数字化设计与制造技术范例6篇

前言:中文期刊网精心挑选了数字化设计与制造技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数字化设计与制造技术

数字化设计与制造技术范文1

关键词:VPM系统;立体化铣样板;数字化加工

中图分类号:TH164 文献标识码:A 文章编号:1009-2374(2014)01-0008-02

1 内容简介

随着飞机设计、生产数字化进程的逐步深入,运输机中的大型化铣蒙皮类零件进行化铣加工时,立体化铣样板精度对化铣蒙皮质量有着重要的影响,由传统的手工移形、开视口而产生了加工误差大等缺陷。为提高加工精度及生产效率,将VPM系统作为协同设计平台,通过在线关联设计和并行产品的定义,对化铣蒙皮类零件进行三维数字化设计,大幅度提高了设计信息与制造信息的集成,为零件数字化制造提供了有力的保障。

2 技术方案

在飞机零件制造过程中,根据飞机总质量和强度的要求,有大量的等厚度或变厚度并具有单曲面或双曲面蒙皮类的零件,见图1:

图1 局部零件图

此类零件均需要化学铣切,其工艺过程是先将零件平板下料,然后塑性弯曲成相应的曲面形状,再通过立体化铣样板对蒙皮类零件进行化学铣切等厚度或变厚度。由于加工中存在着不可逆过程,使零件的化铣精度成为决定零件质量和工作效率的关键。

3 化铣原理

蒙皮类零件的外形面一般为单曲面或双曲面,根据曲面变化情况及长桁的分布、飞机结构强度与重量等要求,零件材料厚度为等厚度或变厚度,厚度的变化是通过化学铣切来完成零件加工,化铣过程是通过化铣样板确定零件防蚀层上需要刻划零件轮廓线,也就是通过化铣样板确定零件上允许腐蚀液作用的部位,化铣样板通过化铣样板相对零件定位加工的特殊性,以完成零件化铣加工。

4 零件结构分析

由于蒙皮零件既是飞机的外表零件,又是飞机的重要受力构件,所以一般尺寸比较大、形状比较复杂且厚度薄、刚性差,根据受力情况,有些蒙皮零件是不等厚度的,有些蒙皮零件在受力的部位,还要进行局部厚度的减薄加工,其减薄部位厚度公差控制要求比较严,蒙皮零件外形精度要求比较高,如今VPM技术的应用,使模线样板技术迎来了新的发展阶段,对双曲面且需化铣的蒙皮类零件化铣加工中,其工艺方法是采用立体化铣样板对蒙皮进行化学铣切,而模线样板生产是飞机制造的第一步,化铣样板的生产进度直接影响产品质量与研制周期,模线样板设计技术也在不断地发展,大量的化铣样板设计可促进逐步实现数字化制造。

5 立体化铣样板的设计

5.1 传统的工艺方法

传统的立体化铣样板制造工艺是首先由模线中心设计反切内样板、划线图,以制造成型模胎,然后由钣金厂按模胎制造实样,同时提供划线图将化铣图形及基准线刻在模胎上,经装配合格后,由钣金厂向模线中心移交该实样,由模线中心按模胎化铣线,开出视口,工艺流程图如图2所示:

图2 立体化铣样板传统加工工艺流程图

5.2 技术创新

在蒙皮类化铣零件设计制造研制过程中,为解决技术关键及难点,对蒙皮立体化铣样板采用数控加工,其工艺过程为:

首先设计蒙皮零件的三维数模及工艺数模,按工艺数模制造模胎数据集,并通过三坐标龙门式数控铣数控加工模胎,同时刻出零件各种基准线、结构线,再将毛料按模胎拉伸成与模胎型面完全贴合的毛坯,见图3。此胎是成型蒙皮零件毛坯所用的依据,用于零件毛坯型面拉伸与立体化铣样板型面拉伸。

图3 数控模胎及零件刻线

其次通过VAM CATIA系统建立两个蒙皮实体数模:一个为零件外形数模且开透视口的数据集,即为标准样板;另一个为向内偏移料厚并与前一个数据集(标准样板)相协调的数据集,以补偿由于料厚产生的误差,同时在该数据集(工艺数模)的设计中,包含装配定位孔,化铣定位孔,化铣区开孔和完整的外形线、化铣线,化铣余量线。将按拉型模成型的毛坯通过五坐标数控轮廓铣床进行编程,对外形轮廓、化铣区,框轴线视口等进行加工,该样板为立体化铣样板。

6 立体化铣样板数控加工

基于CATIA VPM系统建立工艺数模,再通过CATIA三维结构设计,对工艺数模进行柔性卡具参数设定,使其生成AIPSOVRCE五坐标X、Y、I、J、K,根据工艺数模将该零件加工程序进行数据编程并转换为NC通用代码,通过柔性卡具控制命令,先不给料,带刀空走行程,完成零件需铣切部位,观察零件铣切部位处是否有柔性卡具被铣切,经检查未发现异常现象,方可上料,根据工艺数模装配定位孔设备可自动找正,通过设备定位孔两点定位,采用真空吸盘通过外形技术参数的设定,使柔性卡具相对毛坯准确定位,在铣切中有设备执行器控制参数;设备理论定位精度0.4mm;设备定位板分为原点定位板和附件定位板,定位板的定位孔取制可根据万向装置调整附件定位板的位置,以确定设备与零件的相对定位,从而保证定位精度。

经过飞机壁板组件的装配,我们对装配精度进行全方位的分析、检测比对,化铣区无干涉现象,装配精度满足技术要求,从而验证了立体化铣样板加工新工艺的科学性与有效性。实现了蒙皮类化铣零件的结构数字化设计与数字化制造的目标,提高了运八飞机的产品质量与效率。

参考文献

[1] 模线设计员手册[M].

[2] VPM通用使用手册[M].

[3] 典型工艺规程[M].

数字化设计与制造技术范文2

关键词:数字化设计制造 数字化生产流程 项目教学

中图分类号:G71 文献标识码:A 文章编号:1672-3791(2014)09(a)-0020-03

教育部发出的教职成[2011]12号文件明确提出:“与企业合作开发虚拟流程、虚拟工艺、虚拟生产、虚拟运营等数字化教学资源,搭建校企数字传输课堂,将企业的生产过程、工作流程等信息实时传送到课堂,使企业兼职教师在生产、工作现场直接开展专业教学,实现校企联合教学”。数控专业认真贯彻[2011]12号文件精神,与北京数码大方科技股份有限公司(CAXA)和广州数控设备有限公司联合开发了数字化设计制造教学实训平台项目,用现代信息技术改造传统教学模式,共享优质教学资源,破解校企合作时空障碍。

1 项目现状分析

1.1 缺少体现先进制造业流程和能力培养的有效平台

目前各类职业学校的教学工作与学生就业需求普遍存在结构性矛盾。一方面,学生的专业技能训练与企业就业需求技能不匹配,学生毕业后不能快速适应企业实际工作的要求。另一方面,传统教育的内容与先进的现代化设计制造模式脱节,学校缺乏符合现代先进制造业需求的数字化教学和实训环境,课程设置、教学内容、教学手段无法满足用人单位对学生知识和能力方面的需求。

1.2 教学缺少企业真实生产零件,缺乏与企业深度融合的课程体系

学校需要根据行业标准和工学结合、校企合作的原则,建立与职业岗位标准相符合,与职业技能取证相衔接,与生产性实践相对应的模块化课程体系,形成对职业岗位指向明确的核心课程包和集教材、教学课件、实训项目、课程指导等内容的立体化课程教学包和教学资源库。同时,按照技能培养的要求和教、学、做一体化的教学设计,将教学地点要求也纳入课程标准。

1.3 缺乏有企业一线生产情况融入的教学资源

学校教学资源大部分是老师基于课堂教学开发出来的,缺乏企业人员参与的痕迹,容易脱离企业生产实际。当务之急是要有企业参与教学资源建设,并且把企业一线生产情况融入教学资源,与企业合作开发典型零件的虚拟流程、虚拟工艺、虚拟生产等数字化教学资源,搭建校企数字传输课堂,将企业的生产过程、工作流程等信息实时传送到课堂,实现真正意义上的校企联合教学。

2 项目目的

为进一步加强学生工程实践能力和创新能力的培养,促进相关课程的教学改革,保证和提高教学质量,进一步提高学科建设、科学研究、产品开发与制造的实力,更好地为学校相关学科和专业服务,促进学校各项工作的可持续发展,提出建设数字化、网络化的先进制造技术平台―― 数字化设计制造PLM(产品全生命周期管理)教学实训平台。

本项目在校企合作人才培养模式下,利用数字化的手段,固化典型制造业企业业务运行模式,实训设备和场地按企业生产要求组织,建立重现企业流程的信息化运行平台;实训项目结合学校的设备配置状态,针对实训教学的特点,重现企业生产场景,实训项目按照企业真实角色和流程来组织。在数字化设计制造教学实训平台里面,通过建立数字化设计平台、数字化工艺平台、数字化网络制造平台和数字化管理平台,使学生体验企业产品的整个生命周期的过程。通过企业参与学校办学,实现职业学校培养目标与企业用工要求的零距离,发挥校企双方积极性,加快培养应用性人才,促进职业教育与地方经济结合。

3 项目建设内容

3.1 整理典型制造业数字化生产流程

3.2 调研制造业企业的常见结构

3.3 调研企业对各岗位人员的要求

3.4 典型制造业设计生产流程教学中心场地规划

以实训中心场地和设备条件为基础,合理规划布局建立与企业6S管理一致数字化车间。包括数控机床的联网、车间6S目视管理、颜色管理、车间标识、车间设备标识、工具量具摆放、借出与归还等。

让学生在实训车间就可以体验企业的真实环境,养成良好的职业素质。学生从学校毕业就可以快速完成从学生到企业员工的转变,实现学校与企业的无缝对接。

3.5 搭建真实企业设计制造教学实训平台

利用已经有的以及计划购买的设备,建立起一个能够满足中级工、高级工和师资培训的实训平台。实现从市场分析、产品数字化设计、制造工艺分析与仿真、数控加工、质检、入库的实训平台。在这个实训平台上训练中级工、高级工和教师的创新设计能力、工艺分析能力、制造过程管理能力。培养学生具有新产品研究开发的初步能力,有较强的表现技能、动手能力与创造能力。

在实训中心通过数字化设计制造虚拟仿真平台,展示典型的设计生产制造流程,组织分工和协同的工作模式,以及整个过程中统一的数据管理模式和流程管理模式;展示学校数控专业的教学成果。

在平台里面,通过建立的创新设计平台、数字化工艺平台和先进网络制造平台,实现一个产品的整个生命周期的管理。

3.6 开展项目教学

按照企业项目管理模式组织,学生按照真实的角色进行协同工作,例如设计主管、三维设计工程师、二维设计工程师、工艺员、生产主管、编程员、机床操作工、调度员,并分配相应的数据访问权限,实现企业面向产品的订单、产品设计、工艺设计、数控编程及仿真、生产派工、检验、进度跟踪、工时核算等整个产品制造过程的模拟与组织。

将制图课程、CAD课程、CAM课程、工艺课程等融合到综合性实训流程中,让学生按项目组织方式协同完成一个产品或零件的完整生产过程。实现基于工作过程的项目式教学。让学生由被动式的听课转变为主动式的思考,增强学生学习积极性。

3.7 理论与实践一体化教学

应用视频采集系统,将机床面板操作视频及内部加工视频采集到一体化讨论区,解决学生“看不清”的问题,提升教学质量,杜绝围观,保障实训安全。学生可清晰的看到教师的操作,解决现场教学“看不清楚”的难题;学生在机床操作,教师可组织其他学生进行点评、讨论。

4 项目结语

数控技术专业、北京数码大方科技股份有限公司(CAXA)和广州数控设备有限公司共同搭建真实数字化工厂环境,共同开发项目教学,实现了资源教学过程、管理过程与企业流程一致,创新了教学管理模式;通过基于工作过程教学项目,实施了“校企合作、项目驱动”人才培养方案;通过改变传统的教学模式,实现了以学生为主体,“做中学 学中做”的教学模式。

参考文献

[1] 教育部,财政部.关于支持高等职业学校提升专业服务产业发展能力的通知[Z].教职成[2011]11号.

[2] 教育部关于推进中等和高等职业教育协调发展的指导意见[Z].教职成[2011]9号.

数字化设计与制造技术范文3

关键词:船舶建造;数字化;信息技术

中图分类号:U673 文献标识码:A

1.什么是船舶建造数字化

船舶建造数字化是以数据处理、图形图像、虚拟现实、数据库、网络通信、数字控制等数字化技术为基础,将数字化技术全面应用于船舶的产品开发、设计、制造、管理、经营和决策的全过程,使船舶产品的设计和生产向着自动化、精细化、柔性化、智能化的方向发展。通过数字化技术与现代管理思想和先进工程方法的融合,形成船舶制造业信息化的完整体系,实现对造船业的信息化改造,使得造船企业全面提升产品的研发、生产能力,降低生产成本,缩短设计、生产周期,提高产品质量。

2.船舶建造数字化技术的内涵

船舶建造数字化技术主要体现在如下3个方面:

2.1 CAX(计算机辅助技术)

CAX(计算机辅助技术)是CAD(计算机辅助设计)、CAE(计算机辅助工程)、CAM(计算机辅助制造)和CAPP(计算机辅助工艺计划)的统称。

(1)CAD(计算机辅助设计)指在计算机及可视化设备为基础的专业化计算机系统的支持下,帮助设计人员进行设计工作。可以在CAD系统的辅助下完成从合同设计开始的一系列设计工作,建立产品数字模型,进行工程计算和分析,生成和绘制工程图,生成物料清单等。

(2)CAE(计算机辅助工程)是用计算机辅助求解复杂工程和产品结构强度、刚度、屈曲稳定性、动力响应、热传导、三维多体接触、弹塑性等力学性能的分析计算以及结构性能的优化设计等问题的一种近似数值分析方法。

(3)CAM(计算机辅助制造)是将计算机应用于生产制造的过程或系统,其核心是计算机数值控制(简称数控NC)。有狭义和广义两个概念。CAM的狭义概念指的是数控,包括数控机床、数控加工中心、数控生产流水线、数控火焰或等离子切割、激光束加工、自动绘图仪、焊机、机器人等;广义概念还包括制造活动中与物流有关的所有过程(加工、装配、检验、存贮、输送)的监视、控制和管理。

(4)CAPP(计算机辅助工艺计划)是通过计算机进行产品加工的工艺路线制定、工序设计、加工方法选择、工时定额计算,包括工装、夹具设计、刀具和切削用量选择等,生成必要的工艺卡和工艺文件等。CAPP是连接产品设计CAD信息和加工制造CAM信息之间工艺信息的桥梁,是生成各种加工制造,管理信息的重要环节。

2.2 企业业务技术过程与信息管理

通常包括PDM/PLM/ERP/MES/CIMS等。即产品数据管理PDM、产品生命周期管理PLM、企业资源计划ERP、制造执行系统MES、计算机集成制造系统CIMS等。它们通过信息技术与现代管理理念的融合,使人、资源、技术、管理等要素有机地结合起来,从而实现设计及生产过程管理的精细化和企业资源利用的优化。

2.3 数字化装备

软硬件相结合的数字化装备,如NC(数控设备)、FMS(柔性制造系统)、Robot(机器人)等通过数字控制形成的生产自动化装备。这些设备通过离散的数字信息控制设备或传动装置的运行,实现生产加工的自动化。

3.船舶建造数字化技术的发展历程

3.1 单项技术的企业部门级应用阶段

该阶段主要是单项技术,如数值计算技术、CAD/CAE/CAM技术、数控技术以及各种部门级的管理信息系统,如财务、人事、OA、物资等管理系统在企业部门的局部范围内的应用。部门级数字化技术的应用作为一种技术手段对提高设计和生产效率、提高产品质量发挥着重要作用。

3.2 企业内综合应用集成阶段

这一阶段是由企业内的信息集成、过程集成到应用集成。通过信息集成保证了系统间信息的一致性,通过应用集成使企业内部的各种信息系统组成了一个有机的整体,大幅提高了数字化技术应用的整体效益,使得企业设计、生产、经营、管理的各种业务活动得以协调运行,大大提高了企业的生产能力。

3.3 企业间的应用集成阶段

由于互联网技术的快速发展,促使电子商务、供应链管理、协同设计、敏捷制造等一些基于互联网技术的新型管理思想和管理方法得以实施,使得船舶这种具有大量配套设施的高度复杂产品的制造能够实现跨地域的专业化企业间的协同运作,使产品能够快速地、柔性地应对用户的需求。

自20世纪60年代末将计算机用于船舶线型放样开始,我国船舶行业信息化已历经40多年,国内造船业经过不懈的努力,使得造船数字化技术已逐步渗透到造船业价值链的每一个环节,引进或自主开发了各种各样的信息系统,已广泛应用于船舶设计、建造和管理过程中。国内一些骨干造船企业和研究院所已开始引进虚拟仿真技术,开展船舶和海洋工程的产品虚拟设计和建造过程模拟等研究。

4.船舶建造数字化技术体系

制造业数字化技术是以现代设计制造的工程方法和先进制造理论为依据,以数字化技术为手段,面向产品全生命周期,理论方法与应用技术相结合的一个复杂的技术体系。

4.1 现代制造理论与数字化技术基础

主要有计算机集成制造、并行工程、精益生产、敏捷制造、大批量定制等现代制造理论,以及建模技术、仿真技术、优化技术、集成技术等数字化技术紧密结合,形成了其技术理论基础。

4.2 数字化基础环境

主要包括计算机系统及系统软件、数据库管理系统及相关技术、网络系统及相关技术、信息安全体系、信息标准化体系等。

4.3 数字化产品开发设计技术

主要包括产品需求分析、设计开发、生产制造等各个阶段中,为分析和解决产品设计和制造过程中的各种问题而提供的数字化的技术方法和应用工具,如单项应用技术CAD、CAE、CAM、VR等,过程管理和集成平台PDM、仿真及优化应用等。

4.4 数字化制造技术

主要有数字化生产计划与制造执行控制、数字化工艺过程、数字化装备、数字化制造单元、基于数字化的生产系统综合集成等。

4.5 数字化管理技术

主要包括现代企业管理模式、集成化管理与决策信息系统、企业资源计划与管理系统、企业生产项目管理系统、企业间协作的供应链管理与电子商务技术、企业质量管理的相关技术及企业管理系统的应用实施过程及方法等。

船舶建造数字化技术是制造业数字化技术针对船舶制造的特点和具体要求的实际应用。船舶建造数字化技术体系包括现代制造与数字化技术基础、船舶产品的数字化设计技术、数字化制造技术、数字化管理技术和一体化集成技术,此外,还有数字化基础支撑环境与相关技术等。

(1)船舶产品数字化设计技术以三维建模技术、数值计算技术、CAD、PDM、并行协同技术等数字化技术为基础,按照船舶设计不同阶段及不同专业的规范和技术要求,形成船舶各设计阶段的数字化技术。

(2)船舶产品数字化制造技术以MES、CAPP、NC、过程仿真等数字化技术为基础,根据现代造船模式的要求,形成制造执行层面的船舶数字化制造技术。

(3)船舶产品数字化管理技术则是将制造业先进的管理理念和方法与数字化技术相融合,按照船舶生产管理特点,形成船舶制造数字化管理技术。

(4)一体化集成技术则是进一步在设计、制造、管理等数字化技术应用的基础上,实现信息的集成和应用的集成,达到工程的并行和协同。

上述数字化技术的研究、开发和应用需具备相应的基础环境,需要解决一些相关的关键技术,如信息标准化、编码体系、产品数据库、企业资源数据库、集成平台、信息安全体系等。

5.船舶建造集成系统

船舶建造集成系统涵盖船舶建造企业的设计、制造、管理的主要业务过程:

(1)设计方面主要包含船、机、电、舾装、涂装等专业门类的设计CAD系统、船舶设计虚拟仿真系统,以及结合生产工艺要求的各个专业的生产设计系统。设计系统生成的设计数据通过PDM(船舶产品数据管理系统)存放并管理,以PDM作为平台,为船舶制造系统和管理系统提供有关产品信息的共享。

(2)船舶建造和管理系统通常包含工程计划管理、物资与物流管理、成本管理、财务管理、质量管理、企业资源(设备与人力资源)管理,以及MES(制造执行系统)等。

(3)制造执行系统控制车间级的生产制造执行过程,如造船精度管理、资源日程计划、作业安排与执行实绩反馈等。制造和管理系统根据企业经管计划和产品生产设计的要求制订工程计划、采购计划、生产计划和其他生产准备工作,通过制造执行系统贯彻实施生产作业过程。

结语

随着信息技术的飞速发展,制造业的新思想、新方法、新技术层出不穷、日新月异,船舶建造业应该紧跟现代科技潮流,不断创新,以实现船舶建造技术的跨越式发展。

参考文献

[1]姜波.船舶制造企业项目成本管理问题及优化研究[J].现代商业,2009(26):178-178.

数字化设计与制造技术范文4

关键词 中高速;柴油机;数字化制造技术

中图分类号:TK421 文献标识码:A 文章编号:1671-7597(2014)20-0004-01

中高速柴油机广泛应用于船舶动力推进和船舶电站、陆用电站等,具有结构复杂、尺寸大、零部件类型及数量多、配套行业面广的产品特点,产品生产具有批量小、配套方案多样化的特征,制造周期较长。如何在行业内广泛深入的应用数字技术,对于提高柴油机制造业的生产效率及产品质量具有重要的意义,也是未来中高速柴油机制造技术发展的方向。

1 国内中高速柴油机企业数字化制造技术现状

我国中高速柴油机企业数字化制造技术经过十几年的摸索,在柴油机零部件设计、工艺、工装、数控加工等方面取得了一定的效果,数字化应用水平逐步提高,大致如下。

1)基础环境:计算机应用基本普及,网络建设和计算机硬件配备与时代接轨,行业通用仿真分析软件、CAD/CAM/CAE/PDM等软件系统逐步普及,与软件开发公司合作开发了部分有企业特征的专用数字化系统,形成了初具模型的数字化工作方法和能力,为数字化技术推广应用提供了保障。

2)设计、工艺技术:普及了以二维CAD软件为基础的产品、工装设计,三维CAD/CAM设计份额持续增长;CAPP技术在工艺中得到了较普遍的应用;PDM开始在企业局部应用;MES数字化信息管理系统逐步构建。

3)企业管理:在人力资源、财务管理、生产计划、车间物流计划等方面均推广了各种信息数字化技术;实现了产品生产计划和物料定额计划数字化方案制定和管理;开展了EPR、OA等管理流程优化工作,管理效率明显提升,管理成本大幅降低,应用效果显著。

4)生产线:机械加工数控设备有较大增长,关键零件实现数控编程制造;检测设备仪器采用了三坐标、数显测量尺、电子窥镜、激光扫描等数字设备;仓储管理引入计算机管理系统。

2 我国中高速柴油机数字化制造面临的问题

国内中高速柴油机数字化制造技术应用与国外先进水平仍然差距显著,数字化制造在中高速柴油机制造业中的应用广度和深度函待提高。主要表现如下。

1)数字化制造技术缺少成熟模型。企业多注重柴油机产品设计技术,一般只在部分环节上辅以数字化技术手段,忽视数字化技术系统化应用。行业缺少可参考的完整成熟数字化方案,难以形成系统化数字制造技术体系。数字化制造技术应用产生的效益、效果只是比较传统作业手段有所长进,并未充分发挥数字化功效。

2)数字化技术“信息孤岛”问题十分严峻。单位与单位甚至单位内部不同部门,不同人员之间,数字化技术系统相互隔离、各自为政。各种相互有关联的数据资源无法有效的集成和共享、交流,大量不必要的重复建设经常发生。数据共享和交流平台建设缓慢,平台建设者和使用者缺乏深入沟通,纸介质技术资料继续是部门之间信息传递的唯一“合法”手序,数字化数据更新滞后难以实战。

3)企业内部数字化系统未摆脱传统串行模式,并行工程不易实施。企业设计、工艺、生产、检验数字化应用体系串行现象突出,缺乏能够引领团队协作的数字化顶层并行设计方案,使得制造数据衔接缺乏默契,生产准备周期长,信息交流存在各种障碍,由此造成实施柴油机制造并行工程困难。

4)数字化制造技术开发滞后。柴油机企业的数字化开发能力不强,数字技术标准建设滞后于数字技术的推广应用。数字化软件企业对柴油机行业又缺少符合时展要求的长周期系统化调研,数字化软件设计也常常只是简单模仿部分传统作业模式流程,数字化模式未能深入改变传统作业思路。

3 中高速规模柴油机企业数字化制造技术的发展趋势

柴油机的研制水平要与时展相得益彰,数字化技术必须在更广的范围和更深的层次上得到应用,通过数字技术增强柴油机企业的研发能力。我国中高速规模柴油机制造正处于与数字化制造技术相结合由引进技术向自行研发的重要时期,呈现出以下趋势。

1)建立基于单一数据源制造模式。实现CAD/CAPP/CAM/CAE等多种数字技术一体化,使产品制造向无纸化制造方向发展。产品设计、工艺工装设计、加工与装配数据实现共享和继承、重组,单一数据源为产品的优化设计、性能分析、生产制造、装配、质量检验及企业生产系统规划、调度、各级过程管理与控制提供一体化模型支持,可使生产全过程信息交流无障碍、从而使产品生产效率和质量得到更好的结果。

2)实现相互关联不同资源的整合。人力资源、知识库资源、制造资源、用户资源等各种相互关联资源将进一步得到整合,基于数字技术的虚拟体系使企业各级人员能够利用数字化工具协同工作,消除“信息孤岛”现象,进一步提升各种资源的利用效率。

3)建立数字化并行网络辅助制造体系。制造系统采用并行化网络制造环境组织业务流程,实现产品和工艺设计结果的早期验证,快速响应市场需求。

4)建立支持产品全生命周期的虚拟企业协同工作平台。实现数字化工厂和数字化车间,从产品设计,工艺方案、生产计划、零件制造、装配试验、仓储物流到用户服务的快速响应系统,建立基于实现共享和交流的集成工作平台标准体系。使产品从设计到交付全过程信息无缝链接传递及反馈。

4 数字化制造技术进一步发展的思路

面对国内中高速柴油机制造业的迫切需要,数字化制造技术还需要从以下几个方面着手推动进一步发展。

1)推动流程优化。研究和分析国内外先进制造、管理模式,总结和提炼适应我国柴油机设计和制造数字化模式。以自主研发为契机,推动中高速柴油机企业在设计、工艺、制造、管理等产品全生命周期数字化流程优化,落实并行工程全面实施。

2)重点研究数字化制造统一数据库及集成应用。着重研究CAD/CAPP/CAM/PDM/MES等各类单项数字化制造技术应用系统的集成,构建基于统一数据库体系的企业级集成平台,发挥集成应用效果。

3)开展柴油机企业之间、企业与院校、研究机构、软件公司等相互交流,共同为中高速柴油机行业摸索出一条具有行业特征的系统化数字制造技术模式。

4)加强人才队伍建设。制定数字化制造技术专业人员激励、培养、锻炼计划,对技术人员和管理人员规范化和高层次地数字化制造技术培训应广泛开展。

5 结束语

数字化制造技术是全局性、体系化的新技术,涉及产品研制的各个环节,中高速柴油机是关系我国国计民生,国防安全的重要产品,数字化制造技术的应用是国内中高速柴油机企业研制的必由之路,此项技术的深入发展和广泛应用必将使国内中高速柴油机研制水平跨上一个新的台阶。

参考文献

[1]崔剑.PLM集成产品模型及其应用:基于信息化背景[M].机械工业出版社,2012.

数字化设计与制造技术范文5

关键词 数字化改装技术;三维设计;并行设计

中图分类号 文献标识码 A 文章编号 1674-6708(2016)161-0064-02

数字化技术正以前所未有的速度和深度影响着世界航空产业的发展,国内航空业也在积极响应这一趋势;试验机设计改装专业承担着我国特种试验机设计技术研究、试验机测试改装的设计/施工及机载专用试验系统研制等工作,它是我国航空产业试飞板块中重要一环,因此,数字化在航空领域的发展必将对其产生巨大影响。

试验机设计改装正在从初期的型号测试改装向特种试验机设计改装技术研究、试验机测试改装的设计/施工及机载专用试验系统研制3个方向发展;为了应对未来我国众多的试飞任务,试验机数字化改装技术显得尤为重要,它将为未来特种试验机设计研制和型号试飞任务提供高效、有力支撑。本文从技术角度提出了试验机数字化改装技术的关键要求,以及数字化改装技术建设的核心内容,以期为试验机数字化改装技术发展提供参考。

1 数字化改装技术要求

数字化改装技术的目标就是实现试验机改装数字化协同设计、制造,促进试验机研制、试飞进程,匹配国内外航空企业飞机研制的信息化、数字化新模式,提高试验机改装水平。综合国内外航空业的发展趋势以及试验机改装设计制造的自身发展需求等多方面因素,数字化改装技术应该具备以下几个方面的显著特点:

1)全三维设计。全三维设计是实现数字化协同设计制造的基础条件。全三维设计是以三维实体为最终设计结果和生产依据的设计模式,替代了原二维图样的全部功能。全三维设计技术可保证设计数据的唯一性及一致性,设计结果直观明了并可以有效提高设计、制造效率。

2)研制工作并行展开与传统产品开发过程并不相悖,它同样遵循产品开发的每一个必经阶段,而且是基于连续的信息转化实现的。研制工作并行开展就要求信息的转化伴随活动随时进行传递。

以型号新机试飞研制为例:第一,在项目的总体研制过程中,试验机设计、试验机改装设计、试验机制造等研制过程可以并行交叉进行;第二,在具体的设计阶段,试验机改装设计各系统和原机各系统的设计工作可以并行开展。设计过程中各系统之间的相互关联和相互影响不可避免,通过互相协调适应以及各系统间实时迭代设计,可使得设计工作最大限度的展开;第三,设计人员可以并行开展工作。基于相同的设计技术平台,同一系统的不同设计人员及不同系统的设计人员可以并行工作,使设计资源得到了有效的利用。试验机改装协同设计制造充分融入到试验机研制过程中,提高了试验机的研制效率。

3)跨地域协同设计制造。世界航空产业正在形成研制和市场的全球数字化协同模式,例如,我国部分主机厂就承担了欧洲空客及波音系列飞机相关部件甚至部分重要结构件的生产制造工作。这一案例充分说明了数字化协同技术已成为飞机研制活动中重要的技术手段之一,可以有力推动研制活动高效、精准开展。

外部的这种发展趋势也正在强有力的影响着我国的飞机研制产业,国内飞机研制体系正在突破传统的串行封闭式研发模式。例如,我国某型飞机研制工程项目中首先尝试采用异地协同设计、全国多地协同制造、国内外19家供应商的协同研制模式,实现了国内外不同地域的分包商和配套商的协同工作[ 1 ]。

2 数字化改装技术建设

综合分析国内外协同设计制造现状和发展趋势,结合试验机改装研制的特点及现阶段的具体情况,数字化改装技术建设应该分步进行。

第一步,进行数字化设计基础平台建设,加强数字化设计人才队伍培养,建立数字化改装技术规范。

通过第一步建设,可以实现数字化改装技术的初步目标:1)试飞机构内部实现大型试验机改装、特种试验机研制等大型项目的全三维数字化协同设计;2)具备试飞机构与主机厂所间试验机数模顺利传递的能力;3)培养出一支高素质的数字化设计队伍。

第二步,在国内航空领域条件成熟时实现行业内数字化协同改装设计制造。国内在跨地域数字化协同设计制造方面只是进行了试验性的尝试,目前还不具备行业内跨地域数字化协同设计制造的条件,但是我国航空业正在积极努力地向实现这个目标迈进。

在数字化设计基础平台建设及数字化改装技术规范方面建议如下:

1)数字化设计基础平台。在三维建模软件方面,CATIA作为世界航空领域三维设计的主流软件应该是最佳的选择。CATIA以设计对象的混合建模、变量/参数化混合建模以及几何/智能工程混合建模等先进的混合建模技术,支持从项目调研、构思、详细设计、分析、模拟、装配及维护在内的全部工业设计流程,是全球航空业界普遍使用的一个集成产品开发环境。CATIA在国内航空企业中已得到了广泛的应用。

在产品数据管理方面,ENOVIA VPM以其与CATIA在产品建模之间已紧密集成的优势成为首选数据管理软件系统,能够实现物料管理、任务流管理、事件管理、配置管理、人员组织和权限管理等,它能提供一个上下关联的设计环境,便于多专业同时开展设计工作,便于不同部门之间制定设计的优化方案,便于开展不同配置的并行设计[ 2 ]。

在协同平台方面,可以基于Windchill系统根据试验机设计和改装业务进行配置和二次开发,使之成为试验机协同研制平台。Windchill是PTC 公司的一个大型PLM软件,该软件提供了近10个功能模块,涵盖了企业级产品数据管理和协同工作平台应具备的所有功能。Windchill 还提供了功能强大的工作流引擎,能够方便地对航空企业的各种复杂工作流程进行自动化和规范化的管理和控制[3]。

对于改装数字化设计基础平台可以考虑以三维设计软件CATIA作为基本的设计工具软件,通过ENOVIA VPM系统实现对产品数据管理以及设计过程的管理,依靠基于Windchill系统进行二次开发的协同平台实现研制工作流程自动化和规范化的管理和控制。

数字化改装设计基础平台构架示意图如图1所示。

2)数字化改装技术规范。波音公司根据相关标准和规范制定了BDS-600系列规范,使参研人员在统一的规范下有序进行。我国航空企业正在建立统一的数字化设计制造规范,已经颁布和实施了关于数字化设计制造的初步标准和规范,可以看出我国航空业正在积极推进数字化设计制造规范化建设。因此,作为试验机研制的一个重要环节,数字化改装技术规范化势在必行。数字化改装技术规范应该依据我国航空业现有标准、规范的统一约定,结合试验机改装设计特点及相关要求进行制定,并随着行业标准的完善不断地修订,最后形成与全行业标准规范相统一的完善的数字化改装技术规范。

3 结论

数字化技术、信息化技术对飞机的研制及业务模式产生了深刻的影响,我国在航空领域积极推进数字化、信息化建设,试验机数字化改装技术将是试验机设计改装的发展目标之一,它将有力地推动试验机数字化研制进程。

参考文献

[1]王永栓,王晓丽,向颖,等,航空工业数字化协同现状与发展[J].航空制造技术,2009,(11):62-65.

数字化设计与制造技术范文6

在定义上和其他材料的定义方法有显著差异,其数据不但要包含几何数据,还要包含相关材料的制造信息等非几何数据。雷达罩复合材料产品数字化定义雷达罩复合材料产品的三维模型定义三维模型的定义具有特殊性和复杂性,即很多放置在模型外表的铺层固化构成了产品最后的形状。在三维模型的实体构建中,主要任务是完成材料制作信息的铺层设计。雷达罩复合材料产品的二维模型定义在数据集中,二维图纸模型是不可缺少的,主要由三维模型构成。在二维模型视图中,需要对雷达罩的结构和几何数据等信息作出完整的定义。FiberSIM能够将所有系统集中于CAD系统中,使该软件成为高性能产品设计和制造的良好工具。该软件可以提供专业的工程设计环境,高效处理在制造过程中出现的突发性和复杂性问题,运用CAD系统对复合材料产品的定义,促进内部环节的数据流畅,并且能够在整个项目内部分享此定义。运用FiberSIM软件的层次仿真技术,能够猜测材料与模具面之间的复杂贴合,支持整个雷达罩复合材料产品的工程过程,使设计人员能够在产品的几何、结构、需求及工艺约束之间进行有效衡量。运用FiberSIM软件能够对铺层的结构及纤维方向做出准确的判断,设计人员应该在初步阶段及时发现制造上的问题,并及时找出解决问题的合理方法,完成DFM。

2雷达罩复合材料产品数字化制造技术

预浸料数控下料在产品的生产制造过程中,下料是既重要又复杂的工序,应该采取自动剪裁机进行预浸料的平面切割,完成预浸料的自动下料。其作用替代了手工下料,使得每一层的放置形状和纤维方向愈加精确,而且能够将层次逐一编号,减少了在放置层次过程中的错误,其效率比手工下料高出3倍以上,节省了20%左右的原资料,此外,排样是提高材料利用率的主要因素。激光投影系统的应用FiberSIM软件能够根据构件的CAD三维设计数据,将激光反应出来的数据输入到激光投影体系中,经过特别反光镜,将构件层次形状概括线上的点按顺序投影到模具外表,但由于点的投影速度比较快,所以在操作者眼中,模具或零件外表会生成相应的鸿沟概括线,操作者可根据该概括线进行有关的定位操作(如定位铺叠等),然后完成各层次的准确定位,消除了传统的叠放模式。

3雷达罩复合材料产品数字化技术体系集成技术