生物燃料行业研究范例6篇

前言:中文期刊网精心挑选了生物燃料行业研究范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物燃料行业研究

生物燃料行业研究范文1

为了应对全球能源、气候危机,帮助汽车摆脱对石油的依赖,通用汽车部署了全球新能源战略,致力于提高现有能源的燃油经济性以及开发使用替代能源和新型动力推进系统。可持续生物燃料,特别是基于非粮食原料的下一代纤维素乙醇燃料的研发和商业化,在通用汽车既定并正在实施中的新能源战略中是一个重要而优先的组成部分。

10月20日,通用汽车举办了“聚焦中国、分享全球经验”――通用汽车可持续生物燃料研发媒体沟通会,旨在与中国分享通用汽车在可持续生物燃料领域全球领先的技术和理念,进一步落实基于全球能源安全及能源多样化的新能源战略,支持中国可持续发展车用能源及交通体系。

通用汽车全球能源系统总监Andreas Lippert在分析中国生物燃料行业现状时表示:通用汽车认为,在寻求降低对石油依赖的所有替代能源技术途径中,可持续生物燃料是近期最可行的解决方案。

通用汽车在可持续生物燃料研发及商业化领域均居于世界领导地位,已经生产超过500万辆混合使用生物燃料及石油的生物燃料驱动轿车及卡车。在美国,通用汽车预计其生物燃料汽车产量将在2012年前占其全球汽车产量的50%。

目前,中国是位于美国和巴西之后的世界第三大乙醇燃料生产国,年产约10亿加仑。根据通用汽车在北京清华大学成立的中国车用能源研究中心的研究进程,通用汽车已经开始成功地评定可持续生物燃料在中国车用能源领域的发展潜力。

通用汽车中国公司副总裁陈实表示,中国可以在非粮食耕作土地上,利用林作物的废弃物、包括柳枝稷的能源作物、甚至垃圾生产纤维素乙醇燃料。因此,可持续生物燃料的发展对中国车用能源来说,将起到极大的推进作用。“我们相信由Coskata、Mascoma这样的公司所致力研发的下一代纤维素乙醇燃料解决方案在中国市场将有令人振奋的潜力。”陈实说。

通用汽车认为,中国是率先应用可替代能源动力推进系统的最佳市场。通用汽车会落实对中国的承诺,利用先进的解决方案帮助加速中国汽车行业新能源汽车的发展,也将为中国的汽车消费者提供更节能、更清洁、更环保的产品。

陈实表示,通用汽车将持续推进其“立足中国、携手中国、用心中国”的在华战略,帮助中国车用能源多样化的解决方案的探索及其商业化。

今年1月和5月,通用汽车分别宣布与美国Coskata及Mascoma公司在新一代乙醇燃料技术领域内建立战略联盟,以加速其商业化进程。两个合作伙伴分别研究不同的生产工艺及其商业化途径。Coskata公司专注纤维素乙醇燃料,原料来自任何农业及城市生活含碳废弃物;Mascoma公司的研发方向在第二、三代可持续生物燃料,原料来自任何林作物的废弃物。

生物燃料行业研究范文2

事实上,多年来,生物燃料作为一种新型能源一直被多国广为探索。不久前,中国商用飞机有限责任公司也携手波音公司进军航空生物燃料研发高地,双方成立节能减排技术中心,寻求提炼航空燃料的妙方。

而在这方面,英国算得上是佼佼者之一。早在2008年,英国的维珍大西洋航空公司就进行了首次使用生物燃料的航空飞行。这次飞行的机型是波音747,航程从伦敦到阿姆斯特丹,在一个飞机引擎中添加了20%的生物燃料,其原作物是椰子和巴西棕榈树。

生物燃料是当前全球应对气候变化讨论中的一个热点话题。如今,英国作为积极应对气候变化的国家,非常重视推动生物燃料的发展,在政策、商业、科研等方面都做了大量工作。虽然全球整个生物燃料市场的前景还面临一些争论,但英国的生物燃料产业仍在稳步发展。

1、用废弃食用油换乘车打折卡

据统计,在2009/2010财年英国车辆所使用的生物燃料中,约71%是生物柴油,约29%是生物乙醇,还有很小一部分的生物甲烷。

目前,一些英国公司正在通过国际合作发展生物燃料。例如英国石油公司与美国Martek生物科学公司签署了合作协议,共同开发把糖分转变为生物柴油的技术。英国“太阳生物燃料”公司前几年曾在非洲大量投资,购买土地种植麻风树,以便从麻风树果实中提炼生物燃料。

在英国国内,一些公司通过回收废弃食用油来生产生物燃料。例如英国最大的公交和长途公共汽车运营商STAGECOACH就有这样一个项目,该公司向居民发放免费容器盛装废弃食用油,居民以此换取乘车打折卡,所收集的废油被送到一家能源公司制成生物柴油,供STAGECOACH公司的部分车辆作为燃料使用。

虽然生物燃料现在还主要应用于车辆,但英国一些航空公司已率先进行了航空业使用生物燃料的探索。例如“维珍大西洋”公司在2008年进行了全球首次使用生物燃料的试飞,在一架波音747客机的一个引擎中加入了20%的生物燃料,从伦敦飞到了阿姆斯特丹。

2、科学界热衷生物燃料

据介绍,英国科学界非常热衷于研究生物燃料,相关研究走在世界前列。有些研究关注如何降低生物燃料的成本,如帝国理工学院等机构研究人员在《绿色化学》上报告说,用木材制造生物燃料时常需要将木材粉碎成很小的颗粒,这个过程需要消耗不少传统能源,估计每粉碎一吨木材需消耗约8英镑的能源。但如果在粉碎过程中加入某种离子液体作为剂,可以把这个环节所消耗的能源量降低80%,把粉碎每吨木材消耗的能源成本降低到约1,6英镑。据估算,最后得到的生物乙醇的价格有望因此降低1 O%。

除成本研究外,还有些研究在探索使用不同的原材料来生产生物燃料。使用甘蔗、玉米等农作物来制造生物燃料常被指责与民争粮、与粮争地,但如果使用通常废弃的秸秆等部位来制造生物燃料就可以避免这个问题。秸秆的主要成分是纤维素,如何分解纤维素一直是个难题。

英国约克大学等机构的研究人员在美国《国家科学院学报》杂志上说,他们从真菌中发现了一种名为G H61的酶,它能够在铜元素的帮助下以较高的效率分解纤维素,使其降解为乙醇,然后用以制造生物燃料。

此外,树木枝干和许多植物的茎秆中还含有许多通常难以分解的木质素,英国沃里克大学等机构研究人员在《生物化学》杂志上说,一种红球菌能分泌一种具有分解木质素能力的酶。这种红球菌可以大量培养,因此也可以用于分解植物茎秆制造生物燃料。

3、民众自制生物燃料

尽管生物燃料在英国获得商界及科学界人士的“全方位”支持,但对于大部分英国民众来说,是否在开车时使用生物燃料仍取决于它的价格,单纯出于环保目的而使用生物燃料的人群毕竟还是少数。

对于使用柴油发动机的汽车来说,许多车辆不需要改装就可以烧生物柴油,而现在英国一些加油站出售的柴油价格在每升1.4英镑左右,有公司出售的生物柴油售价在1.25英镑左右,但每升生物柴油能驱动车辆行驶的距离通常低于传统柴油,因此消费者往往会随着油价的波动和性价比的变化,选择是否使用生物燃料。

有意思的是,有些具备相应知识的英国民众还自制生物燃料,这样会比买油便宜得多。

根据英国《每日电讯报》报道,萨默赛特郡的詹姆斯。莫菲就是这样一个例子。他从两家餐厅购入废弃食用油,每升只需1 O便士;在筛去渣滓后,向其中加入甲醇和氢氧化钠等化学物质,经过加热和沉淀等过程,就能得到自制的生物柴油。

他说,自己开车每月消耗150升生物柴油,制造这些生物柴油的成本是每升约18便士,这比市场价格要便宜得多。根据英国税务海关总署的规定,民众每年自制生物柴油2500升以下无需交纳任何费用。因此,像莫菲这样自制生物柴油的民众可以给自己省下一大笔钱。

4、政府稳步推进

在英国能源与气候变化部201 1年的《英国可再生能源路线图》中,有关机构专门列出了有关生物燃料的目标。其中提到,在2009/201 0财政年度,英国道路上行驶的车辆使用生物燃料的比例占道路交通所用总燃料的3,33%,这个比例在近几年一直处于增长之中,英国计划到2014年将其提高到5%。

由于生物燃料主要用于供给车辆,英国交通部也参与了相关管理工作,负责《可再生交通燃料规范》的实施。根据这项法规,英国每年销售量在45万升以上的燃料供应商必须使生物燃料等可再生能源在其销售量中达到一定比例,如果自身销售的生物燃料达不到相应比例,则需要花钱从其他超额完成任务的燃料供应商那里购买相应份额。

这个比例是逐年上升变化的,目前的指向是前面提到的在2014年5%的目标。客观地说,这是一个稳健的目标,每年的上升幅度不大,显示出英国政府稳步推进生物燃料发展的态度。

此外,英国政府还对生物燃料的标准进行了规定,即与传统化石燃料相比至少能减排温室气体35%以上,并且原料产地的生物多样性不能因为生产生物燃料而受到影响。这是为了让生物燃料能够切实起到保护环境的效果。

5、前景还不明朗

需要说明的是,英国的生物燃料虽稳步发展,但仍称不上达到“快跑”的程度。

一方面,英国商界虽然在发展生物燃料方面做出了诸多探索,但并没有出现特别明显的增长,一些项目还遇到了问题。比如有报道称太阳生物燃料公司在非洲某些国家的项目已经终止,维珍大西洋公司虽然率先探索在飞机上应用生物燃料,但现在全球已有多家航空公司实现了使用生物燃料的商业化飞行,而维珍大西洋公司却没有太多进一步的消息。这可能与联合国气候变化谈判结果波动和全球生物燃料市场本身的前景也还面临一些争论有关。

生物燃料行业研究范文3

关键词 生物质固体燃料;烟叶;烘烤;现状;前景;云南景谷

中图分类号 S572;S216 文献标识码 A 文章编号 1007-5739(2017)05-0243-02

Abstract The biomass solid fuel is a new high efficience and clean fuel.Its utilization status in tobacco flue-curing of Jinggu County was introduced.The application prospect of biomass solid fuel was analyzed,and in view of the existing problems,countermeasures were proposed for further development.

Key words biomass solid fuel;tobacco leaf;curing;status;prospect;Jinggu Yunnan

生物质固化燃料是将作物秸秆、稻壳、木屑等农林废弃物粉碎后送入成型器械中,在外力作用下压缩成需要的形状,然后作为燃料直接燃烧,也可进一步加工形成生物炭[1]。生物质固体燃料的主要形状有块状、棒状或者颗粒状等[2]。生物质固体燃料具有体积小、容重大、贮运方便,易于实现产业化生产和大规模使用;热效率高;使用方便,对现有燃烧设备包括锅炉、炉灶等经简单改造即可使用;容易点火;燃烧时无有害气体,不污染环境;工艺和设备简单,易于加工和销售;属可再生能源,原料取之不尽,用之不竭等特点[1,3]。

1 景谷县烟叶烘烤燃料使用情况

景谷县位于云南省普洱市中部偏西,地处东经100°02′~101°07′、北纬22°49′~23°52′,总面积7 550 km2,人均占有土地2.67 hm2,人口密度38人/km2。有热区面积48.8万hm2,占总面积的64.6%,北回归线从县城附近通过,总地势由北向南倾斜,最高海拔2 920 m,最低海拔600 m,典型的南亚热带地区。由于生态环境良好、土地资源丰富、光热水气条件优越,适合烤烟种植,烟叶清香型风格特征较明显,具有香气绵长、透发、明快,留香时间较长,饱满丰富感较好,烟气较为柔和等特点,具有较高的使用价值,深受省内外卷烟工业企业的喜爱。目前,烤烟已成为景谷县重要的农业经济作物之一,成为财政收入的重要来源和烟农脱贫致富的重要途径。2016年景谷县烟叶种植面积4 546.67 hm2,收购烟叶1.075万t,全县烟叶烘烤燃料以煤炭为主,按照1 kg干烟叶耗煤量1.5~2.0 kg[4]计算,景谷县2016年的烟叶烘烤用煤达到16 125~21 500 t,在烟叶烘烤中大量使用燃烧煤炭释放出的烟尘、SO2、NOX、Hg、F等对大气环境造成污染[5]。

2 生物质固体燃料应用现状

2.1 生物质固化成型设备研发现状

生物质固化成型技术根据不同加工工艺可以分为热成型工艺、常温成型工艺、碳化成型工艺等几种类型;根据成型压缩机工作原理不同,可将固化成型技术分为螺旋挤压成型、活塞冲压成型和环模滚压技术[6]。我国在生物质固化成型设备上也进行了较多的研究,王青宇等[7]O计了斜盘柱塞式生物质燃料成型机,可以完成连续出料,为生物质颗粒成型提供了一种新思路。张喜瑞等[8]设计了星轮式内外锥辊固体燃料平模成型机,整机工作过程中噪音低,经济效益与生态效益明显,为热带地区固体燃料成型机的发展与推广提供了参考。目前,我国生物质固体成型设备的生产和应用已实现商业化,可以满足生物质燃料固化成型加工需求。

2.2 生物质固体燃料在烟叶烘烤中的应用现状

20世纪90年代,叶经纬等[9]在烟叶烘烤上研制了生物质气化燃烧炉,使用这种生物质气化燃烧炉能源利用率提高了50%以上,同时优质烟叶的比例也有所提高。张聪辉等[10]研究表明,使用烟杆压块的生物质燃料部分代替煤炭,可以满足烟叶烘烤的需求,并且烘烤成本比使用煤炭更低。徐成龙等[11]通过对比不同能源类型密集烤房在烘烤成本、经济效益及烤房温度控制方面的烘烤效果,认为使用生物质燃料的燃烧机烤房改造方便、空气污染小、节能环保,是最具推广价值的烤房。

3 应用前景分析

景谷县为云南省第二大林业县,全县林地总面积为595 862.4 hm2,活立木蓄积48 324 350.0 m3,每年森林采伐量约1 537 300.0 m3;全县农作物平均种植面积40 385.9 hm2,粮食平均产量为467 425.2 t,具备开发生物质燃料的潜力。路 飞等[12]研究表明,景谷县生物质理论资源量高达1 355 647.3 t,资源优势较为明显,可以加工成生物质固体燃料,满足全县烟叶烘烤需要。2014年,普洱市申报的国家绿色经济实验示范区获得国家发改委批复,为普洱市的发展提供了巨大的机遇,目前全市已开展多个生物质能源项目[13]。景谷县在烟叶烘烤中,创新烟叶烘烤模式,推广使用生物质固体燃料,降低烟叶烘烤能耗,减少主要污染物的排放,改善环境质量,符合普洱“生态立市,绿色发展”的发展需求。

4 存在的问题

4.1 认识不到位

目前,烟叶烘烤主要以燃煤作为原料,烘烤设备较为成熟且烘烤工艺较为完善;使用生物质固体燃料,可降低烟叶烘烤污染、维护农村生态环境、促进烟叶烘烤可持续发展等优势,但尚未引起广泛关注。

4.2 配套不完善,投入成本高

开发生物质固体燃料前期投入高,不确定因素较多,风险较大,收益难以控制。目前,景谷县尚无生物质固体燃料加工企业,生物质固体燃料产业配套不完善,燃料使用成本高。将传统烤房改造成生物质燃料烤房需对原有设备进行改造更换,短期内难以大量推广。

4.3 缺乏政策支持

生物质固体燃料在烟叶烘烤中具有良好的社会效益,但政府、烟草行业对生物质固体燃料的生产、传统烤房的改造等未制定明确的扶持措施和奖励办法,没有形成加工使用生物质固体燃料的长效机制。

5 对策

5.1 加强宣传力度,树立可持续发展理念

大力宣传使用生物质固体燃料在节能减排、农林废弃物循环利用、减工降本、提质增效方面的积极作用,让全社会都充分认识到使用生物质固体燃料所具有的良好的经济效益、社会效益和生态效益,为全面推进使用生物质固体燃料营造良好的舆论氛围。

5.2 开发利用生物质固体燃料,提高绿色生态烘烤能力

景谷县林产工业较为发达,农林废弃物资源丰富,目前国内生物质固体成型燃料技术和设备已较为成熟,可就地规划建设生物质固体燃料生产基地,就地消化农林废弃物,保护环境卫生,实现绿色烘烤。

5.3 加大政策和Y金扶持,调动参与积极性

在生物质固体燃料生产、废弃物回收、烤房设备改造利用等方面出台相应的扶持和补贴政策,提高社会和烟农参与使用生物质固体燃料的积极性和主动性。

6 参考文献

[1] 王庆和,孙勇.我国生物质燃料固化成型设备研究现状[J].农机化研究,2011(3):211-214.

[2] 李泉临,秦大东.秸秆固化成型燃料开发利用初探[J].可再生能源,2008(5):116-118.

[3] 邱凌,甘雪峰.生物质能利用现状与固化技术应用前景[J].实用能源,1990(3):21-23.

[4] 王卫锋,陈江华,宋朝鹏,等.密集烤房研究进展[J].中国烟草科学,2005,26(3):12-14.

[5] 严金英,郑重,于国峰,等.燃煤烟气多污染物一体化控制技术研究进展[J].热力发电,2011,29(8):9-13.

[6] 周冯,罗向东,秦国辉,等.浅谈生物质燃料因化成型技术[J].应用能源技术,2016(8):54-55.

[7] 王青宇,蓝保桢,俞洋,等.斜盘柱塞式生物质燃料成型机的设计[J].木材加工机械,2014(3):48-50.

[8] 张喜瑞,甘声豹,李粤,等.星轮式内外锥辊固体燃料平模成型机研制与实验[J].农业工程学报,2014,30(22):11-19.

[9] 叶经纬,江淑琴,高大勇.生物质能在烤烟生产中的应用技术[J].新能源,1991,13(6):35-39.

[10] 张聪辉,赵宇,苏家恩,等.清洁能源部分代替煤炭在密集烤房中应用技术研究[J].安徽农业科学,2015,43(4):304-305.

[11] 徐成龙,苏家恩,张聪辉,等.不同能源类型密集烤房烘烤效果对比研究[J].安徽农业学,2015,43(2):264-266.

生物燃料行业研究范文4

生物燃料现在变得越来越流行。在美国,明尼苏达州颁布了一项法令:即所有该州内销售的柴油中要含有2%的生物燃料,其中的大部分来自于该州种植的大豆。飞机引擎制造商也在尝试将生物燃料混合到航空燃料中作为飞机的动力燃料。由于生物柴油的原料都是来自于植物,而植物本身就会转化为二氧化碳,所以这样的话使用生物燃料的碳排放相对来讲比使用化学燃料的碳排放要小。

咖啡也是一种植物作物。但是通常,当咖啡豆被磨成粉末然后做成饮料之后,咖啡的残渣往往被扔掉或者被扔在花园中做了肥料。内华达大学的教授发现,咖啡渣可以比较容易地被转化为自身重量10%-15%的生物燃料。除此之外,当咖啡渣生产出的燃料在引擎内燃烧后不会产生刺激性的气味――仅仅有一点咖啡的味道。在燃料油被萃取出来之后,剩下的咖啡渣仍然可以用来作为肥料。

这些研究人员从2年前就开始着手这项工作了。他们发现,咖啡渣为原料生产的燃料,品质和市场上最好的生物燃料品质一样优良。但是不像大豆或者其他的植物燃料,生产咖啡燃料不会占用本来应该用作食物的作物和土地。

未经处理的纯植物油通常都有很高的黏性,使用这样的燃料需要将引擎进行一些改造。对咖啡燃料的萃取工作和对其他植物油的萃取差不多。它需要进行一个被称作“酯交换”的过程,就是在催化剂的作用下,将咖啡渣与乙醇进行反应。

尽管有些人想在家里使用食物残渣和回收的烹饪油来自制燃料,然而咖啡燃料看起来更适合被大规模的生产。莫汉蒂(Manoranjan Misra)教授说:“生产1升的生物燃料需要5-7公斤的咖啡残渣,视不同咖啡的含油量不同而有差别。”

如果有某个机构能够从咖啡生产线和餐厅收购大量咖啡渣的话,进行商业化的咖啡燃料制造是可行的。这个行业的前景是广阔的:美国农业部的一份报告表示,每年全世界要消费超过700万吨咖啡,这意味着这些咖啡的残渣可以生产3.4亿加仑生物柴油。也许有一天,来一杯咖啡,也可以给你的车子加满油。

生物燃料行业研究范文5

关键词:催化剂;生物燃料电池;能源短缺

DOI:10.16640/ki.37-1222/t.2017.11.243

随着人口的不断增加,能源短缺的问题也日益暴露,寻找新的绿色能源已经迫在眉睫。生物燃料电池则是应用微生物或者酶作为催化剂,把燃料中的化学能转化成电能,这种生物燃料电池原料易得,拥有非常高的能量转化率,对环境产生的危害更小,可以广泛的应用在很多行业之中。

1 生物燃料电池优势

生物燃料电池和其他电池有着很大的不同,它主要是通过生物原料经过催化剂的催化从而生成氢离子,生成的氢离子又与空气中的氧气或者其他氧气中的氧相结合从而生成电流[1]。以葡萄糖分子为例,完全氧化葡萄糖分子的过程中能够让24个电子生成电流,通过光合作用产生的葡萄糖在氧化过程中碳元素不会发生变化,更有利于对环境的保护。而且生物燃料电池的原料非常易得,可以是有机物、无机物还可以利用污水。相对于其他类型的电池,生物燃料电池在操作的时候只需要在一般的温度和压力的环境下操作就可以,因为生物电池的催化剂一般采用的是酶或微生物,所以不需要创造额外的环境和条件。此外,生物燃料电池还能够通过和人体内的葡萄糖、氧气相结合,帮助被移植在人体中的人造的器官产生电能。

2 工作原理与分类

2.1 微生物电池

微生物电池是将燃料放置在阳极室内,微生物不断的发生代谢和氧化反应,在外电路的连接下电子达到阴极,而质子则是利用交换膜到达阴极,已经发生了氧化的物质受到催化剂的影响在阴极室发生氧化还原反应[2]。在最理想的操作状态之下,每包含 0. 4 g 湿微生物细胞(相当于 0.1g干细胞) 的电池能够输出电压0. 4 V输出电流0. 6 mA。因为电子转移形式的不同微生物燃料电池又被分为两种,其中燃料在电极上直接发生氧化反应的是直接微生物电池,燃料在其他地方发生氧化反应并通过一些特定的途径将电子传递在电极上的为间接微生物电池。

2.2 酶生物电池

微生物电池虽然在工作期间比较稳定,催化燃料的程度比较彻底,但是将化学能转化为电能的转化率可能会因为在传输过程中受到生物膜的影响而大大降低。但是酶生物电池就能够克服这一问题。因为酶催化剂拥有非常高的浓度,在电能传输的过程中能够不收到生物壁垒的影响,所以能够输出更多的电流和电压。它的工作原理为,葡萄糖被氧化辅酶进行催化从而变化为葡萄糖酸,利用介质将产生的电子进行转移,并由氢离子利用隔膜进行扩散。在阴极中获得电子的过氧化氢经过催化剂催化和与氢离子进行反应,从而产成水。

3 研究现状与应用

现在对生物燃料电池的研究还处于不断探索的阶段,生物燃料电池还存在着电能转化和输出效率低,使用的时间较短等问题[3]。有研究表明,科学家利用从菠菜叶叶绿体中分解出来的多种蛋白质放入特殊导电装置进行电池的制作,但是这样的电池使用寿命仅有21天,将光能转化成电能的转化率仅仅只有12%,但是电能的转化了率可能会随着科技的不断发展,提高为 20% ,到那时这种生物燃料电池的能量转换率就将超过太阳能硅电池,所以这项研究也吸引了很多的关注,相关的研究人员也在一直积极的探索者这种电池对环境变化的适应情况。可以预见生物燃料电池在很多领域都能得到应用。

3.1 交通运输供能方式更换

现阶段的交通运输采用的能源主要是利用一些化石燃料燃烧所产生的能量,最主要的就是应用石油。但是化石燃料的燃烧会对环境产生极大的危害而且不便于携带储存量较小。但是应用生物燃料电池,就能够应用其他材料作为能源,有效的缓解化石燃料燃烧造成的不好影响,减轻相关的环境问题研究证实1L 浓缩的碳水化合物溶液可以驱动一辆车行驶 25~30km。

3.2 可植入的能量来源

生物燃料电池能够在生物的身体内进行工作,而且产生电能所需要的氧和燃料能够直接从生物体内获得,应用在医学中,能够为移植在人体内的医学装置提供能量。比如说,葡萄糖生物传感器就可以应用生物燃料电池,其中葡萄糖氧化酶为阳极,一个细胞色素 C 的最为阴极,为装置提供电能。

3.3 污水处理

废水也可以作为生物燃料电池原料的来源,产生电能。这样一来不仅能够获得能源,同时也能将废水中的有机化合物提出出去,对污水起到净化的作用。有研究表明150000 人口的城镇的废水如果效率为100%的话甚至能够产生2.3Mwof 的能量。

4 前景展望

生物燃料电池原料来源广泛,操作方便的同时对环境的危害也很小,是一N新型的优质可再生的绿色能源。虽然现阶段生物燃料电池还存在着不够稳定,电能转化率低等问题,但是随着科技的不断进步,生物燃料电池将被不断的发展和完善,在今后的智能电网发电体系中发挥出重要的作用。同时还需要加强对材料稳定性、增加生物催化效率以及电子转移等相关知识的研究,配合生物燃料电池的探究和开发。

5 结束语

生物燃料电池是一种新的能源,虽然对生物燃料电池的研究还处于初级阶段,但是可以预见生物燃料电池未来会在污水处理、智能电网建设、交通、医疗等方面发挥出巨大的作用,对我们的生活和环境产生巨大的影响。

参考文献:

[1]葛小萍,刘财钢,石琰Z.微生物燃料电池在污水处理方面的应用研究进展[J].科学技术与工程,2010,10(14):3419-3424.

生物燃料行业研究范文6

为此,编辑部约请了农业部乡镇企业局副局长王秀忠写了下面这篇短文。

随着石油价格的节节攀升并居高不下,可再生的生物质能源的重要性凸显,特别是燃料乙醇加工技术及产业化正成为许多国家竞相抢占的制高点。如何实现我国燃料乙醇加工技术及其产业化的突破,对于保障我国的能源安全具有极其重大的现实意义和战略意义。

生物质能源从形态上大致可分为四类:一是气体,主要是沼气及生物质的不完全燃烧形成的气体;二是液体,主要是燃料乙醇和生物柴油;三是固体,主要是将生物质制作成便于使用的固化物;四是电,主要是生物质来发电。在这四类生物质能源中,对我国而言最具战略意义的是燃料乙醇。石油在我国的能源安全中具有极其重要的战略意义,而石油是不可再生的,石油的枯竭是迟早的事。因此,寻找可以替代石油的可再生能源就成为一项紧迫而重大的战略任务,而燃料乙醇正是比较理想的石油替代品。

目前,用来生产燃料乙醇的原料大致可分为三大类:一是淀粉类原料,如谷物及薯类等;二是糖类原料,如甘蔗及甜高粱等;三是木质纤维素类原料,主要是秸秆、林木废弃物及草等。在这三类生产燃料乙醇的原料中,前景最好的是用秸秆、林木废弃物及草等为木质纤维原料。由于我国工业化、城镇化及新农村建设进程的加快,我国耕地每年以数百万亩的速度在减少,在一定时间内我国人口数量将会继续增加,因此,今后我国粮食将处于紧平衡状态。用谷物及薯类等淀粉类为原料生产燃料乙醇,有可能会损害我国的粮食安全。目前,我国的食用糖已产不足需,因此,用甘蔗为原料生产燃料乙醇可能损害我国的食用糖安全。尽管可用木薯、甜高粱等为原料生产燃料乙醇不与人争粮,但因甜高粱仍存在与粮油争地、与人畜粮油争水,从长远看,第一、二类原料在我国前景不太好。而秸秆是粮食等的副产物,不仅不会与人畜争粮油、不与粮油争地、不与人畜粮油争水,而且随着粮食产量与秸秆量成正向变动关系。再就是我国每年有15亿吨左右的秸秆及林木废弃物,数量巨大且比较稳定,是可以满足大规模生产燃料乙醇的。据测算,利用我国的秸秆及林木废弃物每年可生产4亿吨左右的燃料乙醇,可替代3亿多吨石油。以秸秆及林木废弃物等木质纤维素质为原料生产燃料乙醇,能够在不损害我国粮食安全的情况下保障我国能源安全。