人工神经网络的优缺点范例6篇

人工神经网络的优缺点

人工神经网络的优缺点范文1

 

目前国内外常用的信息安全风险评价模型主要由层次分析法(AHP)、基于概率统计的ALE算法,模糊综合评价法等,也取得了一定的研究成果。但上述算法的基本思想是基于线性映射和概率密度分布的,即各风险指标与最终评价结果之间存在着线性关系[2]。然而,这种关系的存在是否科学至今也没有得到准确的答复,同时这些方法在实施时虽然给出了定量计算的算法,但操作较为繁琐,难以达到快速识别的要求。目前应用较广泛的BP神经网络评价算法存在着网络参数难确定、收敛速度较慢且易陷入极小值等问题。为了解决上述问题,本文应用鱼群算法对BP神经网络进行了改进,结合信息安全评价实例进行了测试,并将测试数据与标准BP神经网络进行了比较与分析,取得了理想的结果。

 

一、信息安全的概念

 

所谓的信息安全评估指的是通过分析信息系统所包含的资产总值、识别系统本身的防御机制以及所受到的危险性系数,利用数学模型综合判断出系统当前的风险值。信息安全风险评估主要包括三方面的内容,分别是资产总值识别、外部威胁识别以及脆弱性识别。资产总值识别是为了识别出系统所涉及的资产总值,外部威胁识别指的是识别当前状态下系统受攻击或威胁的程度,而脆弱性识别指的是系统自身的脆弱性程度。其中综合考虑外部威胁以及内部脆弱性可以得出发生风险事件的危害性,而自然总值识别再加上脆弱性识别就可以得到系统的易损性,基于上述过程可以得到信息安全系统的风险值。

 

二、基本BP神经网络算法

 

BP神经网络算法是一种采用误差反向传播的多层前馈感知器。其特点是具有分布式的信息存储方式,能进行大规模并行处理,并具有较强的自学习及自适应能力。BP网络由输入层(感知单元)、计算层(隐藏层)、输出层三部分组成。输入层神经元首先将输入信息向前传递至隐含层节点,经过激活函数预处理后,隐层节点再将输出信息传送至输出层得到结果输出。输入层与输出层节点的个数取决于输入、输出向量的维数,隐含层节点个数目前并没有统一的标准进行参考,需通过反复试错来确定。根据Kolmogorov定理,具有一个隐层的三层BP神经网络能在闭集上以任意精度逼近任意非线性连续函数,所以本文选择单隐层的BP神经网络。

 

三、人工鱼群算法

 

3.1基本原理

 

通过对鱼类觅食的观察可知,鱼类一般能自行或者尾随其他同伴找到食物数量相对充足的地方。因此,一般鱼类数量较多的地区即为食物相对充足的区域。人工鱼群算法是指通过长期对鱼类觅食行为的观察,构造人工鱼来模拟鱼类的觅食、群聚、尾随以及随机行为,从而完成全局最优值的寻找。算法所包含的基本过程如下:

 

觅食行为:鱼类会利用视觉或嗅觉来感知水中食物浓度的高低,以此来选择觅食的路线。

 

聚群行为:鱼类一般会以群体形式进行觅食,以此来躲避天敌的伤害并以最大概率获得准确的觅食路线。

 

尾随行为:当群体中的某条鱼或几条鱼寻找到食物后,其附近的其他同伴会立刻尾随而来,其他更远处的鱼也会相继游过来。

 

随机行为:鱼在水中的活动是不受外界支配的,基本上处于随机状态,这种随机性有利于鱼类更大范围的寻找食物及同伴。

 

3.2 鱼群算法优化BP神经网络的原理

 

BP神经网络在求解最优化问题时容易陷入局部极值,并且网络的收敛速度较慢。鱼群算法通过设定人工鱼个体,模拟鱼群在水中的觅食、尾随和群聚行为,通过个体的局部寻优,最终实

 

现全局寻优。人工鱼在不断感知周围环境状况及

 

同伴状态后,集结在几个局部最优点处,而值较大的最优点附近一般会汇集较多的人工鱼,这有

 

助于判断并实现全局最优值的获取。因此用人工鱼群算法来优化BP神经网络是一种合理的尝试。

 

3.3 具体工作步骤

 

人工鱼群算法用于优化神经网络时的具体步骤如下:

 

①设定BP神经网络结构,确定隐层节点数目;

 

②设定人工鱼参数,主要包括个体间距离、有效视线范围以及移动步长等;

 

③人工鱼进行觅食、群聚及尾随行为来优化BP神经网络;

 

④通过设定的状态参量,判断是否达到目标精度;

 

⑤若达到精度要求则输出网络优化权值,并执行网络循环,否则继续改化参数进行优化;

 

⑥输出最终优化参数并进行计算机网络安全评价。

 

四、仿真实验

 

将信息安全风险评估常用的3项评价指标的分值作为BP神经网络的输入,网络的期望输出只有一项,即安全综合评价分值。目前用于信息安全风险评价的数据还很少,本文采用文献[3]所列的15组典型信息安全单项指标评价数据,其中1-10项作为训练,11-15项用于仿真。通过实际实验分析,本文将权值调整参数α=0.1,阈值调整参数β=0.1,隐层神经元数目为6,学习精度ε=0.0001。网络经过2000次训练,收敛于所要求的误差,人工鱼群算法的相关参数: 种群大小为39;可视域为0.8;最大移动步长为0.6;拥挤度因子为3.782。然后对检验样本及专家评价样本进行仿真,结果如表1所示。可以看出,鱼群神经网络得到的仿真结果与期望值之间的平均误差为0.001,而标准BP神经网络为0.0052,所以鱼群神经网络的得到的仿真精度较高,取得了理想的实验结果。

 

五、结论

 

本文将鱼群算法和神经网络结合起来对信息安全评价进行了研究,得到了如下几个结论:

 

(1) 基于鱼群算法优化后的BP神经网络具有收敛速度快、拟合精度高等优点,克服了标准BP神经网络收敛速度慢、容易陷入局部极小值的缺点。同时,优化算法编码过程简单,并具有较强的鲁棒性。

 

(2) 本文采用的实验数据仅有15个,基于鱼群算法优化后的BP神经网络精度有明显提高,避免了由于样本数量少造成的拟合精度低等缺点。

 

(3) 通过将标准BP神经网络算法与鱼群神经网络算法进行对比发现,后者的收敛速度明显加快并且自组织能力也有一定提高,在实际的工程建设中可以将其代替传统的BP神经网络算法来进行信息安全的风险评估。

人工神经网络的优缺点范文2

关键词:地形面 自由曲面 神经网络 BP算法 模拟退火

1 引言

在水利及土木工程中经常会遇到地形面,地形面是典型的空间自由曲面,地形面在给出时,往往只给出一些反映地形、地貌特征的离散点,而无法给出描述地形面的曲面方程。然而有时需要对地形面进行描述,或者当给出的地形面的点不完整时,需要插补出合理的点。以往大多用最小二乘法或其它曲面拟合方法如三次参数样条曲面、Bezier曲面或非均匀有理B样条曲面等,这些拟合方法的缺点是:型值点一旦给定,就不能更改,否则必须重新构造表达函数;在构造曲线曲率变化较大或型值点奇异时,容易产生畸变,有时需要人为干预;此外,这些方法对数据格式都有要求。

神经网络技术借用基于人类智能(如学习和自适应)的模型、模糊技术方法,利用人类的模糊思想来求解问题,在许多领域优于传统技术。用神经网络进行地形面构造,只要测量有限个点(可以是无序的),不需要其它更多的地形面信息和曲面知识,当地形面复杂或者是测量数据不完整时,用神经网络方法更具优势,而且还可以自动处理型值点奇异情况。

本文提出用BP神经网络结合模拟退火算法进行地形面的曲面构造。

2 模型与算法的选择

为了对地形面进行曲面构造,首先要有一些用于神经网络训练的初始样本点,对所建立的神经网络进行学习训练,学习训练的本质就是通过改变网络神经元之间的连接权值,使网络能将样本集的内涵以联结权矩阵的方式存储起来,从而具有完成某些特殊任务的能力。权值的改变依据是样本点训练时产生的实际输出和期望输出间的误差,按一定方式来调整网络权值,使误差逐渐减少,当误差降到给定的范围内,就可认为学习结束,学习结束后,神经网络模型就可用于地形面的构造。

BP网是一种单向传播的多层前向网络。网络除输入输出节点外,还有一层或多层的隐层节点,同层节点中没有任何耦合。输入信号从输入层节点依次传过各隐层节点,然后传到输出节点,每一层节点的输出只影响下一层节点的输出。其节点单元传递函数通常为Sigmoid型。BP算法使神经网络学习中一种广泛采用的学习算法,具有简单、有效、易于实现等优点。但因为BP算法是一种非线性优化方法,因此有可能会陷入局部极小点,无法得到预期结果,为解决BP算法的这一缺点,本文将模拟退火算法结合到BP算法中。

模拟退火算法是神经网络学习中另一种被广泛采用的一种学习算法。它的基本出发点就是金属的退火过程和一般组合优化问题之间的相似性。在金属热加工过程中,要想使固体金属达到低能态的晶格,需要将金属升温熔化,使其达到高能态,然后逐步降温,使其凝固。若在凝固点附近,温度降速足够慢,则金属一定可以形成最低能态。对优化问题来说,它也有类似的过程,它的解空间中的每一个点都代表一个解,每个解都有自己的目标函数,优化实际上就是在解空间中寻找目标函数使其达到最小或最大解。

(如果将网络的训练看成是让网络寻找最低能量状态的过程,取网络的目标函数为它的能量函数,再定义一个初值较大的数为人工温度T。同时,在网络的这个训练过程中,依据网络的能量和温度来决定联结权的调整量(称为步长)。这种做法与金属的退火过程非常相似,所以被称为模拟退火算法。)

模拟退火算法用于神经网络训练的基本思想是,神经网络的连接权值W可看作物体体系内的微观状态,网络实际输出和期望输出的误差e可看作物体的内能,对网络训练的目的就是找到恰当的状态W使其内能e 最小,因此设置一个参数T来类比退火温度,然后在温度T下计算当前神经网络的e与上次训练的e的差e,按概率exp(-e/T)来接受训练权值,减小温度T,这样重复多次,只要T下降足够慢,且T0,则网络一定会稳定在最小的状态。

模拟退火算法虽然可以达到全局最优,但需要较长时间,BP算法采用梯度下降方式使收敛速度相对较快。为取长补短,我们将两种算法结合起来,采用BP算法的梯度快速下降方式,同时利用模拟退火算法技术按概率随机接受一个不成功的训练结果,使梯度快速下降过程产生一些随机噪声扰动,从而既保证了网络训练的快速度下降,又保证了训练结果的最优性。  3网络结构与学习算法

3.1网络结构

如何选择网络的隐层数和节点数,还没有确切的方法和理论,通常凭经验和实验选取。本文采用的BP网络结构如图1所示,输入层两个节点,分别输入点的x坐标和y坐标;两层隐层,每层10个节点,输出层一个节点,输出点的z坐标。

3.2 学习算法

学习算法的具体过程如下:

其中Out_node为输出神经元集合.

4计算实例

为了检验本文算法的有效性, 我们用本文算法对黄河下游河滩地形面进行曲面构造, 地形面数据按截面给出, 我们用奇数截面上的点为学习样本, 偶数截面上的点用于检验本算法的精度. 表1给出了测量值z1与本文算法计算结果z2, z2为本算法经过大约3500次迭代的结果. 由这些数据可以看出,本文算法计算出的值与测量值的误差大约在0.02左右. 完全可以满足实际工程要求的精度.

5 结语

用神经网络进行地形面的曲面构造, 不必求出曲面的方程, 只需知道有限个点即可, 而且这些点可以是散乱点. 与传统方法相比, 神经网络方法具有很强的灵活性.

本文将BP算法和模拟退火算法结合起来, 解决了BP算法容易陷入局部极小的致命缺点. 但仍然没有解决BP算法收敛速度慢的缺点.

NEURAL NETWORK METHOD TO CONSTRUCT TERRAIN SURFACE

Abstract

This paper presents an artificial neural network approach to solve the problem of terrain surface construction. This method takes advantage of the global minimum property of Simulated Procedure on the basis of BP algorithm, thus can jump out of the local minimum and converge to the global minimum..This method were validated by simulating bottomland terrain of Yellow River.

Key words: terrain surface; freeform surface; neural network; BP algorithm; simulated annealing

参考文献

[1] 王铠,张彩明. 重建自由曲面的神经网络算法[J]. 计算机辅助设计与图形学学报,1998,10(3):193-199

人工神经网络的优缺点范文3

关键词:颅内压;遗传算法;人工神经网络;脑血流动力学参数

中图分类号:TP183文献标识码:A

文章编号:1004-373X(2010)04-170-02

Intracranial Pressure Monitoring Based on Genetic Algorithm and Artificial Neural Network

LU Lirong,ZHOU Jinyang,NIU Xiaodong

(Changzhi Medical College,Changzhi,046000,China)

Abstract:A novel intracranial pressure monitoring based on genetic algorithm and artificial neural networks after analyzing the advantages and disadvantages of the intracranial pressure detection method at present.Building a model by using back propagation neural network and optimizing by using genetic algorithm can restrain the disadvantages that the speed of the back propagation algorithm is slowly and the back propagation algorithm is easy to fall into local extremum.The needed intracranial pressure can be gained by measuring 4~6 cerebral hemodynamic parameters and inputting to this intracranial pressure prediction model.

Keywords:intracranial pressure;genetic algorithm;artificial neural network;cerebral hemodynamic parameter

0 引 言

颅内压(Intracranial Hypertension,ICH)增重时将导致脑疝,并可能危及生命[1]。颅内压的检测是颅脑疾病处理的重要前提,它可以帮助医生判断患者颅脑损伤程度并采取降压措施[2]。目前临床采用的成熟的监测颅内压技术均为有创方法,例如,腰椎穿刺,脑室内检测等。虽可较准确地反映颅内压水平,但存在以下弊端:操作繁杂、并发症较多;不适宜长期监测;仅可获得颅内压值,不能从颅内压动力学内在机制的角度,分析ICH为何种关键因素所致[3]。近年来,国内外已开展了多项无创性颅内压监测技术的基础与应用研究。以建立数学模型的方法,无创监测颅内压为其中一项活跃的研究。

人工神经网络[4](Artificial Neural Networks,ANNs)是对人脑神经网络在结构、功能及某些基本特性理论的抽象、简化和模拟,而构成的一种信息处理系统,适合解决各类拟合、预测等复杂问题。误差反向传播(Back Propagation,BP)神经网络是目前应用最广泛也是发展最成熟的一种神经网络模型。尽管在实际工作中网络得到了大量应用,但它也存在一些严重的问题:由于训练采用简单的梯度下降法进行优化训练,算法效率低下,且易陷入局部极值,造成训练失败[5,6]。

遗传算法[7](Genetic Algorithm,GA)是模拟生物在自然环境中的遗传和进化过程而形成的一种全局搜索算法。具有更好的鲁棒性。

在此针对BP神经网络的缺点,将GA与BP算法相结合,建立各相关参数与颅内压关系的数学模型,实现最优化的颅内压监控预测模型。

1 神经网络建模

大量的研究表明,颅内压值与平均动脉压、大脑中动脉血流速度、阻力指数等脑血流动力学参数有较好的定量关系[3]。即:设颅内压值为y,脑血流动力学参数平均动脉压、大脑中动脉血流速度、阻力指数等的值分别为x1,x2,x3…,则有:

y=f(x1,x2,x3)(1)

人工神经网络理论已经证明,三层BP神经网络可以逼近任何函数[8,9]。因此可以利用BP神经网络来建立颅内压模型从而可以最优化地逼近式(1)这个函数。

图1为利用BP反向传播神经网络建立颅内压模型[10]。平均动脉压、大脑中动脉血流速度、脉动指数、阻力指数等脑血流动力学参数作为输入层,隐含层的神经元个数由实验反复确定,直到网络输出的颅内压值与实验所得的颅内压值之间的误差在所允许的范围,此颅内压模型确定。

图1 BP神经网络建立颅内压模型

2 遗传算法优化

BP神经网络算法虽然具有简单和可塑性强的优点,但是收敛速度慢,且常受局部极小点的困扰,不利于网络的优化。而GA可以克服此缺点。因此用GA来对此模型进行优化。流程图如图2所示。

图2 GA优化流程图

具体步骤为:

(1) 初始化:随机产生N组在不同实数区间内取值的初始网络权值。

(2) 预训练:用 BP算法对N组初始权值分别进行预训练。

(3) 判断是否满足精度要求:若经过预训练后N组权值中至少已有一组满足精度要求,则算法结束;否则转入步骤(4)。

(4) 生成新权值:分别依据经过预训练的上述N组权值所对应的上下限确定取值区间,在区间内随机生成r×N组新的权值,连同经过预训练的N组权值一起,构成完整的基因群体,生成共(r+1)×N组权值。

(5) 遗传操作:对这(r+1)×N组权值进行选择、交叉、变异等遗传操作。

(6) 判断算法是否结束:如果经过步骤(5)的操作已经至少得到一组满足精度要求的权值,则算法结束;否则从经过遗传操作的这(r+1)×N组中选出N组较好的,恢复到步骤(2)。

3 结 语

在此利用遗传算法和人工神经网络建立颅内压的预测模型。通过测量4~6个脑血流动力学参数,输入进此模型,即可得到所需颅内压值。通过建立此模型,为相关临床医学专业医师无创、实时、准确监测颅内压提供了一种新方法。

参 考 文 献

[1]郭玉璞.脑血管病的病理学[M].北京:科学出版社,1993.

[2]刘常春,曹佃国,姜安宝,等.一种新的无创检测颅内压的数学模型[J].山东大学学报:工学版,2004,34(6):62-65.

[3]曾高,焦风,李运海,等.用数学模型实现无创颅内压监测的现状与应用前景[J].中国脑血管病杂志,2007(9):418-420.

[4]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2005.

[5]姜谙男,赵德孝,孙豁然,等.进化神经网络在矿山入选品位优化中的应用[J].矿业研究与开发,2004,24(4):44-46.

[6]何翔,李守巨,刘迎曦,等.基于遗传神经网络的坝基岩体渗透系数识别[J].岩体力学与工程学报,2004,23(5):751-757.

[7]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.

[8]Homik K,Stinchcombe M,White H.Mulilayer Feedforward Networks are Universal Approximators[J].Neural Networks,1989,2(5):359-366.

人工神经网络的优缺点范文4

关键词:轧制力;BP神经网络;加法模型

0 引言

BP神经网络属于人工智能方法,而人工智能方法与传统轧制理论不同,它是模拟人脑,以已经发生了的实实在在的事情为依据来指导轧制生产 [1]。目前将人工智能的方法引入到轧制生产中已经成为轧制发展的趋势。

1 数学模型与BP神经网络结合实现对轧制力的预报

目前神经网络用于轧制力预报主要两种方式[2],一种是直接用神经网络去预报轧制力。另一种是采取神经网络和传统数学模型结合来预报轧制力。而将神经网络和数学模型结合起来,能够发挥二者的优势。目前结合方式有加法模型和乘法模型[3],本论文拟选用加法模型,即用传统轧制力模型算出轧制力的主值,用神经网络来预测传统模型计算误差,以二者的和做为最后的输出。

2 BP神经网络设计

BP神经网络结构的设计包括输入、输出层节点数,隐含层层数和隐含层节点数的确定,神经网络训练算法的选取等。

1)网络输入、输出变量的确定

选用入口板厚、出口板厚、轧制温度、轧制速度、摩擦系数为神经网络输入,以实际轧制力与传统模型预测轧制力之间差值为神经网络输出。

2)隐含层数数目和隐含层节点数的确定

一般来说,先根据经验公式初步确定隐含层节点数,然后经过多次试算,综合考虑逼近精度、泛化能力和训练时间,确定最终的隐含层节点数。本论文通过多次试算,最后确定网络结构为5-9-14-1,即输入值为2,隐含层数为2,第一、二隐含层节点数分别为9、14。

3 样本数据的选择以及预处理

1)BP神经网络训练和测试数据的选取学习样本数量与网络结构存在如下关系[4]:

式中,n、m分别为神经网络输入、输出变量数目;h为隐含层节点数目;p为学习样本数目;

以某公司"1+4"铝热连轧现场采集的实测数据为训练样本,剔除掉不稳定轧制阶段数据和奇异点数据,从三卷实测数据中选取200组数据用于神经网络训练,选取第二卷、第三卷数据中100组数据用于神经网络测试。

2)数据归一化处理

由于网络一般含有多个输入,而每个输入在数值上可能相差很大从而导致输入变量之间不具有可比性。而对数S形函数的值域为[0,1],在靠近0和1两端函数变化非常缓慢接近直线。为了防止大数将小数淹没的情况发生,一般要对原训练数据进行归一化处理。本论文将原数据归一化到[0.1,0.9]区间,公式如下:

4 神经网络修正轧制力过程

考虑到有四个机架,而每个机架具有相同的物理结构,构造4个具有相同结构的BP神经网络模型。从第一卷现场采集数据中读取相关数据后,采用经典轧制理论模型计算轧制力、轧制温度和摩擦系数,然后进行归一化处理以确定神经网络的训练输入、输出数据。然后读取第二卷数据,以传统轧制力模型计算轧制力主项,以神经网络预测模型误差,得到网络输出后进行反归一化处理然后与轧制力主项相加,得到最终的轧制力。

5 神经网络轧制力修正结果与分析

以第一机架轧制力计算为例,将神经网络用选取的样本数据训练好后,用测试数据对神经网络进行测试,以检测神经网络的泛化能力,验证神经网络的有效性。其中,用第一卷轧制数据作为样本数据对神经网络进行训练,用第二卷轧制数据对神经网络模型进行验证。神经网络对传统模型轧制力进行修正后预报情况图1、2所示,从图中可以看出,采用神经网络对传统轧制力模型进行修正后,轧制力预报精度得到提高。采用传统模型计算轧制力,最大误差为9.8380%,而采用神经网络修正后,第二卷铝轧制力预报最大误差为2.7962%,可见修正后轧制力模型预报精度得到进一步的提高。

6 结论

本论文在考虑经典轧制力数学模型与BP神经网络各自的优缺点的基础上,采用BP神经网络与传统轧制力模型相结合的方式用于轧制力的预报。计算结果表明,将训练好的神经网络与传统模型结合起来,可以在一定程度上提高轧制力预报模型计。

参考文献

[1] 张小平,秦建平. 轧制理论 [M].北京,冶金工业出版社,2006: 111-120.

[2] 张延华,刘相华,王国栋. BP神经网络和数学模型在中厚板板凸度预报中的综合应用[J]. 塑性工程学报,2005,12(4):58-61.

[3] 王秀梅,王国栋,刘相华. 人工神经网络和数学模型在热连机组轧制力预报中的综合应用[J].钢铁,1999,34(3):39-40.

人工神经网络的优缺点范文5

【关键词】BP算法 蚁群优化算法 放大因子 神经网络

伴随着近年来对于人工智能(Artificial Intelligence)研究的不断深入,其中一项重要的分支内容也越来越引起人们的重视,即人工神经网络,这一技术研究现已经广泛的应用到了信息处理、车辆检测、价格预测等多个领域当中。而BP网络神经算法则是应用普及程度最高的一项神经网络内容,然而这一传统的神经网络算法却存在有一些较为显著的缺陷性,如局部不足、收敛缓慢、缺乏理论指导等,因此有必要对传统的算法进行改进。据此本文主要就通过对于上述问题的分析,提出了引入放大因子以及应用蚁群优化算法两项改进手段,并通过将改进后的算法应用到瓦斯浓度检验中,有效的验证了这一算法的科学性。

1 传统BP算法的缺陷

1.1 收敛缓慢

因为BP神经网络的误差函数的曲面图像十分复杂,因此极有可能会有一些相对较为平坦曲面的存在,在起初之时的网络训练收敛值较大,然而伴随着训练的进行,在训练行进到平坦曲面位置时,依据梯度下降法,便极有可能会发生尽管误差值较大,然而误差梯度值却较小,进而也就导致权值的可调整值变小,最终仅能够采取加多训练次数的方式来逐渐退出目标区域。

1.2 局部不足

尽管BP算法能够促使均方误差达到最小化权值与阈值,然而因为多层网络结构的均方误差存在有极大的复杂性特点,既有可能导致多项局部极小值情况的出现,从而使得算法在敛收之时,无法准确的判定出是否求得最优解。

1.3 缺乏理论指导

由于仅在接近于连续函数的情况时才需多层隐含层,但是在实际情况下往往是选用单层隐含层,这就会导致一个十分明显的问题,即隐含层神经元的数量大小是对网络计算的复杂性是具有直接性影响的,从理论层面来说神经元数量越多,所得到的求值才能够越精确,然而现实情况往往都是依据经验公式,以及大量的实验验证来明确出相应的隐含层神经元数量,这必须要借助于大量的运算处理才能实现。

2 算法改进

2.1 放大因子的引入

在精确性允许的前提下,为了获得更大的几何间隔,可放宽容错性,为阈值增添以一定的松弛变量。但还在BP神经网络的学习过程当中,因为样本所出现的随机性改变,在通过归一化处置后,于初期学习阶段,样本的训练误差较大,收敛较快,然而伴随着训练的持续进行,特别是在样本训练结果无限趋近于1/0之时,这是训练便会达到平台期,也就是相对停滞阶段。

在将放大因子运用到实际训练当中,对隐含层与输出层当中的权值采取调整,所产生的神经网络训练结果影响,要明显超过输入层和隐含层当中权值调整所造成的影响,因而在本次研究当中,将放大因子应用在了隐含层和输出层权值的调整之中。

2.2 应用蚁群优化算法

蚁群优化算法是一种对离散优化问题进行求解的通用型框架。在某条具体路径当中所经过的蚂蚁数量越多,相应的信息条件密集性也就越大,从而这一路径被选取的概率也就越大,其呈现出的是一种正反馈的现状情况。每一只蚂蚁在仅穿过任一节点一次的情况之时,对被选用的权值节点进行明确的记录,从而该区域之中的节点也就组成了一组候选权值,在所有蚂蚁均完成了首次选择后,依据全局更新策略来对信息素的密度进行更新。直至满足于最大进化代数,也就得到了最佳的权值组合。

3 实验分析

3.1 变量选取

考量到瓦斯浓度影响因素所具备的的不确定性,因此可对各类因素予以筛选,在对短期预测不造成影响的情况下,来选择出影响力最大的因子。在瓦斯浓度监测的特征变量中主要包括有风速、温度、负压、一氧化碳浓度、瓦斯浓度。

3.2 参数选择

依据上述特征变量内容,此实验的BP神经网络结构便可明确为输入层4项:风速、温度、负压、一氧化碳浓度,输出层1项:瓦斯浓度。针对以上特征变量依次选用传统BP算法与改进后的算法进行测量,隐含网络层均为1个。隐含层节点可通过下列公式予以验证:

m=0.618*(input+output)

在这一公式当中input与output即为输入层与输出层节点数量。BP神经网络算法的训练数共1100,预计误差值为0.0011,其中隐含层应用Sig mod函数,在输出层之中应用线性函数。蚁群优化模型最终其规模明确为600,权值区间取[-1,1],迭代次数取1100次。

3.3 结果分析

在考量到具体运用时的科学性,可编写一项测试软件,针对数据内容予以计算处理,并将多次试验所得数据信息予以对比,改进之后的BP神经网络和传统BP网络其检测精确性如表1所示。

通过观察表1,能够明显的发现,经过改进的BP神经网络算法其训练拟合度相较于传统BP神经网络算法而言更高,同时准确率也显著提升了3.82%,收敛速度也有了显著的提升,权值选取也有了理论性的指导。

4 结束语

总而言之,传统的BP神经网络算法存在收敛速度较慢、且容易陷入到局部不足以及缺乏理论指导的设计陷阱,本文主要通过对放大因子的引入,使得BP神经网络算法在实际训练时的权值调整方式发生了转变,进而通过应用蚁群优化算法来实现了对于BP神经网络权值的选择,并构建起了相应的神经网络模型以及改进后的训练方法。最终将此改进之后的BP神经网络算法应用到瓦斯浓度预测领域之中,其效果明显优于传统的BP神经网络算法。

参考文献

[1]杨红平,傅卫平,王雯等.结合面法向和切向接触刚度的MPSO-BP神经网络算法的建模[J].仪器仪表学报,2012(08).

[2]陈桦,程云艳.BP神经网络算法的改进及在Matlab中的实现[J].陕西科技大学学报(自然科学版),2014(02):45-47.

人工神经网络的优缺点范文6

关键词:智能化 交流电机 控制

中图分类号:文献标识码:A文章编号:1007-9416(2010)05-0000-00

引言

交流传动代替直流传动已成为不可逆转的趋势,由于交流电机的非线性多变量耦合性质,其控制策略的研究引起很多学者的兴趣。从控制原理和电动机模型出发,基于稳态模型的控制策略和基于动态模型的控制策略研究已经进入实用阶段,有些控制方法已经非常成熟。但是从本质上看,交流电动机还是非线性多变量系统,应该在非线性控制理论的基础上研究其控制策略,才能真正揭示问题的本质。非线性反馈解耦与精确线性化控制,基于无源性的能量成型非线性控制,基于逐步后推设计方法的非线性控制等等;虽然在理论上成果累累, 但由于它们的共同基础是已知参数的电机模型,参数的变化仍不可避免地要影响控制系统的鲁棒性。滑模变结构控制能使控制效果与被控对象的参数和扰动无关, 因而使系统具有很强的鲁棒性;它本质上是一种开关控制, 在系统中不可避免地带来“抖动”问题, 如何消弱抖动又不失强鲁棒性, 是目前需要研究的主要问题。近年来受到控制界十分重视的智能控制, 由于它能摆脱对控制对象数学模型的依赖,已成为众所瞩目的解决鲁棒性问题的重要方法。下面就交流传动中常用的智能控制策略进行梳理,对比分析他们的特点。

1 模糊控制

模糊控制是一种典型的智能控制方法,它不依赖被控对象的数学模型,可以克服非线性因素,对被调节对象的参数具有较强的鲁棒性,通常根据速度的误差信号和误差信号的微分设计在线调整系数或者结构的PID控制器,调整的策略采用模糊控制的原理。还有学者把模糊控制器的输出直接变为控制量,从仿真曲线来看,都取得了一定的效果。

由于常规模糊控制的控制规则一旦确定则无法改变,且存在稳态误差,对于控制性能较高的交流传动系统,常规模糊控制则无法胜任。自调整模糊方法根据系统性能指标调整比例因子,再根据误差E和误差变化EC修改规则因子

根据典型阶跃响应曲线,确定在系统不同运行阶段输出量U的控制规则。修正 自调整公式。修正 自调整公式。

但是这种方法在粗调比例因子 中,对数量级因子 要求过高若该值过大,系统易超调,过小调整次数相应增加,故应根据实际系统调整为一个适当的值,需经过反复。

模糊控制的最大优点是不依赖被控对象的数学模型,缺点是隶属度函数及控制规则必须经过反复精心整定,使得控制精度不高,由于控制规则经整定后就不再改变,当对象发生漂移时,不能进行有效调整,从而限制了自适应能力。人工神经网络具有很好的学习能力和准确的拟和非线性函数的能力模糊控制和神经网络相结合能克服这些缺点。

基于神经网络的模糊控制器实质是用BP网络表示模糊控制规则,模糊规则经过神经元网络的学习,以“权值”的形式体现出来,规则的生成和修正就可以转化为权值的初始确定和修改,在此基础上进行离线学习和在线学习。其缺点:虽然可以调整控制规则,但是由于神经网络学习速度的限制,导致系统有一定的滞后。

模糊控制在应用通常有以下的方法和趋势:

(1)参数自调整模糊控制

比例因子自适应调整法是根据e,ec的大小变化,不断修改其量化因子GE,GEC和控制量u的比例因子GU.

(2)将模糊控制与传统控制相结合,根据误差的大小,来选择不同的控制方式。

(3)与其它智能控制相结合。如神经网络,遗传算法,通过其他智能控制的特点来修改控制规则,适应系统实际的需要。

2 神经网络

采用基于BP学习算法的神经网络代替PID控制器发挥作用,它在输入端得到误差信号,误差经过处理后,分别做为比例项,积分项,微分项输入到神经网络。经过初始权计算后,在输出层得到一个输出信号提供给被控电机。电机输出经反馈到输入端与期望值比较后,得到新的误差信号,这个误差信号,以部分用于修正权值,以部分供给神经网络控制器作为修正权值,利用它重新计算得到一个新的输出,直到系统稳定。该方法代替原有PID控制方案,自适应特性良好,但结构规模较大,算法复杂,应用成本较高。

改进方法:BP+PID控制。输入提供给常规PID和神经网络控制器,根据被控对象的实际输出与期望值比较而得到的偏差,二者进行切换,送给电机做输入。该方法代替原有PID控制方案,自适应特性良好,但结构规模较大,算法复杂,应用成本较高。

单神经元是神经网络的最基本结构,在神经网络控制中,单神经元是最基本的控制单元。目前由于缺乏相应的足够快的硬件支持,大规模神经网络用于解决实时控制问题,速度难以满足需要,因此用单神经元构成控制器引起了控制学者的广发兴趣。

采用联想式学习规则将Hebbian学习和监督式学习相结合,通过关联搜索对未知的外界作出反映和作用。所以神经元方法的应用主要有以下特点:

(1)人工神经网络自适应控制

用人工神经网络代替传统的PID或PI控制器,这种控制器充分利用了神经元的自学习功能,在运行中根据被控对象特性的变化,对神经元的权值进行在线调整,使得整个控制器能得到PID控制的特性。其中算法有无监督的Hebb学习规则,有监督的Delta学习规则和有监督的Hebb学习规则。

(2)人工神经网络参数辨识和估计

如基于BP,神经网络和RBP神经网络和基于CMAC

(3)复合智能控制

将人工神经网络与其它智能方法结合,如迷糊控制,充分利用两者的优点控制系统的运行。加入遗传算法改进神经网络中的权值,适应系统变化。《遗传算法的神经网络在交流调速系统中的应用》

将人工神经网络与传统控制方法结合,如根据误差信号的大小。在线切换控制器,可以使系统具有更好的鲁棒性和自适应性。

但其中也有缺点:

(1)单神经元的在线自学习需要一定的时间,其权值调整有一个过程,导致系统的启动时间稍长。

(2)由于增益K不具备在线学习调整的功能,因此对于调速范围很宽的系统,难以保证在整个调速范围内都能够达到很好的调速性能。

3 遗传算法

由于遗传算法的快速全局收敛性以及增强式学习等性能,使其比常规的PI控制器及原有模糊控制器具有明显的优越性。基于遗传算法的自适应PI控制器主要原理是:遗传算法用作在线估计,控制信号由常规的PI控制器发出。先用遗传算法对原有PI参数进行离线优化,然后接入控制系统,一方面实时地给出最佳的PI参数,另一方面还要继续学习,不断的调整PI参数,以适应被控对象的变化。基于遗传算法的应用特点如下:

(1)遗传算法作为一种参数自寻优控制方法,可与传统方法相结合,在线调整控制器的参数,跟踪系统响应,提高控制精度。

(2)与其他智能控制方法相结合。如与模糊控制相结合,利用遗传算法寻的比例因子,规则因子或隶属度函数的最优值。与神经网络相结合,改变权值,适应系统的变化。

(3)提高遗传算法的计算精度可以与各种算法相结合。

有学者研究在永磁同步电动机上采用粒子群和模糊控制相结合的控制方法,主要思路如下:利用粒子群算法对控制器的3个比例因子参数Ka,Kb,Ku进行全局优化,这样就可以随环境变化及负载变化实时跟踪模糊控制器的参数变化,提高模糊控制器的鲁棒性和控制精度。

设计原理如下:

(1)确定粒子群的解空间及把真个解空间区域化。确定初始个体最优解和全局最优解。

(2)利用粒子群算法中的迭代公式得到新的解,并检验适应度函数。确定个体极值,并与全局最优解进行比较。若在允许误差范围内,停止迭代,否则重复2)

(3)此时得到的全局最优解做为模糊控制的三个比例因子。

这种控制策略的特点是:

(1)粒子群算法比遗传算法结构简单,运行速度快。

(2)粒子群算法的搜索空间也是建立在系统运用传统方法设计的基础之上的。

(3)为了避免粒子群优化算法在解空间搜索时出现在全局最优解附近“振荡”的现象,可对迭代更新公式中的加权因子w进行更新。

参考文献

[1] 刘航,徐杜,蒋永平.基于自调整模糊控制方法的变频调速实验系统.工业仪表与自动化装置 2002年第3期.

[2] 刘权中,李玉东,杜庆楠.模糊神经网络控制在交流调速系统中的应用.矿山机械 2004.04.

[3] 曲道奎,史敬灼.交流电机系统中的模糊控制研究.信息与控制 2003.02.

[4] 任敏.交流伺服系统神经网络PID控制.沈阳工业大学学报.2001年10 第23卷 第5期.

[5] 刘琴妹.神经网络控制的交流位置伺服系统.电气传动自动化.Vol.20,No.2May 1998

[6] 吴莹莹,夏斌,刘桥.遗传算法的神经网络在交流调速系统中的应用贵州大学学报 Vol.23 No.1 Feb.2006.

[7] 吕志来,张保会,哈恒旭.基于遗传算法的自寻优模糊控制器的研究与应用 煤矿自动化 2001年第2期.

[8] 林峰,蒋静坪.遗传算法在交流调速系统中的应用《电力电子技术》 1997年第2期.

[9] 胡海兵,胡庆波,吕征宇.基于粒子群优化的PID伺服控制器设计.浙江大学学报 2006年12月.第40卷第12期.

[10] 祁春清,宋正强.基于粒子群优化模糊控制器永磁同步电机控制.中国电机工程学报 2006年9月.第26卷 第17期.