点,容易采用以讲授为主的“填鸭式”教学模式;而学生又不得不被动接受一个个抽象的概念。课堂上缺乏教师与学生的互动,导致学生中的很多问题不能及时得到解决,日积月累问题越来越多,学生就越来越不敢与教师互动,这种恶性循环极大地挫伤了学生的学习积极性。

教学过程中的归纳和总结偏少也是造成学生感觉没有头绪的重要原因,虽然学生学了很多课程内容,但他们并不能有效地对这些知识点进行分类和归纳,也很难总结出各知识点之间的相互作用和区别,不能及时将所学知识消化和吸收。

4.实践环节相对较弱

课程的实践环节大多根据几个重要的章节设置了一些验证性的实验,实验内容也无法覆盖所有的知识点,再加上实验与讲课之间也很难做到无缝连接,学生很难及时将不懂的问题通过实验的方法解决。因此,知识点的讲授和理解之间缺乏有效载体,很多零乱的知识点只能通过抽象思维方式进行理解和掌握,造成了学习难度大。这种不能通过有效途径对课程整体知识有效把握的局面,学生很容易丧失学习的积极性。

二、教学改革的探索与实践

前面提出了很多课程教学中存在的问题,解决这些问题不能靠某种特定的方式,而必须要采用综合整治的方法。

1.尽快帮助学生走出困境

大部分学生对电脑都感兴趣,但他们对计算机的认识仅仅停留在表面上,比如喜欢玩游戏、愿意熟悉一些陌生的软件等,但缺乏对计算机内在知识的认识和了解。众所周知,计算机处理复杂运算非常容易,而做一些辨识工作就不那么容易;而人脑正好相反,这正是计算机处理问题与人脑处理问题在功能上和方法上的区别所致。例如,人的视听触觉所获取的资料与其识别的结果具有相当大的关联性,甚至认为结果是必然的;而计算机则不同,它在获取资料与得到结果之间需要进行大量的数据处理,这个过程对人脑是显然的,而对计算机不是显然的。学生经常问到的问题完全是人脑的思维方式与计算机的思维方式的差异所致,因此在步入课程初期,教师要注重讲解计算机处理问题的思维方式与人脑的思维方式上的相同与不同,造成这种思维方式差异的原因,教会学生如何用计算机的思维方式思考和解决问题。另外,还要注意调节课程的进度,并注重采用启发式教学方式来激励学生增强发现和探索问题的兴趣,[2]尽快帮助学生走出困境。

2.面向问题的教学方法

面向问题的教学是指教师有意识地提出一些需求、现象或问题,引导学生主动去思考、探索与讨论来解决这个问题,使学生完成一个根据需求提出方案和解决问题的过程,让学生真正成为教学过程中的主体。[3]例如,在讲解计算机的中断系统时,可以先提出问题:当某个外部中断发生时,CPU是如何进入相关的中断服务程序?让学生去思考并提出解决这个问题的方案。由于学生在高级语言里都学过函数和过程的概念,他们很有可能会结合自己的编程体会提出与函数调用类似的方法。由于函数被调用的位置是固定的,而中断服务程序被调用的位置是随机的,这就引出如何解决在随机位置上调用服务程序的问题,从而提出中断失量的概念。通过这种问题式教学方式,学生不仅理解了中断和过程调用的差异,也掌握了中断调用的完整过程,并且很容易帮助学生建立起一些重要的概念。

3.教学内容的人性化教学方法

教学内容的人性化教学是将课程的某些内容用人性化的方法进行关联和比喻,从而将很多抽象的概念和理论形象化、生动化,并用人性化的方法解决,使学生掌握的知识更加牢靠。例如,在讲解计算机通信的调制解调问题时,可以用人们如何穿过很狭窄的通道进行比喻。当人在进入狭窄的通道时一定要侧过身来,这就是信号的调制,离开通道时一定要转回身恢复到正常,这就是信号的解调;调制和解调的实质就是保持信息不变的情况下,使通信信号窄带化,从而解决宽带信号在窄带信道中的数据传输问题。还例如:在讲解存贮器的扩展时,用砖砌墙来进行比喻;一块砖相当一个存储器芯片,墙相当于扩展后的存储空间。砖在水平方向的扩展相当于位扩展,而在垂直方向的扩展为相当于字扩展,砖在水平方向和垂直方向的延伸就砌出了一块墙,这就是存储器字位扩展的概念。砖与砖之间的连接必须紧凑而不能重叠,这就引申了地址空间的连续性和不可重叠性概念,再通过分析存储器片内地址和片间地址连续变化时所表现出来的特点,就能从技术上说明地址的连续性和不可重叠性的实现方法,学生就能很容易地掌握主存储器地址空间的构成方法。

4.重视归纳和总结以强化课程的知识体系

归纳总结的目的就是将一些零乱的知识点分类归纳出有条理、知识结构清晰的概念和课程体系,以便学生掌握和记忆。归纳总结要遵循由复杂零乱抽象到复杂具体,再由复杂具体抽象到简单具体的过程;这个过程就是知识消化和吸收的过程,也是将一本厚书变成薄书的过程。

归纳总结要贯穿于每一章和各章之间,要让学生知道他们在学什么,哪些地方已经学明白了,哪些地方还需要进行充实;各章的知识点有哪些,它们之间有什么关联;如果合上了教材,是否还能说清楚各章的重要知识点。如果对课程的归纳总结及时、深入和透彻,学生就不会感觉到所学的知识点杂乱无章,也不会在结课后还不知道课程的知识体系。因此,归纳总结要贯穿于整个教学过程中,以强化学生的知识体系。

5.增加专题讨论环节,弥补实验内容不足

专题讨论是课程知识点升华的重要过程,专题应以每章的主题或章节之间的关联主题作为内容。专题可由教师指定或者由学生设计,但要注意学生设计题目的合理性和可操作性,要以最大限度地调动学生的主观能动性为前提。根据时间的要求可以选择专题报告和专题讨论等形式,以分组方式组织学生。专题报告应要求学生在课后完成,专题最好能够通过实验进行设计和验证;学生通过专题讨论,归纳和总结相关专题的知识点,解析它们之间的关联度,再通过相关的实验设计和验证能将相关知识升华到一定的高度,同时也可以弥补实验内容不足的缺陷。专题讨论应包括:选题、查阅资料、分组讨论、规划方案、设计与实验、撰写专题报告等过程。

学生完成专题报告后,教师要对完成情况给予准确的总结和评价。对于顺利完成专题的学生组,要给予充分的肯定,并指明他们的不足和下一步应该努力的方向;对于有困难的学生组,要明确他们的知识结构中存在的缺陷,解决问题时所选择的不合理方法,同时也要指明今后应该努力的方向。[4]通过总结和评价,学生明白完成这个专题所要掌握的知识,始终保持高昂的学习积极性。

三、结束语

本文针对“计算机组成原理”课程在教学中存在的问题,从教学方法上进行了探索,并提出了一系列解决方案和改革思路,经过多年的实践和不断改进,取得了较好的教学效果。实际上,对课程教学方法的研究需要一个长期的探索和实践过程,探索并实践出一种有效的教学模式,对帮助学生掌握本课程的知识点,建立正确的课程知识体系,进而培养学生对计算机硬件系统的认知能力、设计能力和创新能力是非常有意义的。

参考文献:

[1]胡晓婷,王树梅,任世锦,等.提高计算机组成原理课程教学效果的途径与方法[J].计算机教育,2011,(22):97-100.

[2]王金祥.启发式教学在计算机组成原理教学中的应用[J].科技信息,2011,(31):286-287.

计算机硬件概念范文2

引言

随着计算机现代智能的高速发展,计算机已经完全融入我们的生活,甚至占据了重要领域,从国家核心科技到每个人生活的小细节,都离不开计算机的覆盖和使用。我们简单的在键盘上操作几个键,打出一系列符号命令,就能使计算机按照人类的要求,高速运行和进展,从而达到人力所不能达到的速度和正确率。

我们从小学习数学,数学是什么呢?数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。数学更多的是一种抽象的概念,是一门重要的工具学科。人类利用抽象的概念及一些固定的定律形成理论,而脱离实际应用的概念并不是人类发展学习的初衷,而是利用它们来指导实际,化抽象为实体。而计算机就由此演化。1946年2月15日界上的第一台计算机诞生在宾西法尼亚大学,主要运用于高倍数的数学运算。时至今日,计算机直接能识别的语言仍然是1、0二进制代码。

1 计算机中所需要的数学理论

计算机学科最初是来源于数学学科本文由收集整理和电子学学科,计算机硬件制造的基础是电子科学和技术,计算机系统设计、算法设计的基础是数学,所以数学和电子学知识是计算机学科重要的基础知识。计算机学科在基本的定义、公理、定理和证明技巧等很多方面都要依赖数学知识和数学方法。计算机数学基础是计算机应用技术专业必修并且首先要学习的一门课程。它大概可分类为:

1.1 高等数学 高等数学主要包含函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及应用、空间解析几何与向量代数、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数、微分方程等。各种微积分的运算正是计算机运算的基础。

1.2 线性代数 线性代数主要包含行列式、矩阵、线性方程组、向量空间与线性变换、特征值与特征向量、二次型等。在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。

1.3 概率论与数理统计 概率统计与数理统计包含随机事件与概率、随机变量的分布和数学特征、随机向量、抽样分布、统计估计、假设检验、回归分析等。概率论与数理统计是研究随机现象客观规律并付诸应用的数学学科,通过学习概率论与数理统计,使我们掌握概率论与数理统计的基本概念和基本理论,初步学会处理随机现象的基本思想和方法,培养解决实际问题的能力。这些都是计算机编程过程中不可或缺的基础理论知识和技能。

2 计算机编程中数学理论的应用

计算机的主要专业知识包括计算机组成原理、操作系统、计算机网络、高级语言程序设计、数据结构、编译原理、数据库原理、软件工程等。计算机程序设计主要包括如:c语言、c++、java、编译语言、汇编语言等编程语言的基本概念、顺序结构程序设计、分支结构程序设计、循环结构设计、函数、指针、数组、结构、联合以及枚举类型、编译预处理、位运算、文件等内容,掌握利用各种编程语言进行程序设计的基本方法,以及编程技巧。算法是编程的核心,算法的运用离不开数学,数学运算正是编程的基础。

计算机科学是对计算机体系,软件和应用进行探索性、理论性研究的技术科学。由于计算机与数学有其特殊的关系,故计算机科学一直在不断地从数学的概念、方法和理论中吸取营养;反过来,计算机科学的发展也为数学研究提供新的问题、领域、方法和工具。近年来不少人讨论过数学与计算机科学的关系问题,都强调其间的密切联系。同时,人们也都承认,计算机科学仍有其自己的特性,它并非数学的一个分支,而有自身的独立性。正确说法应该是:由于计算机及程序的特殊性,计算机科学是与数学有特殊关系的一门新兴的技术科学。这种特殊关系使得计算机科学与数学之间有一公共的交界领域,它范围相当广,内容相当丰富,很富有生命力。这一领域既是理论计算机科学的一部分,也是应用数学的一部分。

2.1 计算理论是关于计算和计算机械的数学理论。主要内容包括:

①算法:解题过程的精确描述。②算法学:系统的研究算法的设计,分析与验证的学科。③计算复杂性理论:用数学方法研究各类问题的计算复杂性学科。④可计算性理论:研究计算的一般性质的数学理论。⑤自动机理论:以研究离散数字系统的功能和结构以及两者之关系为主要内容的数学理论。⑥形式语言理论:用数学方法研究自然语言和人工语言的语法理论。

2.2 计算几何学是研究几何外形信息的计算机表示,分析和综合的新兴边缘学科,它是计算机辅助几何设计的数学基础。主要内容如:贝塞尔曲线和曲面、b样条曲线和曲面、孔斯曲面。

2.3 并行计算问题是 “同时执行”多个计算问题。他的延伸学科有:并行编译程序、并行程序设计语言、并行处理系统、并行数据库、并行算法。

2.4 形式化方法是建立在严格数学基础上的软件开发方法。软件开发的全过程中,从需求分析,规约,设计,编程,系统集成,测试,文档生成,直至维护各个阶段,凡是采用严格的数学语言,具有精确的数学语义的方法,都称为形式化方法。

2.5 程序设计语言理论是研究书写计算机程序语言的学科。主要内容如:研究语法、语义、语用以及程序设计语言的优劣。

计算机硬件概念范文3

摘要:本文介绍了我校对计算机硬件实验课程体系及实践教学环节进行的改革,建立了“基础层-应用层-提高层”三层体系结构的硬件课程群实验体系,并对多层次、系列化的硬件实践教学模式及训练模式进行了探讨。

关键词:硬件课程群;实验体系;实验内容;实践能力

中图分类号:G642

文献标识码:B

我校计算机专业自99级开始进行了较大规模的扩招,但由于师资力量跟不上、实验条件和实验内容相对落后等原因,造成计算机硬件教育存在层次单一、教学内容滞后、理论与实践脱节等问题,学生普遍存在着“重软怕硬”的现象,毕业后硬件设计能力差,软件开发缺少后劲。为提高学生的硬件动手能力,增强毕业生的社会适应性,学院自2002年开始进行计算机硬件课程群建设及相应的硬件课程群实验体系建设,包括“计算机组成原理”等九门硬件课程及5门相关的实践课程。本文对我院计算机硬件课程群实验体系建设及硬件实践教学环节的改革进行了探讨与总结。

1构建科学完整的硬件课程群实验体系

在原有的课程体系下,我院为本科生开设的硬件实验教学课程有“数字逻辑实验”、“计算机组成实验”、“微机接口实验”、“单片机实验”。由于实验条件的限制,各课程实验内容相对独立,综合性、系统性较差;尚有部分硬件主干课程没有对应的实验课程,如系统结构。实验课程体系存在诸多问题。

(1) 缺乏对学生系统设计能力的培养。传统的硬件设计和软件设计相分离的设计方法成为阻碍设计和实现复杂、大规模系统的关键因素。系统平台的搭建、软硬件的协同设计验证和软硬件功能模块的可重用性已成为现阶段设计方法的热点。培养学生具有系统设计的思想成为当务之急。

(2) 缺乏对学生可编程芯片设计能力及EDA技术的培养。可编程芯片与EDA技术是现代电子设计的发展趋势,将可编程芯片设计及EDA技术引入实验教学中是时展的需要。

(3) 缺乏综合性的实践课程,学生的创新能力发挥受限。由于实验条件限制,原有的多数实验是基于纯硬件逻辑设计的,只是在面包板上用器件构建小系统,功能扩展性差;并且只能开设数量有限、技术含量较低的实验,学生无法开展自主的综合性设计,无法进行创新能力的培养。

为此,经过充分调研和论证,我院首先从修改03级教学计划入手,对课程体系中的多门课程进行了调整,同时理顺各门课程间的关系,构建起了新的硬件课程体系。该课程体系由必修课程、选修课程及配套实践三部分组成。必修课包括“组成原理”、“接口技术”、“系统结构”等基础课程。为适应社会需求,在选修课中删去原有的“诊断与容错”等一些过时的课程,增加“数据采集”、“计算机控制技术”、“嵌入式系统”等社会需求较强、实用价值高的应用性课程,同时新开了“模型机设计与组装”、“硬件综合实践”等实践课程。在07版教学计划中,又新增了“DSP原理与应用”、“嵌入式系统实践”等新课程,保证课程体系的实用性与先进性。

硬件系列课程从体系结构上划分为三个层次:基础层、应用层和提高层,其课程间的关系如图1所示。基础层为“数字电路”与“组成原理”。“数字电路”课程虽然在教学体系上不属于计算机硬件系列课程,但它是计算机硬件系统的技术基础,是必修的前续课;“组成原理”介绍计算机的基本组成和工作原理,解决整机概念;通过“电工电子实习”与“模型机设计与组装”两门实践课程,强化学生的硬件动手能力。在应用层中,通过“接口技术”介绍应用层的接口和相关外设,以“嵌入式系统”等四门实用性强的课程作为选修课,每门课程都配有相应的实验环节,并通过“硬件综合实践”、“嵌入式系统实践”强化学生对基础知识的掌握和综合应用。提高层为“系统结构”及“性能测试与分析”实践课程,通过学习和实践,能够使学生比较全面地掌握计算机系统的基本概念、基本原理、基本结构、基本分析方法、基本设计方法和性能评价方法,并建立起计算机系统的完整概念。

在硬件课程群实验体系建设过程中,突出强调课程体系的系统性和完备性。从第1学期到第7学期硬件实验不断线,层次逐步提高,实验内容衔接连贯。注意各硬件实践的相互次序和互补,使硬件实践训练层次化、系列化,以此来系统强化学生的硬件动手能力。同时调整各课程的开设顺序,理顺每门课与前导课和后续课之间的关系,从而保证硬件课程体系的系统性和完备性。

注:所有必修课程与选修课程均开设课内实验,包括验证实验(20%)、设计实验(80%);实践课程单独开设,包括综合实验(80%)、探索实验(20%)。

2改革实验教学内容与模式

计算机硬件系列课程的重要特点之一是工程性、实践性强。为了使学生在学过该系列课程后具备较强的实际动手能力和计算机应用系统的开发能力,应在实验教学内容的设置上体现出基础性、系统性、实用性和先进性,既要重视计算机硬件的基础内容,又要结合当今电子与计算机的最新发展。为此,我们对该硬件系列课程的实验教学内容和教学模式进行了改革创新。

2.1优化实验内容,引进实验新技术,提高硬件设计的效率和兴趣

随着计算机硬件技术的日益发展,各种各样的微处理器不断更新,功能不断增强,以FPGA为代表的数字系统现场集成技术取得了惊人的发展,嵌入式系统设计也逐步成为主流。为了使学生跟上时代潮流,了解最新技术,需要不断引入新设备、新技术,提高硬件设计的效率和兴趣。如更新的“组成原理”和“系统结构”实验台,通过RS232串口与PC机相连,可在PC机上编程并向系统装载实验程序,还可在PC机的图形界面下进行动态调试并观察实验的运行,使学生像设计软件一样来设计硬件,做到了硬件设计软件化,大大提高了硬件设计的效率和兴趣。“模型机设计与组装”,将CPLD和FPGA等技术引入,用CPLD来设计复杂模型机。“汇编语言”和“接口技术”补充Windows下设备驱动程序的设计与实现,增加PCI、USB的应用等内容。“系统结构”通过局域网组建小型的微机机群,研究探索多处理机操作系统,试验并行程序的运行与任务分配调控等功能。为适应当前嵌入式芯片的迅速普及应用,新开设了“嵌入式系统设计”课程设计。针对学生已学过多门硬件课程,但仍不能完成一个完整的、可独立工作的计算机系统设计问题,新开设了“硬件综合实践”,使同学亲自体会设计一台微型计算机系统的全过程。

2.2建立“验证型-设计型-综合型-探索型”的多层次实践教学模式

在实验教学内容的改革上,本着“加强基础、拓宽专业、注重实践、提高素质”的方针,将实验项目分为4类,即验证型、设计型、综合型、探索型,实验项目由浅入深,循序渐进。在所有硬件必修和选修课程中,全部开设课内实验。课内实验由验证实验(20%)、设计实验(80%)组成。所有实践课程都单独开设实验,包括综合实验(80%)、探索实验(20%)。这样,课内课程中开设“验证型”和“设计型”的实验,在后续课程设计中,开设“综合型”和“探索型”的实验,形成“验证型-设计型-综合型-探索型”的多层次实践教学模式,系统强化学生的综合设计和硬件动手能力。

在验证型实验中,注重使学生巩固基本理论,进一步掌握基本概念和基本技能。在设计型的实验中,注重培养学生的创新意识、设计能力和动手实践能力。在这一类实验中,以学生动手为主,教师辅导为辅,只给定实验的课题及达到的目的,中间过程需学生自己去查阅资料和设计方案,直至最后调试完成。在综合型实验中,注重培养学生综合运用所学知识的能力,使学生受到更为实际、更加全面的科学研究的训练。综合实验的特点是没有现成的模式可循,学生需要独立完成硬、软件设计和调试。在调试过程中,学生自己动手分析解决实验中出现的问题,虽然有一定的难度和深度,但对学生很有吸引力,能使学生从应付实验变为主动实验,不仅提高了基本操作技能,也发挥了学生的主观能动性和创造性。课程设计的部分内容属于探索型实验,学生可以自主选择感兴趣的课题及相关开发工具,写出设计书,交给指导教师审核后实施。在这一过程中,学生需要查阅大量的资料,培养了学生的自学能力、研究设计能力、独立分析问题及解决问题的能力和创新能力。

2.3确立“系列化硬件实践训练”方案

硬件实践训练由“课程实验-课程设计-综合训练-毕业设计”四个系列组成。课程实验――所有硬件课程都开设。课程设计――在“嵌入式系统”、“组成原理”等重点课程中开设,在这些课程的课内实验中进行部件或模块实验,在课程设计中进行综合性、创新性设计。综合训练――通过“硬件综合实践”展开。该课程安排在大四开设,是一门综合性设计实践课程,也是对前面所学课程的一个全面应用和总结,在硬件课程群建设中起着“总练兵”的作用。通过让学生亲自设计一台小型计算机控制系统,包括计算机的各个部件和功能,“麻雀虽小,五脏俱全”,旨在让学生真真切切感受到如何设计一个可独立工作的计算机系统,强化和提高学生的综合实践能力,培养学生的创新思维和创造能力。毕业设计――每年精选一定数量的硬件毕业设计题目,提供实验场所、设备及材料,让对硬件感兴趣的同学去实现自己的设计,放飞自己的理想。学生以接近于实际应用环境,完成高质量综合设计为训练手段,以掌握计算机硬件结构与应用系统设计作为主要训练目的,使学生对计算机的整个硬件系统有较全面、较系统的掌握。要求学生能够根据需要设计出一定规模的计算机硬件应用系统实例,从模板设计、制作、总线的走向、计算机部件选取、工作原理的分析、部件在模板上的部局、部件的焊接、运算能力的调试、结果正误的判断分析等流程的设计到具体的制作,直至最后写出毕业论文,使学生建立系统的概念与工程的概念。

3结束语

上述改革取得了令人满意的效果。大学生对计算机硬件实验课程学习的兴趣增强了,实验室开放期间,有更多的学生走进了硬件实验室。在毕业设计时,有更多的学生选择了与计算机硬件系统设计和开发相关的课题。学生做完硬件综合实习和硬件毕业设计课题后,普遍充满自豪感和成就感,感到硬件设计及底层软件开发不再可怕。通过这样的训练,提高了其综合设计能力和创新能力,同时也锻炼了他们的团队合作精神,步入单位就能直接胜任计算机应用系统设计、开发的工作,实现高校、学生、用人单位等各方面的多赢。同时我们也应该看到,随着新技术的不断发展,计算机硬件系列课程及其实验体系的建设和实验内容的改革是一项长期不懈的工作,需要不断完善。

参考文献

[1] 罗家奇,李云,葛桂萍等. 计算机硬件系统实验教学改革的研究[J]. 实验室研究与探索,2007,26(8):98-99.

[2] 武俊鹏,孟昭林. 计算机硬件实验课程体系的改革探索[J]. 实验技术与管理,2005,22,(10):107-109.

计算机硬件概念范文4

关键词:大学计算机基础;教学案例;进程调度;文件系统;虚拟存储器

引言

大学计算机基础作为大学的第一门计算机课程,在指导和规划学生在大学期间学习一系列计算机课程具有重要作用。对于非计算机专业的学生,大学计算机基础的教学应该:在课程内容的选择上强调在广度优先的基础上增加深度,让学生不仅知其然而且知其所以然。要让学生不仅掌握基本的操作技能,而且有一定的理论基础。课程的讲授要有别于计算机专业,尤其对于理论性较强的内容,例如在讲解操作系统这一章时,多道程序设计概念、进程概念、文件系统的概念及虚拟内存的概念,这些对非计算机专业的学生来说都是很抽象的。应更多地从应用的角度,用学生更能理解的方法和手段深入浅出地讲解。下面就是笔者在讲解操作系统功能时的三个教学案例。

1 案例一:进程及进程调度

首先,我们知道计算机系统由硬件系统和软件系统两部分组成,而软件系统中最重要和最基础的就是操作系统,它是对计算机硬件第一层次的扩充,是用户与计算机的接口,也是其它应用软件与计算机硬件的接口。假如把CPU比喻为人的心脏,那么操作系统就是人的大脑,计算机的一切操作都是由操作系统在指挥、控制和调度的。课堂讲授中可由此引入操作系统的定义:操作系统(c)perating System)是管理和维护计算机的软硬件各个资源,合理组织计算机工作流程和为用户提供一个方便、有效、良好的使用环境的一种系统软件。

定义中说管理和维护计算机的软硬件资源,那么计算机的软硬件资源有哪些呢?我们可把它一一罗列出来。硬件资源有CPU(中央处理器)、存储器、外部设备;软件资源有程序、数据、文本等。与之相应的,管理CPU资源就是处理机管理,管理内存资源就是存储管理,管理外设资源就是外设管理,管理软件资源即信息管理,这就是操作系统的四大功能。接下去就分别介绍这四大功能。

讲解处理机管理从讲解单道程序设计入手。单道程序设计的意思是:任一时刻只允许一个程序在系统中执行,一个程序执行结束后才能执行下一个程序。我们举一个现实的例子:医院里医生给人看病,若这家医院只有一个医生,医生看病的流程是从病人挂号、排队进入候诊区开始,医生始终是一个一个接诊,其间病人验血、x光检查等,医生都要等待,只有当医生为这个病人开完处方,病人离开,医生才能接诊下一个病人。这就是单道程序设计原理,这里的医生就相当于处理机。显然这个过程中医生这个资源利用率非常低,经常处于空等状态。

随着操作系统的发展,后来出现了多道程序设计技术。所谓多道程序设计技术是指:计算机内存中同时存放了几道相互独立的程序,这几个程序在宏观上并行,即同时在执行;而在微观上是串行的,即各程序轮流地占有CPU,交替执行。还是拿上面的医生看病为例,这时当医生当前接诊的病人A去验血或作其它检查时,医生就接诊下一位病人B,若病人B需要作进一步的x光检查时,医生就再接诊下一位病人c,这时宏观上这三个病人A,B,C都处于就诊状态,这就是多道程序设计的原理。为了描述程序的动态执行过程,引入了一个叫进程的概念。进程是程序在数据集上的一次动态执行过程,它动态地创建。动态地消亡,而且在生存期间有三个不同状态:就绪、执行、等待。这就象是在医生的工作台上通常有二个排序的医疗本队列,一个队列是等待叫号的候诊病人,他们处于就绪状态,还有一个队列是去验血或做其它检查末完成的病人,他们处于等待状态。当前正在诊疗的病人则处于执行状态。病人在这三种状态问不断地切换,而医生从末停止忙碌,这就是系统的目标:让处理机资源充分地忙碌,充分地发挥效率。由此看出多道程度设计在很大程度上提高了系统的执行效率。

对于单CPU的计算机而言,处于执行态的进程只有一个,当这个进程因等待某个事件发生(如申请某个外部设备资源)时放弃处理机进入等待状态;一个处于等待状态的进程因所等待事件的发生而被唤醒,又因不可能立即得到处理机而进入就绪状态;处于就绪状态的进程已经得到除CPU之外的其他资源,只要一旦由调度得到处理机,便可立即投入执行状态。

这里处理机始终只有一个。随着硬件设计能力的提高,现在市场上出现了多盒处理器,相当于医院里同时接诊的有多个医生,这样可以真正实现进程在微观上也能并发,整机性能得到了更大的提高。

2 案例二:文件系统

对于文件系统,经常有同学这样说:“我的硬盘是FAT32格式的”,“c盘是NTFS格式”等,这样的说法是错误的。错在NTFS或是FAT32并不是格式,而是管理文件的系统。其次刚买回来的硬盘并没有文件系统,必须使用FDISK或Windows2000/XP的分区工具对其进行分区并格式化后才会有管理文件的系统,因此文件系统是对应分区的,而不对应硬盘,不管是将硬盘分成一个分区,还是几个分区。举个通俗的比喻,一块硬盘就像一块空地,文件就像不同的材料,我们首先得在空地上建起仓库(分区),并且指定好(格式化)仓库对材料的管理规范(文件系统),这样才能将材料运进仓库保管。文件不会受所在分区的文件系统影响,就像同样是汽车轮胎在A仓库可能直接堆在地上,而B仓库则会挂在墙上,仅仅是放置和管理方法不同而已。因此,在NTFS分区和FAT32分区的文件可以随意在分区间移动,内容不会因此产生任何不同。NTFS随着1996年7月的Windows NT 4.0诞生,但直到Windows 2000,它才开始在个人用户中间得以推广,跨入了主力分区文件系统的行列。今天,Windows XP/2003和NTFS早已是“如胶似漆”了。我们知道,当初FAT32文件系统的出现对于FAT16而言,可以说是有了比较明显的改善,但NTFS对FAT32的改进,就必须得用“卓越”来形容了。NTFS最大分区上限已达到了2TB(1TB=1024GB),从诞生到现在经历了多个版本,Windows NT4.0中的版本为1.2,Windows 2000为3.0,Windows XP为3.1。

另外,文件存储时以簇为单位,那么簇又是什么呢?簇是文件系统中基本的储存单位。在Windows对分区进行格式化时,会有簇大小的选择,如果设置的值比较大,那么文件保存时占用的簇就会少,从而文件读取性能就越高。打个比方,簇就像仓库中的柜子,如果你选择的是小号柜子,那么一批材料可能一个柜子装不满,还得用三到四个,如果是大号柜子,那么可 能只用一个或两个就装下了。这样装和取材料时,柜子越少效率就越高。但是,不少批次的材料可能一个大柜子都装不满,这样柜子就只能空着许多空间,积少成多,会浪费不少空间。簇到底应该选择多少更合适呢?一个简单的办法就是,首先确定分区主要用来保存什么样的文件,如果是体积很大的视频和多媒体文件,那么最好将簇设置得大一些,这样可以提高性能。如果分区主要存储网页或文本等文件,建议簇小一些,推荐使用Windows的“默认值”,这样会减少空间浪费。如果想更改当前分区的簇的大小,同时又不想重新格式化,可以使用PQMagic工具来完成(“高级一调整簇的大小”)。

3 案例三:虚拟存储器

电脑中所有运行的程序都需要在内存中执行,如果执行的程序很大或很多,就会导致内存的不足。为了解决这个问题,操作系统运用了虚拟内存技术。关于虚拟内存,书上是这样说的:虚拟内存就是指从硬盘划分一部分空间来从逻辑上扩充内存,但物理上,这部分空间仍然是属于硬盘的。我们说得通俗一点,物理内存就是插在主板上的那个内存条的内存。物理内存是相对于虚拟内存来说的,因为一些程序需要使用大量内存,而电脑配置的物理内存往往满足不了要求,于是系统就在硬盘上划定一定的区域来作为备用的内存,这就是虚拟内存。

当物理内存不够用时,系统便会将当前暂时不执行的程序段存储到虚拟内存里,当需要运行时再调入内存,这个过程由系统自动完成,对用户来说对程序的调入调出毫不知情,用户只是感觉可用的内存很大,比实际内存大了很多。举例来说,如果电脑只有128MB物理内存的话,当读取一个容量为200MB的文件时,就必须要用到比较大的虚拟内存,文件被读取之后就会先储存到虚拟内存,当文件全部储存到虚拟内存之后,虚拟内存里储存的文件会释放到原来的安装目录里。

Windows操作系统用交换文件模拟虚拟内存。所以,计算机的内存大小等于实际物理内存容量加上“分页文件”(就是交换文件pagefde.sys)的大小。如果系统虚拟内存太低,可以鼠标右击“我的电脑”选择“属性高级性能下设置高级打开虚拟内存设置”,重新设置最大值和最小值,按物理内存的1.5―2倍来设置值。用户也可以更改虚拟内存的存放位置,可以设置到其他容量较大的硬盘分区,让系统虚拟内存有充分的空间,让系统运行更快。

若感觉虚拟内存太低,有以下三种解决办法:

(1)自定义的虚拟内存的容量(系统默认是自动)太小,可以重新划分大小。

(2)系统所在的盘(一般是c盘)空余的容量太小而运行的程序却很大,并且虚拟内存通常被默认创建在系统盘目录下,我们通常可以删除一些不用的程序,并把文档图片以及下载的资料等有用文件移动到其他盘中,并清理“回收站”,使系统盘保持1GB以上的空间,或者将虚拟内存定义到其他剩余空间多的盘符下。

(3)系统盘空余的容量并不小,但因为经常安装、下载软件,并反复删除造成文件碎片太多,也是容易造成虚拟内存不足的原因之一。虚拟内存需要一片连续的空间,尽管磁盘空余容量大,但没有连续的空间,也无法建立虚拟内存区。可以用磁盘工具整理碎片。

计算机硬件概念范文5

关键词: 自然语言理解; 语义相似度; 全文检索; 在线答疑系统

中图分类号:TP399 文献标志码:A 文章编号:1006-8228(2015)05-10-03

Abstract: The similarity calculation based on natural language understanding is still a research content of the computer language processing technology. Based on the knowledge representation of "HowNet", considering the both factors of depth and density, by using a more sophisticated multivariate semantic similarity algorithm, and with a full-text search matching technology, an online answer system in the limited field is designed and implemented. The experimental results show that, the system is reliable, the answer effect is more obvious, and the desired goal is achieved.

Key words: natural language understanding; semantic similarity; full text retrival; on-line answer system

0 引言

随着计算机网络技术的飞速发展,传统的教学手段已不能满足当前大信息量的教学内容需求,因此,创造一个在教师指导和引导下学生自主式学习的智能系统平台很有必要。智能的网络答疑系统可以利用自然语言处理技术对学生的疑问进行自动匹配处理,它的出现为网络教学提供了交互的情境,成为支持网络教学顺利进行的重要条件。智能网络答疑系统是传统课堂教学的重要补充,并逐渐在学生学习、认知、再学习这样一个闭环的学习过程中发挥着举足轻重的作用[1]。

1 设计思想及算法原理

基于计算机自然语言处理技术,充分利用校园网络资源,通过人机互动等丰富信息表现形式,实现一个智能的、高效的基于自然语言理解的专业课程自动答疑系统。系统设计的关键是如何实现快速、高效的智能搜索答案。该过程实际上类似于一个搜索引擎,其核心就是构建一个结构合理、具有完整丰富内容的知识库,并能够在自然语言理解的基础上,快速、准确的完成自动答疑工作。基于自然语言理解的在线答疑系统中两个关键技术分别是:中文分词技术和相似度计算。

1.1 中文分词技术

自然语言理解(Natural Language Understanding,简称NLU)研究如何让计算机理解和运用人类的自然语言,使得计算机懂得自然语言的含义,并对人给计算机提出的问题,通过人机对话(man-machine dialogue)的方式,用自然语言进行回答。为了使计算机系统能够较好地理解用户提出的问题,首先需要对问题进行处理,这一过程最先用到的最为关键的技术就是分词技术【2,3】。由于中英文之间的语言组织、词法结构不同,使得中文分词一直以来成为制约中文自然语言处理的主要因素。而中文文本中,只是字、句和段之间可以通过明显的分界符来简单划界,词与词之间没有天然的分隔符,中文词汇大多是由两个或两个以上的汉字组成,并且语句是连续书写的。这就要求在对中文文本进行自动分析之前,先将整句切割成小的词汇单元,即中文分词(或中文切词),相比英文语句处理,中文分词难度更大。

从算法处理上看,目前主要有三种【4-6】:一是基于词典的分词方法,它使用机器词典作为分词依据,分词效率高,目前应用范围较广;二是基于统计的分词方法,它是利用统计方法,通过对大规模文本的统计,让计算机自动判断的方法,该方法使系统资源开销较大;三是基于人工智能的分词方法,如专家系统和神经网络分词方法等,这类方法目前尚处于实验室阶段,尚未投入实际应用。

1.2 相似度处理技术

相似度计算在自然语言处理、智能检索、文本聚类、文本分类、自动应答、词义排歧和机器翻译等领域都有广泛的应用[7]。其计算方法按照基于规则和统计分为两种情况:一是根据某种世界知识(如Ontology)来计算,主要是基于按照概念间结构层次关系组织的语义词典的方法,根据在这类语言学资源中概念之间的上下位关系和同位关系来计算词语的相似度[8];二是利用大规模的语料库进行统计,这种基于统计的方法主要将上下文信息的概率分布作为词汇语义相似度的参照依据[9]。

⑴ 常用语义词典

对于基于语义词典的相似度计算方法,由于存在计算简单、基础条件低、假设条件易于满足等优点,受到越来越多研究者的欢迎。常用语义词典主要有[10-12]:WordNet、FrameNet、MindNet、知网(HowNet)、同义词词林、中文概念词典(CCD),以及叙词表、领域概念网、概念图等概念网络结构。本文对于相似度的计算主要是基于知网(HowNet)结构。其概念结构如图1所示。

⑵ 相似度计算

与概念相似度密切相关的一个概念是语义距离(semantic distance)。在一棵树形图中,任何两个节点之间有且只有一条路径,在计算语义相似度的时候,这条路径的长度就可以作为这两个概念的语义距离的一种度量,通常认为它们是概念关系特征的不同表现形式,两者之间可以建立一种简单概念词相似度用来描述概念树中两个节点之间的语义接近程度,一般最常用的是刘群提出的以《知网》为基础的相似度计算方法[13]:

式⑴中,p1和p2表示两个概念节点,dis(p1,p2)是树状结构中两节点间的最短距离,α是一个调节参数,表示相似度为0.5时的路径长度。

文献[14,15]综合考虑深度与密度因素,提出了多因素义原相似度计算方法:

式⑵中,h为义原树深度,l为LCN层次,LCN为最小公共父节点。

文献[16]认为该方法存在两点不足:一是该式仅把相似度取为密度、深度因素的算术平均值,显然对于概念节点分布不均的情况不够合理;二是该式没有对密度、深度两者的影响程度进行分析,这样对他的使用范围受到了限制。基于此考虑,提出了改进的语义相似度计算方法:

式⑶中,l(p1,p2)为分别遍历概念网中节点p1,p2到达其最小公共父结点所历经的父结点(包括最小公共父结点)数的最大值。w(p1,p2)为p1,p2所在层概念数的最大值。算法关键部分引进了一个调节参数λ(p1,p2),并保证在该参数的作用下,当节点p1,p2所在层概念数较多,即w(p1,p2)增大时,密度因素对相似度的贡献值大;而当p1,p2离最小公共父结点较远,即l(p1,p2)增大时,深度因素对相似度的贡献值较大。同时算法约定,当p1,p2的父结点和最小公共父结点相同,且同层只有p1,p2两个节点时,调节参数为0.5。该方法即为本文在相似度计算方面采用的算法模型。

2 模型设计

下面我们参考文献[17],按照一般教师对于问题的处理方式,在上述概念语义相似度计算的基础上,从计算机建模层面上给出计算机自动答疑模型的建模过程。

Step1:计算条件

已知标准问题库A可以表示为关键词序列:A=(a1,a2,…,an);学生提问B可以表示为关键词序列:B=(b1,b2,…,bn)。

Step2:相似度计算

⑴ 知识点关键词信息提取

该问题的处理主要通过提取学生问题中每一个关键词,对照系统知识库,从底层开始遍历搜索,当找到对应的概念节点时,提取该节点的高度、密度等属性信息,并保存起来,搜索完成后即可参加相似度的计算。

⑵ 概念相似度求解

概念相似度的计算采用语义相似度技术,设标准问题库A可以表示为知识点的一个向量组A=(a1,a2,…,an),循环遍历每一个学生输入的问题关键词序列,通过概念语义相似度算法可得到任意两概念之间的相似度Sim(ai,bj),其中i=1,2,…,m,j=1,2,…,n。

Step3:匹配结果输出

前面已经完成了输入问题和标准问题库之间的循环相似度匹配计算,为了将需要的信息提取出来,模型还需要设置一个阀值δ。通过阀值δ这个关卡,将相似度结果大于δ的问题提取出来,并按照降序排列输出即可。论文答疑系统模型建模流程如图2所示。

3 系统实现与验证

系统设计环境为Visual Studio 2005,数据库服务器为SQL Server 2000。采用B/S网络模型进行构架设计,按照系统功能需求划分为用户表示层、应用逻辑层和数据访问层三个层面。系统测试界面如图3所示。

如图3所示,在答疑系统界面中输入问句:“计算机包含哪些硬件?”,系统自动分词后生成的关键词语汇单元为:“计算机;硬件”(其中“包含;哪些”等作为停用词已经被过滤掉了),然后系统自动在数据库中检索匹配,最终反馈了12条相关结果,图3为部分结果截图。这里说明一点,反馈结果的多少取决于阀值δ,测试中我们选取的阀值δ为0.8,一般我们取阀值δ在0.8左右即可。

为了进一步验证系统的查询能力,我们将刚才的问句调整为:“计算机包含?”,这时系统自动分词后生成的汇单元只有一个关键词“计算机”,最终匹配结果如图4所示。

这里读者或许会发现,系统反馈回来的结果与问题毫不相关。其实,这并不是系统出错,而是“知网”概念网络中“计算机”与“硬件、软件”两个概念关系比较密切,表现为在概念网络中的节点位置较为接近,匹配结果相似度值较高,因此才有了上述的结果。也就是说,也许在某些时候当查询某个概念时,相近的结果就会被检索出来(或者当不确定查找的问题时,只需输入相近的问题,也会查询到想要的答案),这就是基于自然语言理解的语义相似度计算模型优势所在。

4 结束语

由于汉语词汇表达的复杂性和词汇语义概念较强的主观性,以及具体应用领域的专业性等因素影响,目前基于自然语言理解的相似度计算仍是计算机语言处理技术需深入研究的内容。本文在“知网”知识表示的基础上,充分考虑“知网”深度和密度因素影响,基于全文检索匹配技术,设计并实现了一个限定领域内的在线答疑系统,大量的运行结果证明了该系统是可靠的,达到了系统设计的目的。但在准确性方面还存在不足,从第一个测试中可以看出,提问人员真正需要的是:“计算机的硬件组成”。其重点关注的是计算机、硬件,而答案给出了太多的“计算机特点,计算机发展”等其他一些与“计算机”有关的匹配答案,其原因是关键词权重的影响因素没有体现出来,离真正的自然语言理解还存在一定的距离,这是系统下一步有待改进的地方。

参考文献:

[1] 冯志伟.自然语言问答系统的发展与现状[J].外国语,2012.35(6):28-30

[2] 黄,符绍宏.自动分词技术及其在信息检索中的应用研究[J].现代图书情报技术,2001.3:26-29

[3] 沈斌.基于分词的中文文本相似度计算研究[D].天津财经大学,2006:12-17

[4] 张波.网络答疑系统的设计与实现[D].吉林大学,2006:30-31

[5] 张丽辉.计算机领域中文自动问答系统的研究[D].天津大学,2006:14-18

[6] 朱.中文自动分词系统的研究[D].华中师范大学,2004:12-13

[7] 周舫.汉语句子相似度计算方法及其应用的研究[D].河南大学,2005:24-25

[8] 于江生,俞士汶.中文概念词典的结构[J].中文信息学报,2002.16(4):13-21

[9] 胡俊峰,俞士汶.唐宋诗中词汇语义相似度的统计分析及应用[J].中文信息学报,2002.4:40-45

[10] Miller G A, Fellbaum C. Semantic network of English [M]//Levin B, pinker S. lexical & conceptual semantics. Amsterdam, Netherlands: E lsevier Science Publishers,1991.

[11] Baker C F. The Berkeley frameNet project [C]//Proceeding ofthe COLING -ACL.98.Montreal, Canada,1998:86-90

[12] 黄康,袁春风.基于领域概念网络的自动批改技术[J].计算机应用研究,2004.11:260-262

[13] 刘群,李素建.基于“知网”的词汇语义相似度计算[C].第三届汉语词汇语义学研讨会论文集,2002:59-76

[14] AGIRREE, RIGAU G. A Proposal for Word Sense Disambigua-tion Using Conceptual Distance[EB/OL],1995:112-118

[15] 蒋溢,丁优,熊安萍等.一种基于知网的词汇语义相似度改进计算方法[J].重庆邮电大学(自然科学版),2009.21(4):533-537

计算机硬件概念范文6

1.1计算机软件系统概述

计算机软件系统和硬件系统是相对应的两个概念。计算机软件系统主要是指可供多用户使用或重复使用的一种程序。任何能够在计算机上正常运行的程序都称为软件。如果计算机没有安装任何软件,则称为裸机。计算机软件与硬件系统最大的区别就在于它是可以同时对多个用户的多种使用需求予以满足,各类计算机软件可以在一台计算机上做到同时运行。我们通常所说的计算机软件系统主要是系统软件和应用软件两种类型。(1)系统软件。系统软件属于监督、维护和管理计算机资源的软件,将计算机内的各项资源进行维护和监管。开发系统软件的目的是缩短用户准备程序的时间,提高计算机程序的处理能力,从而不断提高计算机的运行效率。在系统软件的作用下,计算机各软件设备才能充分发挥效用。由此可知,计算机是否可以高效、快速的运行主要依赖于系统软件。网络软件、程序设计语言、操作系统、数据库管理软件等都属于系统软件,其中操作系统最为关键,是沟通用户和计算机之间的主要桥梁。(2)应用软件。开发应用软件的目的是解决用户某些特定问题,应用软件是具有一些具体应用用途的程序和软件,能够给用户解决一些特定的问题,并且多数情况下会使用到一些专业领域的相关知识。系统软件的辅助是保证应用软件正常使用的关键,应用软件是不能单独运行的,只有在系统软件的支持下,应用软件才能正常稳定运行。比如,工程设计类软件、财务管理软件。

1.2计算机软件系统的保护和修复

随着计算机的使用人数逐渐增加,对于计算机软件的管理就显得十分重要,目前已经出现了许多管理方面的问题,比如病毒、黑客、软件系统被非法授权修改等。考虑到上述情况,我们在对计算机软件系统进行保护、修复的时候就必须考虑到以下两个问题:第一,限制计算机使用者利用各项资源;第二,防止非授权性修改计算机软件系统情况的发生。但是,大多数电脑对于软件系统的保护只是采取了一些例如使用CMOS来预防使用者更改计算机硬盘之类的简单防护措施,然而,这些简易的办法很难满足用户对于计算机平稳、安全等性能的需求。部分多用户操作系统为了限制使用者利用硬盘资源,通常会对操作系统设置访问权限,然而这样并不能对恶意的破坏行为起到有效的防止作用,主要原因是可以在没有授权访问的情况下就可以对电脑进行硬盘分区、重装系统、删除等操作,所以,为了更好的保护计算机的软件系统,我们就要挖掘出更加有效的保护措施。例如,软、硬保护是最常用的两种保护计算机软件系统的方法,所谓软保护,就是使用系统保护软件,而硬保护则是借助保护系统。实际工作中,系统保护软件以及系统保护卡是我们保护计算机系统的主要手段,而系统保护软件通常被应用于应用软件和计算机操作系统之间,往往会与计算机的应用程序有所冲突,安全性一般会低于系统保护卡,而系统保护卡通常在计算机硬件层和操作系统之间运行,因而具有较高的安全性。实际销售的过程中,系统保护卡的销量要远远超过系统保护软件,一般情况下系统保护软件多被应用到笔记本电脑上。

2Ghost软件的功能及使用方法

计算机软件系统的保护技术与修复技术的关系是相辅相成的,因为计算机软件系统的保护技术很难做到毫无漏洞,为了更加高效、安全地运行计算机,就需要补充有关的恢复技术。目前,硬盘克隆技术是最常用的计算机软件系统的保护及恢复技术,其不仅能够对电脑中具体文件予以记录,还可以记录电脑硬盘分区表以及主引导等相关信息,这是其与简单的备份工具最大的不同之处。因此,有了硬盘克隆技术,即便电脑软件系统受到了破坏,数据也是可以被恢复的,这样就可以在很大程度上预防由于文件格式的不同而引发的不兼容情况的出现,可以在对相关数据进行备份的时候逐区开展工作。Ghost软件是最常用的计算机系统恢复软件,接下来我们就要详细介绍关于Ghost软件的特点及其使用方法。2.1Ghost软件的功能特点作为系统修复类软件的一种,Ghost软件的系统修复功能十分强大,也因而受到了多数用户的追捧。通过对计算机硬盘中的一些区域乃至整个硬盘进行操作,把重要信息压缩为一个文件并储存于硬盘中的部分区域,这是Ghost软件的一大功能优势。如果需要进行还原,已经备份的数据可以通过Ghost软件在相应的硬盘中恢复,帮助计算机还原到正常使用状态。Ghost软件主要具备以下特点:可以自动进行分区、容量调整、格式化等操作,不仅可以支持各种文件系统的运行,还能大大地降低计算机维修人员的工作量。主要工作原理是Ghost软件在对硬盘映像进行复制的时候,可以自动的格式化该磁盘,并且会自动的分区该磁盘,扩展目标磁盘或压缩DOS分区。2.2Ghost软件的使用方法我们能够利用Ghost软件恢复多机系统和单机系统。在对单机系统进行恢复的时候,我们会应用软件自身拥有的分区克隆功能,就是利用Ghost软件把原先具有应用软件及操作系统的分区进行压缩,将其变成映像文件,再将这些映像文件储存到计算机的其他分区,一旦计算机系统出现运行困难,之前做好的映像文件就可以被恢复到相应的系统盘中,以维持电脑的正常运行。这种操作最大的优点就是方便快捷,不像重装系统那样麻烦。在对学校机房、网吧等多机系统进行恢复的时候,Ghost软件更能体现出其方便快捷的优点。其可以避免逐台机器重装系统的麻烦,只需安装好一台计算机,通过对该计算机上的有关软件及操作系统备份,然后在其他有故障的机器上恢复备份的文件就可以解决问题,大大地提高了计算机维修工作的效率。

3软件系统恢复技术的应用

(1)计算机软件系统保护流程。第一步,加强用户运用软件程序方面的限制。用户注册之后,才能获得最完整的软件程序使用权限,另外,要想解锁软件系统的主要功能,必须具备与用户计算机硬件有关的注册代码;第二步,利用跟踪技术或者反调试技术科学分析程序。这是因为很多黑客会利用相关解锁程序窃取计算机中重要的信息资源或程序。另外,需要对软件系统进行双重保护,换言之,通过加密工具,比如加壳软件或加密锁,提高软件程序的防范能力。在运用软件程序的过程中,需要考虑用户是否合法,避免用户在使用计算机过程中,将重要资料泄露给非法用户。随着科技的发展,在购买计算机时,一般采取“一机一码”注册方式,提高了计算机使用的安全性。在使用计算机软件系统恢复技术时,需要采取时间结合、测量结合这两种思路。但是,在计算机软件领域,需要将计算机恢复技术概念和其他相关概念结合起来,从而产生更多概念。(2)单机系统的备份和恢复技术。在使用Ghost软件恢复单机系统时,一般采用软件的分区克隆功能。具体地说,利用Ghost软件将装有操作系统和应用软件的分区压缩成映像文件,并将其保存到其他分区中,当软件系统不能正常运行某些程序时,则需要将映像文件恢复到C盘中即可。该操作通常需要耗费几分钟就可完成,比重装软件或重装系统更快捷。需要注意的是,映像文件的安全性。由于映像文件比较大,一般硬盘装不下,如果放在其他计算机上,则很容易发生混淆。解决该问题的方法是在计算机上加装硬盘保护卡,这样可以极大地提高了保护系统的安全性,避免其受到病毒的侵害。(3)多机系统的备份和恢复方法。一般情况下,机房会有多台计算机,且所有计算机的配置相同。如果安装系统软件,只需要在其中一台计算机上进行即可,然后再利用Ghost软件将硬盘或者软件系统分区压缩成克隆文件,将克隆文件安装在每台计算机上。这样做就可以极大地减轻工作人员的劳动强度,提高工作效率。

4小结