概念教学的定义范例6篇

概念教学的定义

概念教学的定义范文1

(上海市金汇高级中学,201103)

概念是事物的本质属性,合理准确地建立概念的重要性不言而喻。本文对椭圆第一定义教学的多种方式进行分析研究,以说明“实验型学习”在数学概念建立的必要性、合理性表达以及数学概念本质的意义揭示等方面的优越性。

一、教学案例

【案例1】

教师打开PPT课件,呈现出一幅天体运行图,同时说道:“大家对椭圆图形都不陌生,比如月球绕地球运行或地球绕太阳运行的轨道。那么什么是椭圆呢?”见学生没有什么明确的回应,教师立即开始板书:“椭圆定义:……”然后,教师解释定义中的“定点”“定长”等要素。

【案例2】

课前,教师在黑板上挂了一块KT板。课始,教师开门见山地说:“这节课我们学习椭圆,请大家先看我做一个实验。”然后,教师拿出一根细绳和两颗按钉,将细绳两端分别系上按钉。接着,教师一边操作,一边讲解:“这是一根没有弹性、固定长度的绳子,现在我把它两端的钉子分别插在KT板上,然后用笔尖拉紧绳子,此时笔尖所在点到两个钉子所在点的距离之和就是绳子的长度。我随意拉动绳子,笔尖落在另一点,这个点仍保持到两个钉子的距离之和为绳长(不变)。看我再不停地拉动……”随着教师的动作,KT板上出现了椭圆的痕迹。在学生观察椭圆的过程中,教师提问:“你能准确地说出什么叫椭圆吗?”在学生描述定义的过程中,教师一边纠正和简化学生的语言,一边标记两个定点的位置:分别标上字母F1、F2。随后,教师拔下其中一颗按钉,拉紧绳子,再把这颗按钉插在KT板上,同时问道:“你认为两个定点之间的距离和绳子的长度应该符合什么关系呢?”经过分析后,教师给出椭圆的定义,并再次解释定义中的各要素。

【案例3】

教师用手电筒从不同方向照射实物圆锥体模型,让学生观察其投影。由此,得到椭圆的“形象”。然后,教师通过案例2中的实验给椭圆下定义。

【案例4】

教师用几何画板课件演示:拖动图1中的点M,显示出平面截圆锥面所得截线的各种情形。当画面静止在图1中的情形时,教师提问:“请大家看,图中的截线是什么曲线?”学生回答:“椭圆。”教师表示肯定后,用课件出示图

【案例5】

教师打开几何画板课件,呈现出一个圆,如图3所示。教师提问:“这是什么图形?”学生齐答:“圆。”教师在课件中拖动“圆心”,图形发生变化:重叠在一起的两个点(焦点)分离,图形由圆变为椭圆,如图4所示。教师提问:“你发现圆变成了什么图形?”学生齐答:“椭圆。”教师追问:“那么什么是椭圆?如何下定义?”学生纷纷议论:“好像圆变成了椭圆,一个圆心变成了两个圆心。”“圆半径不变,但椭圆好像有两条半径。”“肯定不能叫圆心、半径,两个中心也不对,动点P到两个定点的连线是变化的。”“不过两条线段总长不变。”学生讨论,教师巡视,并对听到的简单问题当即予以回答。然后,教师在课件中将动点P到两个定点的距离测量出来,并将它们的和计算出来(界面如图5所示),同时说道:“有些同学认为动点到两个定点的距离之和不变,我们用计算机来验证一下吧。”接着,教师在课件中不断移动点P,同时说道:“果然不变。你能准确地给椭圆下定义了吗?”学生得出包含定点与定长的初步定义。此后,教师又在课件中拖动定点F1、F2,椭圆变得越来越扁平直到消失,并反复演示。学生很快明确了定长和定点之间距离的关系:F1F2≤PF1+PF2。最后,教师将椭圆的完整定义写在黑板上。

二、案例分类及评价或改进

以上7个案例,形式上都是做数学实验,但反映出执教者对数学概念形成的认知心理的研究水平以及对“实验型学习”的理解和态度是不同的。“实验型学习”所提倡的数学实验类型,主要是案例5、6、7所代表的“模拟实验”和案例2、3代表的“实物实验”两大类。

案例1是比较普遍的“PPT图片展示”。但这种方式不属于“实验型学习”,因为对于高中学生来说,看到椭圆图片与听到椭圆描述没有什么区别,都没有实质性的实验功能,不能说明任何“原理”,不能有效地调动思维活动。实际上,用PPT、flash等非数学教学专业软件演示的“实验”,都不是真正意义上的数学实验,反而具有更强的灌输、说教性质。

案例2是多数教材都采用,多数教师都用过而且仍在运用的“实物实验”。但有人认为这种方式过时了,没有必要了,因为用多媒体动画制作软件可以制作出那种效果。另外,案例2的引入不自然,可以用案例3的“实物投影”作为铺垫。

案例3是在案例2的“实物演示”之前,先用“实物实验”呈现椭圆的形象。这里暗含了人类发现椭圆的“历史事实”,即人类是从自然的光学现象中发现椭圆的。这种设计有让学生经历初始状态和发现过程的意图。不过,这里可以将用作投影的实物改为圆形硬质纸片(或瓶盖之类的圆形物件),因为这比圆锥体模型更容易获得,产生的现象更明显,而且更符合认识发生的原始状态。

对案例2和案例3的手工画图,要注意用动作展示思维。教师演示时,可先将两颗按钉固定在一起,将细绳两端分别系在按钉上,将笔套入细绳中,拉直画图,一边画,一边让学生描述画图的法则,说出圆的定义。这样可以让椭圆概念出现得更自然、直观,学生体验得更深刻、透彻,也能更有效地调动学生思维的主动参与。

案例4、5、6、7都是运用几何画板进行“模拟实验”(不依靠实物,而用计算机处理数学模型的实验)来帮助学生建立概念,但对几何画板的作用和用法有不同的理解。

案例4的课件制作太难,技术要求和时间投入过高,不具有推广价值。不仅如此,用不同的平面去截圆锥,是已经抽象概括并数学化了的想法,不可能是学生的自然想法;而且教师按这一顺序引出椭圆概念,很难避免概念循环的错误,即用椭圆解释椭圆。

案例5的优点是直观,演示效果好,适合学习能力水平较弱的学生。但这种做法需要事先制作课件,使得两个焦点可以自由移动,而且已经用到了椭圆的性质,只是玄机暗藏在画面背后,学生不知道而已。因此,对资质好、能力强的学生,这种方式就会显得“真实性不够”,看不到现象的源头,不如改进过的案例2,用实物演示圆变为椭圆的过程。

案例6是对圆上一个动点作一个变换(横坐标不变,纵坐标按一定比例压缩),实验从学生已知的圆开始,过程明白无疑,现象真实可信,而且解析思想表现得简洁深刻。但缺陷是,两个焦点是“构造”出来的,教学过程中若处理不好,会出现因果倒置的逻辑问题。

案例7与案例6-样,初始问题、条件都很明白,定长线段和定点(焦点)都是现场作出来的,因而后面基于此的各种构造都不会有疑义。优点是几何本质突出、探究空间大、开放性强(如由“和为定值”很容易联想“差为定值”“积、商为定值”等等,并很容易做类同的实验),适合资质好、能力强的学生。但同时这也是缺点,若面对的学生能力不够,依赖性较强,采用这种方式就很可能出现启而不发的场面,也可能因部分特别“好事”的学生提出一些教师预料不到的问题或进行想当然的操作尝试,使得课堂很难把控(当然,把控课堂是一种“中国特色”)。

案例5、6、7的优缺点都是相对而言的,没有固定的标准。教学中要根据学生的实际情况进行选择、借鉴、改造,即因材施教是基本的原则。由此也说明,“实验型数学学习”是能从实践上打破“一个模子的教育”的有效方式。

三、案例中的关键问题研究

教学情境的创设,是教学中常谈的问题,而信息技术往往能在这方面发挥作用。因为多种媒体的综合运用,可以具体地制造视觉、听觉甚至触觉和嗅觉信息,创设出设计者想象中的“真实”情境。但教学这一内容时,首先要考虑的是,情境是为建立椭圆的概念服务的,因此,要在学生的视野内,先呈现椭圆的形象,再分析它的特征属性,根据特征属性下定义。案例1并没有在视觉上呈现椭圆,而只是用概念“卫星的椭圆轨道”来描述椭圆,对学生观察、认识椭圆图形的特征属性没有作用;案例4则刻意追求了实验的形式,而忽视了实验的目的,操作复杂,理解困难。其余5个案例都注意了概念形成的基本过程,即首先呈现具象,然后动态观察规律,抽象出本质属性,最后将其形式化、符号化。

教师与学生的经验背景不同,建立概念的基础方式也不同。学生在没学过椭圆之前,对椭圆确切的几何特征是不清楚的,根本不会想到“距离和为定长”之类,简单的印象就是“压扁的圆”。案例5、6就是出于对学生经验背景和认知心理的思考,由圆说起,过渡到椭圆。案例5不仅是话题过渡,而且通过拖动圆心,使圆变为椭圆的过程自然地表现出圆与椭圆的关系;案例6还同时表现出了代数变换与几何现象之间的关系。这种顺应学生心理的做法,能促进学生新认识的有效建构。而案例4用平面截圆锥面得到椭圆的形象,则是在对椭圆的本质属性十分清楚的情况下,为了此后与其他圆锥曲线的定义形式保持一致,运用“思维返溯”去构造椭圆和其焦点,然后再解释这样构造出来的图形符合椭圆的定义。这样是不可能帮助学生形成概念的,弄不好就只能硬灌,而且是“反灌”。

课件的优劣是相对于具体上课的需要和用法而言的,概念课应特别重视概念从直观到抽象的形成过程的表现。因此,课件应在概念的形成过程和变抽象为直观上下功夫,千万不可“怎样巧妙怎样做”,甚至“怎么困难怎么做”。有不少教师的潜意识中存在求难、求巧的倾向,觉得问题太简单、太直接了,就没有价值,不够刺激了。其实,按一般审美心理分析,“难”导致的心理反应首先是“烦”,其次是“玄”;只有当主体真切感受到“明白无疑,简洁而深刻”时,心理反应才能是“美”“妙”。案例4的设计者之所以犯这样的错误,很可能是因为想把一个做得很成功的课件(平面动态截圆锥面)用到课堂上。这个课件所要求的制作技术的确很高,用于解释圆锥曲线的统一性很好,但却不适合用于椭圆概念的教学。

四、通过“实验型学习”建立数学概念的意义探讨

造成数学概念教学困难的原因是多方面的。首先,在应试的功利性动机的驱使下,师生对解题教学的重视远远超过概念教学,用于解题训练的时间与精力远远多于用于剖析概念形成的过程。其次,生存环境的快速变化,使得大量无序的信息蜂拥而至,学生已经习惯于用眼睛而不是用头脑处理信息,追求数量大和速度快,不求理性,也无暇思索。因此,数学概念几乎成为了“差不多”“有印象”的同义词,而追根溯源、求本究理的心理机制的淡化,则是数学概念学习的最主要障碍。事实上,数学概念涉及数学的本质,理应给予更多的重视。

对于建立数学概念是否需要运用实验的方法,一般有以下不同的看法:

1.数学概念离不开抽象思维以及严谨的数学语言表述,而抽象与严谨正是学生疏远数学的原因。实验能将复杂、抽象的原理和计算结果,通过信息技术表达得生动、直观,甚至借助实物调动触觉、嗅觉等多种感官。

2.借助信息技术进行的数学实验,只能表现“描述式”的数学内容,而对于表现需要深层思考的数学概念,恐怕是无能为力的。

3.概念是事物本身属性的规定,并没有什么道理可说,基本上不存在什么需要尝试、猜想、探究的东西,所以在数学概念教学中,无需做实验。

4.把一些需要用抽象形式表达的数学对象表达得太形象,本身就破坏了数学的严谨性,这种形象化的做法不利于学生(尤其是“学优生”)学会真正的数学。

概念教学的定义范文2

一、从实际中抽象出定义

数学中的每个概念都是从具体事物中抽象出来的,它的形成,必须联系学生的生活实际,直观、具体,建立在对事物的感性认识的基础上,所以要引导学生通过观察、分析、比较,找出事物的本质特性.如正负数、数轴、绝对值、直角坐标系、函数……等概念,都是由于科学实践的需要而产生的.教师讲清它的来龙去脉,能使学生越学越有兴趣.

二、建立清晰明确的概念,是掌握

基础知识的根本

1.原始概念的建立

数学上定义每一个概念时,往往假借已知的概念.这样,就必然追溯到某些概念,直至在这些概念之前不再有任何已知概念.

例如,点、线、面、集合等,对这些概念,我们不能给以任何定义,只有借助于演示直观教具,用描绘的方法举出它的特征,来代替定义.描绘时越具体越形象,学生的印象就越深刻.

又如,在讲“直线”时,教师先用细绳拉紧演示一下,再在黑板上画一直线,可以描绘说:这条线的两端可以延伸到无限远,穿过村庄,穿过田野、山川,没有止境.这样的线叫直线.通过这样的描绘,学生对“直线”的概念就深刻地印在头脑中了.

2.分析对比,讲清定义

我们给一个图形下定义,应包括两个方面:一是经过描绘,指出能够把此图形与另一图形区别开来的属性;二是选择一个表示它的临近概念.定义是揭露概念内涵的一种逻辑思维活动.下定义要列举概念本质属性的过程,即揭露最邻近的概念和属差.

例如,“经过圆心的弦叫直径”的定义中,弦是直径中最邻近的概念,而过圆心是属差.

又如,“平角的一半叫直角”定义中,平角是直角的最邻近的概念,一半是属差.

因此,每一个定义都由这两部分组成.所以,在定义教学中,必须找出某概念的邻近概念和属差,启发学生深刻理解,才能牢固掌握概念,不致于使学生思维能力得不到充分发挥而陷入概念混淆,导致推理的错误.

三、纵横联系,深化概念

数学概念具有很强的系统性.概念的形成由简单到复杂,由个别到一般的变化过程,先前的概念往往是后续概念的基础,同时又互相联系,互相影响,从而形成了数学概念体系.因此,在数学概念教学中,要先弄清楚学习这个概念需要怎样的基础,地位如何,在以后的学习中有什么作用.这样,我们在教学时能主次分明.在教完一个单元或一章后,要善于引导学生把有关概念串起来,充分揭示它们之间的内部规律和联系,从而使学生对所学概念有个全面、系统的理解,做到既复习巩固已学过的概念,又为以后要学习的概念作好准备.

例如,在直角概念的基础上得出锐角、钝角、平角和周角的概念;在平角和角的平分线概念的基础上联系“过直线上一点作直线的垂线”的意义;在“线段的中点,角的平分线、直线外一点引直线的垂线”基础上讲清三角中各主要线段.特别是以直角和饨角三角形为例,指出高的位置变化关系.这些联系都可以使学生深入理解概念.

四、突出概念的本质属性

概念应该深刻揭露所反映的对象的本质属性.揭露时,通过标准图形、变化图形相结合来突出概念的本质属性,这样学生才能对概念理解深刻.定义概念既然是以揭露本质属性为目的,千万不要把定义词语直接硬灌给学生,而应注意概念的形成过程,重点突出概念本质属性,在此基础上给概念下定义,同时还应考虑各种相近概念的异同,采取有效措施,帮助学生更好地掌握概念的本质属性.

概念教学的定义范文3

关键词:概念教学;意义建构;认知能力

初中数学教材所选择的教学内容中有很多概念,概念构成了数学教材的一大部分。数学知识主要由概念串组成,可以说概念是数学教学中的大问题。学生了解和掌握了数学的概念,那么就可以利用概念进行推理和判断,从而形成数学知识的建构。可以说离开概念教学就没有数学教学的高效性存在,数学教学中的概念教学是一个举足轻重的任务,任课教师不能小觑。

一、正确理解概念建构的过程

正确理解数学概念的含义,对于数学知识的学习具有基础性的重要作用。概念是一类事物中具有共性的结论。数学概念的形成实质是从表象蒸发出来的抽象概念,然后由抽象的思维再导致具象的再现。数学教学中,教师进行概念教学主要是基于两个出发点:第一是怎样引导学生形成较为具体的概念印象,理解和体会到概念的内涵;第二是如何使概念的思维具体化。教师实施的概念教学是帮助学生获得概念的具体意义。所以教师要重视概念的形成过程,不要将概念教学变成条文加例题的僵化模式。这样进行教学才符合学生的认知规律及心理特征。比如,在进行单项式的教学中,让学生建构单项式的概念是由一组例题来完成的,然后在这组例题中总结出一些共性的内容,就建构起了单项式的概念。

二、分解概念的含义挖掘其本质

数学概念的定义一般是通过描述然后形成具体的定义,教师在教学中要善于抓住本质属性,专注概念的基本内容和基本点。在教学中,教师是通过对定义概念的再加工然后帮助学生形成概念的意义建构。同类二次根式概念的教学,其基本点是:(1)最简二次根式,未化简的应先化简。(2)被开方式相同。与根号外面的有理式是否相同无关。通过这样的教学后,学生对二次根式的认识及意义建构了然于胸。教师如果能引导学生充分挖掘概念的内涵,那么学生对概念的含义建构也就会水到渠成。概念教学对于教师教学功底的考验是非常具有现实意义的,所以有经验的教师都非常重视概念的教学,高效的概念教学对于提高学生的学习能力及教学效果都具有十分重要的意义。

做好概念教学是初中数学教学的半壁江山,没有高质量的概念教学就没有高质量的数学教学。教师要不断提高自身的专业素质,不断进取和探索教学方法及模式,力争使教学达到高效和实效的目标。

参考文献:

概念教学的定义范文4

一、什么是数学概念

概念,思维的基本形式之一,反映客观事物的一般的、本质的特征。人类在认识过程中,把所感觉到的事物的共同特点抽出来,加以概括,就成为概念。因此,概念从逻辑结构上看,就是反映某种事物及其特有的本质特性的思维形式。具体到数学教科书来说,数学概念指的就是书本中那些名词术语的释义。它们中,一类是占量较多而给一定义的,如有理数、无理数、方程、平行、垂直、相似形、轴对称图形、函数、数列、数列的极限等等,另一类是占量较少而不给定义的,如点、直线、平面、集合、对应、同侧、异侧等等,对它们只做些简单描述性的说明。

每一个概念都有它自身的内涵和外延。内涵是指这一概念所包括的对象的一切基本属性的总和,外延是指适合于每一概念的一切对象。概念的内涵和外延之间,还存在着反比例的关系,即概念内涵扩大,外延就缩小;内涵缩小,外延就扩大。概念有种(概念)、类(概念)之分,平行四边形和菱形的关系正好说明这一点。

二、数学概念在数学教学中的作用

正确理解数学概念是掌握数学规律的前提。数学概念是数学的一般知识,它包括定义、定理、公式、性质、法则。数学概念是数学中进行逻辑推理的基础。如果概念不清或错误,那么由概念构成的判断、推理就会产生错误的论证和运算,更谈不上得出正确的结果。例如初中数学中算术根的教学,近几年使用的教材是这样描述的:正数正的方根叫算术根。显然这是定义,而下定义的概念(正数正的方根)的外延(所有正数的方根)容易被下定义概念的外延(所有正数正方根,所有零的方根)。这违反了下定义的外延相等的规定,于是就成了一个过窄的定义,在这种过窄的定义的指导下,学生在理解时经常出现错误。例如:

1.当x为何值时 =- 。

解:当X<-1时等式成立。

2.求函数Y= 的定义域。

解:X>-3的一切允许值是该函数的定义域。

上述二例忽略了X=-1和X=-3时的可能性,使题解失去了完整性。因此,正确的算术根的定义应该是:非负数的非负平方根的叫算术根。

三、在数学教学中如何利用数学概念

1.寻求形成根源,理解概念。

数学概念教学的第一步是引入概念,它是理解和应用概念的前提,如何引入呢?我觉得应从寻求其形成的根源入手。

几乎每一个数学概念的引入都伴随着一个动人的故事,如引入无理数时,可向学生介绍无理数发现的背景;又如讲解析几何时可向学生介绍笛卡尔,讲二项式定理时可向学生介绍杨辉三角。了解一个概念的发生、发展过程,有利于学生对某一概念的形成,同时,数学史也是对学生进行思想教育的极好教材。

2.用直观的对比方法引入概念。

新数学课程标准别指出:抽象数学概念的教学,要关注概念的实际背景和形成过程,帮助学生克服机械记忆概念的学习方式。一个概念在学生思想上的形成是有一定过程的,教师在教学中应从具体到抽象、从现象到本质,引导学生逐步形成概念,运用直观对比的方法引入概念,就可以达到新课标提出的要求。它往往比单纯孤立地讲授概念效果要好。它可以将抽象思维转化为形象思维,这样既可避免学生听起来感到枯燥无味,又可减轻他们记忆的负担。在中学数学里,不少内容是可以通过直观对比方法来引入的,如:立体几何里讲异面直线概念时,可以先让学生观察教室里或生活中的各种实例,再看异面直线的模型,抽出本质特征,概括出异面直线的定义,并画出直观图,即沿着实例――模型――图形――想象的顺序逐步抽象形成正确的概念。现行的各种版本的新教材中,在每章的前面,都设计了“章头图”,这些图形都是学生们非常熟悉的事物,以此加强学生对数学概念的认识。有些内容,若“数”、“形”能够结合的一定要尽量结合起来讲,不能怕麻烦,如在实数集合、指数函数、对数函数等内容的教学中,都可以用数形结合的方法来组织教学。

3.利用联系对比,巩固概念。

在中学数学中,有许多概念既有本质不同的面,又有内在联系的一面,教学中,如果只注意某一概念的本身,忽视不同概念之间的联系,那么就会使学生对概念的掌握停留在肤浅的表面上。因此,我们应采用联系对比的教学方法使学生区别异同,防止概念的混淆,起到深化巩固概念的作用。

如:函数,结合中学阶段所讲的函数概念,指出函数就是从定义域到值域的一类特殊映射,所以映射中的集合A、B必须是非空的数的集合;其次,作为函数其对应关系与映射也不尽相同,请看下列从集合A、到集合B的映射(AB中元素为实数)。

(1)在图(a)中,B中每一个元素在A中都有唯一的原象;

(2)在图(b)中,B中每一个元素在A中都有原象(但不唯一);

(3)在图(c)中,B中部分元素A中无原象(b3)。

那么图(a)(b)相应的映射无谓函数,而图(c)则不是函数。映射作为函数,必须满足以下两条:集体A,B是非空的数的集合;集合B中每一个元素在A中都有原象。

4.用发展、变化的观点,深化概念。

每个概念都有它的确定意义,但随着事物的发展和知识的不断丰富,有些概念也在不断地发生变化。因此,在教学中就要求我们通过对概念的限制和概括去揭示概念的内涵和外延,使学生认识到概念的确切定义往往是相对的,在一定条件下的定义并非永远不变。例如:函数定义中,自变量和因变量这两个概念,是在某事物的特定条件下,形成一定的函数关系后,才确定的。比方说:每册书定价A元,(1)买X册这样的书要付书费多少元(Y元);(2)现有Y元钱能买多少册书(X册)。这里(1)中从函数关系Y=ax可以见到应付书费Y是函数,买书册数是变数。而(2)中从函数关系可以见到X又是Y的函数了。至于这里每册书的定价a这个常量也是在特定的空间、时间等条件下才保持不变的。其次,随着教学的不断深入,学生年级的升高,某些数学概念的本来含义也在发生着变化。如:角的概念从平面180度以内的锐角、直角、钝角,开始认识到平角、周角、任意角,直到规定了方向后的正角、负角,以及空间生成的二直线的夹角,直线和平面、平面和平面的夹角等,这说明角的概念发展以后,更加抽象和一般化了。像这样,发展了的概念包括了原始概念,原始概念成为发展后概念的特殊情况,原始概念可以统一在发展以后的概念里。但也有的概念得到发展后,与原始概念有着完全不同的含义。

概念教学的定义范文5

【关键词】初中科学;概念教学;基本策略

【正文】2011版《义务教育初中科学课程标准》指出,科学知识的表现形式包含科学事实、科学概念、科学原理、科学模型和科学理论。科学概念是科学知识体系的基石,科学概念的掌握水平是科学学习成败的关键,因此,科学概念教学是初中科学教学的重头戏,。但在实际教学中,多数科学教师由于缺乏科学概念教学的一些方法、策略,而使学生对科学概念的掌握打折扣,影响了科学教学质量。以下是笔者基于多年的教学经验,通过详实的教学案例,从利用前概念、概念建立和概念内化三方面的教学策略进行概述,以期为一线科学教师进行科学概念教学提供借鉴。

一、基于前概念的教学策略

前概念亦称“日常概念”,是指未经过专门教学,人们在日常生活中逐步形成的概念。前概念是科学概念建立的基础,科学概念如果和前概念不一致,往往成为学生学习的难点。如果教师能够把握住学生的前概念,就会使教学有的放矢,更好地提高教学效果。

(一)还原稀释,转化为生活原形

科学概念通常以学术形态表述,具有概括性和抽象性,学生比较难接受和理解。因此,概念教学首先要挖掘相关的生活原形,从生活原形出发,架设桥梁,引导学生逐步过渡到科学概念。

例如“压强概念教学”。压强的定义是“单位面积上受到的压力”,对学生来说相当抽象。教学设计时可以按下列思路挖掘压强的生活原形:压强(还原)概念属性:压力的作用效果(还原)学生熟悉的事例:人在泥地上,人越重陷得越深,单脚比双脚陷得更深;按图钉,用力越大陷得越深,钉尖越尖越容易按入。教学就是从这些学生熟悉的事例出发,引导学生建立假设“压力的作用效果跟压力大小和受力面积大小有关”,然后引导学生

设计实验证实假设,最后在实验结论的基础上进行抽象,建立压强的概念。

又如“传染病概念教学”。传染病的定义是“由病原体引起的,能在人与人或动物与人之间传播的疾病”。教学设计时可以按下列思路挖掘相关的生活原形:传染病定义(稀释)两个本质特征:原因和特点(还原)学生熟悉的事例:SARS、狂犬病、肺结核等。教学就是从这些学生熟悉的病例出发,引导学生比较、分析,总结出传染病的病因及特点,进而抽象建立传染病的概念。

根据加涅的概念划分类型,科学概念可以分为具体概念和定义性概念两大类。具体概念是指能通过直接观察获得的概念,如花朵、水、土壤、长度、体积等概念。定义性概念是指不能直接通过观察,必须通过定义才能获得的概念。定义性概念比较抽象,有的还涉及几个概念的关系。如:压强、密度、电阻、力、溶解度、动能等都是定义性概念。初中阶段学生学习的科学概念多数为定义性概念,因此,在初中科学概念教学中一般都需要将概念进行还原稀释,寻找相关的生活原形。基本思路是:从概念的定义或属性出发,通过还原稀释寻找概念的生活原形。

(二)直面错误概念,引发认知冲突

前概念可能是正确的,也可能是错误的。正确的前概念容易产生正迁移,有利于科学概念的建立;错误的前概念往往成为新概念建立的绊脚石,但如果利用好错误的前概念,不仅能帮助学生建立新概念,而且能加深学生对新概念的理解。如何正确利用错误的前概念呢?一般策略是:巧妙诱导,暴露前概念尝试解释,引发冲突引导认知调整,建立科学概念。

例如“密度概念教学”。学生对密度的前概念是:密度即物体的轻重,如“铁的密度比泡沫大”,学生的观念就是“铁比泡沫重”。教学中可以从学生的这一错误观念出发,逐步引导建立科学概念。具体如下:创设情境:举重比赛,规则是一分钟举起哑铃个数多者胜。教师出示两个一模一样的哑铃,一个是铁质的,一个是泡沫的。要求选择哑铃并说明理由。学生都选择泡沫的哑铃,理由是泡沫比铁轻。然后,教师再出示两个哑铃,一个是体积很小的铁质哑铃,另一个是体积很大的泡沫哑铃,问哪个重一些,此时意见不一。教师继续问,那“泡沫比铁轻”的观点是否一定成立?此时学生意见非常统一,一致认为“不一定”。教师引导学生对观点作修正――“体积相同时,泡沫比铁轻”。教师继续追问,这一观点是否一定成立?学生疑惑---,教师引导:如果把两个哑铃带到完全失重的太空,这一观点还成立吗?学生顿悟。然后教师将两个形状大小一样的哑铃放在调平好的天平两盘,发现铁质哑铃这边托盘下沉,由此引导学生对观点继续作修正――“体积相同时,泡沫的质量比铁小”。此时教师顺势提出问题:相同体积的其他物质质量关系如何呢?引出对水、酒精和铝等物质的质量和体积关系的研究,从而发现:相同体积的不同物质,质量不相同;同种物质,质量和体积成正比。由此进一步抽象建立密度概念。

学生在学习新概念之前,在生活中积累的前概念往往是片面的,甚至是错误的,教师在概念教学中,应当善于诱导学生暴露这些错误的前概念,再设法纠正这些错误的观念,建立正确的概念,这样有利于加深新概念的建立和内化。

二、基于概念建立的教学策略

概念建立是引导学生抽象概念本质的过程。著名瑞士心理学家皮亚杰认为:个体对周围环境的认知有两个基本过程:同化和顺应。同化是指个体将外界环境提供的信息整合到自己原有的知识结构的过程;顺应是指外部环境发生变化,个体知识结构发生重组和改造,使个体适应外界环境变化的过程。有些概念本身容易在生活中找到原形,学生容易产生同化,而有些概念学生却缺乏感性,需要教师创设有效情境,架设桥梁,增加认同感,促使学生顺应,以利概念的建立。

(一)求同比较,揭示本质

有些概念的原形是学生熟悉的生活实例,如传染病、种群、生态系统等。这些概念的教学,可以从学生熟悉的实例出发,引导学生通过几个同类实例的比较,揭示概念的本质,建立概念。

例如“传染病概念教学”。教师在学生列举熟悉传染病病例:流感、SARS、狂犬病、肺结核等,和非传染性疾病病例:癌症、关节炎、高血压、糖尿病等,之后提出以下问题:

我们根据什么来判断一种疾病是传染病还是非传染病呢?也就是说,传染病有什么特点呢?

传染病流行时,“传染”是什么东西在传,病人“感染”的又是什么呢?传染病流行时,“传染”是在什么生物之间发生的?通过这些问题的讨论,引导学生进行分析比较,得出传染病具有两个本质特征:由病原体引起;能在人与人或动物与人之间传播。由此得出定义:由病原体引起的,能在人与人或动物与人之间传播的疾病,叫做传染病。

(二)通过实验,强化感知

有些概念在生活中很难找到原形,如大气压、电流、电阻等,这些概念的建立,就需要借助实验来增加学生的感性认识,增强学生的认同感,以帮助学生建立概念。

例如“大气压强概念教学”。在压强概念建立之后学气压,本身并不难。问题是,大气本身看不见摸不着,而且人由于生活在大气中,对大气压的适应,使得人很难感觉到大气压的存在,给教学带来困难。突破这一难点是建立大气压强概念的关键。教学中可以先演示“覆杯实验”,引导学生分析:硬纸片为什么不下落?学生会有两种想法:一种认为是空气把纸片托住,另一种认为可能是水把纸片粘住。为了进一步证明是空气把纸片托住,教师继续演示:把“覆杯”固定在玻璃真空罩内,不断抽出玻璃罩内的空气,发现此时“覆杯”下的硬纸片下落。此时学生一致认为原来“覆杯实验”中纸片不落是由于被空气托住的缘故。在这基础上,教师因势利导,学生很容易建立大气压强这一概念。然后教师继续演示“后覆杯实验”:将“覆杯”倾斜并向各个方向转动,发现纸片都不落。引导学生分析大气压的方向,从而完善大气压的概念。

(三)利用类比,架设桥梁

有些定义概念,如溶解度、比热、电压等,由于具有高度的概括性,所以非常抽象,即使借助实验手段,也很难让学生接受。此时我们可以尝试类比的手段,架设合理的桥梁,帮助学生建立概念。

例如“溶解度概念教学”。溶解度的定义是“一定温度下,在100克溶剂(通常指水)中达到饱和状态时所溶解的溶质质量(克),叫做该溶质在该温度下的溶解度。”相当抽象,学生很不易接受。教学中,我们可以先引导学生讨论:如何比较食盐和蔗糖在水中的溶解性?通过交流达成共识:一定温度,等量的水,达到饱和,看谁溶解得多。然后演示实验:室温下,分别在10克水里溶解食盐和蔗糖,直到饱和,结果是蔗糖溶解得多。然后引导学生得出:同等条件下,蔗糖比食盐更易溶于水,即蔗糖的溶解性比食盐大。此时教师顺势提出问题:如何定量比较物质的溶解性大小呢?接着借助“百米游泳比赛”的例子进行类比。百米游泳比赛:路程100米,水温相同,达到终点,比较时间;比较溶解性大小:100克溶剂,温度相同,达到饱和,比较所溶解的溶质质量(克)。在此基础上,引出溶解度的概念,它是用来定量表示溶解性大小的量,这样学生就比较容易接受溶解度的定义。

三、基于概念内化的教学策略

概念教学一般经历“创设情境”、“抽象加工”和“巩固内化”三个环节。“创设情境”的目的主要是挖掘学生的感性,为下一环节做好铺垫。“抽象加工”是概念教学的主要环节,就是通过分析比较,找出概念所反映的本质特征,形成概念定义的过程。完成这一环节,此时似乎概念教学已经完成,但实际上,如果没有第三个环节“巩固内化”,学生建立的概念往往不够深刻,甚至很快遗忘,影响概念教学是质量。

(一)利用模型,强化本质

有些概念涉及微观本质,例如:蒸发、沸腾、溶解等,在概念建立之后,可以借助模型强化概念的本质特征。比如“沸腾概念教学”,在得出沸腾概念以及沸腾的特点之后,可以利用水沸腾的微观模型揭示水沸腾的微观本质,帮助学生内化沸腾的概念,提高教学质量。

(二)剖析关键词,强化本质

有些概念涉及的要素比较多,定义比较复杂,比如:比热容、溶解度等,在概念建立之后,学生往往还是比较模糊,不够深刻。此时,需要对这些概念的定义的关键词做进一步的剖析,以强化概念的本质特征,帮助学生巩固内化概念。例如“比热概念教学”,在得出比热定义后,强调定义的三要素:“单位质量”、“温度升高(或降低)1℃、“所吸收(或放出)的热量”;又如“溶解度概念教学”,在得出溶解度定义之后,强调定义的四要素:“一定温度”、“100克溶剂”、“达到饱和”、“溶质质量(克)”,再通过正例和反例加以巩固。

(三)巧用例证,强化本质

概念的例证包括正例、特例和反例。

概念的正例指的是包含概念所反映的本质属性的具体事物,是概念所反映的具体对象。即包含概念的本质特征的肯定例证。列举概念的肯定例证,有利于学生分析概括,加深对概念本质属性的理解。例如:“生态系统”概念,正例有:一个城镇、一个池塘、一片草地、一块农田、一片森林、一条河流等。

概念的特例指的是特殊的例子,属于概念的外延这一集合,但它不具有或不完全具有概念所反映的本质属性。其特殊性在于,从概念的内涵上来看,它不符合“概念的质的规定性”,但从概念的外延上来看,它是这一概念的对象。在概念教学中,忽略特例,往往会导致概念的内涵混淆,外延扩大或缩小。所以,应列举充分和典型的特例。例如:“微生物”――“是一类形体微小、结构比较简单,一般要借助于显微镜或电子显微镜才能观察到的一大类微小生物的总称”。“微生物”的特例就有“蘑菇”、“银耳”、“黑木耳”、“金针菇”等大型真菌。“动物细胞”的特例是“红细胞”,因为它没有细胞核。“有性生殖”的特例是单性生殖。

概念反例指的是不具有某种属性的具体事物,即不在某一概念的外延中。在概念教学中,反例的列举是非常必要的,它有利于学生区别某种事物的本质属性和非本质属性,从而加深学生对(正)概念的准确把握,提高科学概念的教学效果。例如“生态系统”的反例有种群、群落的例子等。“细胞”的反例是病毒等。

(四)运用“变式”,强化本质

变式是通过变更对象的非本质特征而形成的表现形式。变更人们观察事物的角度或方法,以突出对象的本质特征,突出那些隐蔽的本质要素。 例如“重力概念教学”,如果我们在举例时,只是列举固体物质的例证,往往容易使学生产生只有固体才有重力的错误观念,而影响教学效果。所以在举例时,要善于利用“变式”,分别例举固体、液体、气体的例证。又如“生态系统概念教学”,可以利用变式,对生态系统的组成从不同角度进行描述,如:“生态系统是由一定区域内生物群落与其无机环境组成”、“生态系统是由一定区域内非生物物质和能量及所有作为生产者、消费者、分解者的各种生物组成”、“生态系统是由一定区域内全部生物和非生物因素组成”等,以加深对生态系统的理解。

总之,初中科学概念教学地位重要,学生又处于从形象思维到抽象思维的过度期,所以需要教师掌握一定的概念教学策略,架设好桥梁,化抽象为具体、化“无”为有、化深为浅,提高概念教学的质量。

参考文献:

[1]中华人民共和国教育部制定. 义务教育初中科学课程标准(2011版)[M]. 北京:北京师范大学出版社, 2012.

[2]胡卫平. 科学概念教学中思维能力的培养[J]. 中国教育学刊, 2004 (9):48-51

概念教学的定义范文6

关键词:有效性教学;物理

中图分类号:G632 文献标识码:A 文章编号:1002-7661(2012)05-203-01

在中学物理教学中,概念教学是一个重点,也是一个难点,特别是对刚从初中转入高中的学生。因此,在中学物理教学中,对概念教学进行专题研究,总结出概念教学的基本规律是很重要的。物理概念一般可分为两类,一类是只有质的规定性的概念,如运动、静止、电场、光等;另一类不仅具有质的规定性,还有量的规定性,这种概念又叫物理量。例如速度、加速度、功、动能、动量、电流强度、场强等。

一、概念的引入

1、从生活实际引入

例如力的概念可从推土机推土、人提水、马拉车、汽车压路面等现象引入。生活实际中引入概念,有助于培养学生注意观察、勤于思考、善于运用概念分析问题的能力和习惯。

2、从实验现象引入

对于缺乏建立概念所需的足够的感性经验,可以通过一些典型实验,使学生获得鲜明的感性知识,在此基础上进一步探索,形成概念。运用实验,不仅能提供概念教学所必须的感性材料,还可激发学生兴趣,培养观察力、注意力,并建立物理学是一门实验科学的观念。

3、在复习旧知识的基础上引入

有些情况下,特别是到了高年级,学生已建立了许多物理概念,物理感性知识也比较丰富。这时可在复习有关旧知识的基础上引入新概念。

4、从理论需要引入

这种方法强调知识的内在逻辑性和知识体系的整体性,对于形成良好的认知结构也十分有利。对于能、热量、理想气体三个状态参量、场强、电流强度等概念,都可用此法引入。在引入概念时,无论采取什么方法都要注意:①选择的感性材料要典型、全面,要突出与概念有关的本质特征和属性,尽量减少非本质特征的干扰。②选择的旧知识一定要与新知识有实质性联系。

二、概念的建立

1、揭露本质特征,实现观念上的突破

在学生已有正确观念的基础上,教师要引导学生进行科学的思维,即运用比较、分析、综合、判断、归纳、分类等思维方法来抓住事物的本质特征及事物间的联系和制约关系,并摒弃非本质的东西,在这个过程中常使用物理学的理想化模型及等效方法,从而实现认识上的理性飞跃。

2、明确概念的定义

揭露出事物的本质属性,概念的定义也就是水到渠成的事了。这时,可启发学生用恰当、简洁的文字准确地表达出这些本质属性的内容。在给物理量下定义时,除了文字表述之外,还需要导出定义式,并明确式中符号所代表的含义及各量的单位。下面介绍物理概念的定义方法:

(1)直接定义法

物理概念中有相当一部分是根据物理现象直接给下定义。

(2)比值定义法

物理概念的定义式是一个比值。如密度(ρ=m/v)、速度(v=s/t)、加速度(a=Δv/Δt)、电阻(R=U/I)等等。这类概念一般来说是从某个侧面反映事物的特性,这些比值的大小是由事物本身的属性所决定的,而与比式中的各量无关,并且在一定条件下,这些比值必然是一个恒量。

(3)乘积定义法

物理概念的定义式是几个物理量的积。如电功(W=UIT)、电功率(P=UI)等等。对于这类物理概念应从它所能产生的效果去认识它的特性。

(4)差值定义法

物理概念的定义式是几个物理量的差。如位移(S=x2-x1)、电势差(Uab=Ua-Ub)。

(5)和值定义法

物理概念的定义式是几个物理量的和。如合力(F=F1+F2)、总功(W=W1+W2)等。

(6)极限思维定义法

物理概念的定义式是几个物理量的数学极限表达式。如瞬时速度(v=limΔT0ΔS/ΔT),瞬时加速度(a=limΔT0ΔV/ΔT)等。

(6)函数定义法

物理量的概念的定义式是物理量的函数表达式。如正弦式电流(i=fmsinωt)等。

3、讨论概念的物理意义

得出了概念的定义,并不是认识概念的结束。还要从定义出发,讨论概念的内涵与外延、概念的物理含义、用途等,从不同角度丰富对概念的认识。

三、巩固深化概念,发展运用概念

要使学生牢固、清晰的掌握物理概念,必须经过概念的巩固、深化阶段。通过这一阶段达到这样两个目的:

1、对易混淆的概念进行辨析,进一步理解它们之间的区别与联系

有比较才有鉴别。因而将易混淆的概念加以对比、辨析,明确它们之间的区别与联系,是帮助学生纠正错误概念,理解、巩固、深化概念最有力的措施。通过对比、辨析,明确概念的界限、概念之间的关系,有利于形成清晰的概念、层次清楚的认知结构。