前言:中文期刊网精心挑选了生物耦合技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物耦合技术范文1
关键词: 耦合, 滤料, 回流
0前言
耦合生化-超滤动态小试复合填料采用硬质网状球包裹介质块(火山岩和木质活性炭。复合填料包括木质活性炭和火山岩,火山岩生物滤料是由火山岩矿石,经过选矿、破碎、筛分、研磨等一系列工艺加工而成的粒状滤料,其主要成份为硅、铝、钙、钠、镁、钛、锰、铁、镍、钴和钼等几十种矿物质和微量元素,表观为不规则颗粒,颜色为红、黑褐色,多孔质轻,特别适合于微生物在其表面生长、繁殖,形成生物膜。木质活性炭无毒无味,孔隙发达。具有比表面积大、吸附能力强、过滤速度快、脱色纯度高等优点。火山岩和木质活性炭复合填料可以发挥各自的优点,大大提高了对微污染源水有机物的处理效果。
1试验方法和装置
由图1可知,试验装置前部为缺氧、厌氧反应池,内部装填复合生物填料(火山岩和木质活性炭),复合填料浸没于水中,微生物附着生长在填料上。超滤膜池的回流水与原水从反应器上部进入,通过固定填料床。
2试验结果与讨论
3.3.1对高锰酸盐指数的去除
微污染水源水中主要污染物有两类,一类是天然有机物,包括腐殖质和非腐殖质;另一类是人工合成有机化合物,包括农药、药品和其它新型有机物质[2]
耦合生化-超滤动态小试对有机物的去除效果来自两个方面:
1)耦合生化-超滤动态小试对有机物的降解,在缺氧厌氧段,高锰酸盐指数降解0.7mg/l,然后进行好氧处理,降低了后续处理的负荷。在好氧段,曝气作用促进了挥发性有机物的吹脱,还原性物质的氧化以及一些易氧化降解的有机物的降解,浸没式填料的为各种微生物的生长提供了有利条件,载体表面的生物膜的接触絮凝、生物氧化作用达到对水中悬浮物质和胶体颗粒等污染物质的去除,而且载体填料的机械截留作用,能去除部分胶体状有机物。
2)膜的对大分子有机物物质的截留作用,大分子物质可以被截留在反应器内,经过回流到缺氧柱,大大增加了与微生物接触的反应时间,提高了有机物的去除。
3.3.2对氨氮的去除
由图3可知,耦合生化-超滤动态小试对氨氮的去除原水氨氮随季节变化较大,冬季进水氨氮高于夏季,出水氨氮基本在0.5mg/l以下。系统对氨氮保持较高的去除率,平均去除率为91%。
耦合生化-超滤动态小试对氨氮有较高的去除率,主要有以下几个方面原因:
1)采用复合填料(火山岩和木质活性炭),使得系统内微生物种群丰富,提高了系统的稳定性。
2)微生物附着生长的特点使微生物在反应器内获得较长的停留时间,促进了增殖速率较慢的硝化菌的繁衍[42],提高了系统硝化效率。而且水中有足够的溶解氧,硝化作用不会被抑制。
3结论
耦合生化-超滤动态小试试验表明,复合填料(火山岩和木质活性炭)和超滤组合工艺对嘉兴地区微污染水原的主要污染物质氨氮和高锰酸盐指数有较好的去除,系统出水基本符合GB2006-5749要求。
参考文献:
生物耦合技术范文2
1.1动力学与放大问题
乙醇发酵过程前期主要的活动内容是乙醇原料的液化、糖化等,在初期阶段结束以后进入到乙醇的应用特性控制阶段。这一阶段解决的主要问题是其发酵反应的动力学问题,也就是发酵反应能否继续下去的关键问题,主要包括有两个层次,一是本征动力学,主要是指从一种物质形式的本质属性出发对发酵生物反应固有速率的研究;二是宏观动力学,主要是从乙醇制备的反应器整体角度出发,充分考虑反应器中原料物质之间的能量传递情况的动力学研究。其中酶催化反应是应用最广泛的一种动力学模型。
1.2发酵罐多场问题
在具体的乙醇发酵过程中发酵罐是发酵功能实现的主要设备,而乙醇的发酵过程是一个复杂的过程,发酵过程中受各种因素的影响,温度、浓度等各种反应特性的传递会受到限制,从而在罐内形成不同的反应场,这种不规则分布的反应场会对反应的正常进行产生影响,例如对氧在发酵液中的传递速度、固定化酶传播等反应应有的过程产生影响,进而影响发酵反应的质量。但是正是发酵罐中的这种多场现象,为研究人员提供了干预发酵罐中发酵反应的契机,通过对反应罐中多场化现象的研究和有效利用,可以实现对乙醇发酵过程的人工干预,为乙醇质量的提升奠定了基础。
2提纯过程中的化学工程问题
使用发酵方法制作乙醇制得的发酵液中,乙醇的含量较低,通常情况下只有5%到12%之间,这种浓度的乙醇是无法用作燃料的,所以在乙醇发酵工作完成后对乙醇溶液进行提纯是一个必要的环节。当前应用最广泛的乙醇提纯技术是蒸馏技术,通过精蒸馏的方法将乙醇中的水分有效排出,通常情况下使用这种提纯技术只能将乙醇的含量提升到90%左右,在这种纯度基础上再使用蒸馏技术进行提纯,其提纯效率已经极低。所以为了保证乙醇溶液实现有效的工业应用,应该使用综合提纯方法对其进行提纯,提纯活动中首先以精蒸技术对乙醇溶液进行粗提纯,在提纯形成的90%乙醇溶液基础上再应用萃取、共沸和吸附等精提纯工艺做进一步提纯,形成工业应用需求的相应浓度乙醇产品。
3生物发酵反应与分离过程的耦合
从乙醇发酵工艺角度来看,现代乙醇制作工艺研究的内容还是一些基础性的内容,涉及到乙醇制作的具体工艺步骤,而生物发酵反应与分离的耦合并不是一种单纯的乙醇发酵制作工艺的完善,而是从乙醇制造整体角度出发对乙醇制造过程中的能量传递和化学反应的优化。从当前的乙醇制备角度来看乙醇制造存在着一个乙醇分离和提纯的过程,这两个过程的分离导致了整个制备过程制备资源和能量的浪费,如果能够将乙醇的分离过程和提纯过程结合在一起,也就是说提升发酵分离过程产生的乙醇溶液浓度,就能够减少乙醇提纯过程的负担,甚至可以实现化学反应结束以后直接制得符合浓度要求乙醇的目标。这种生物发酵反应与分离过程的耦合极大的提升了乙醇制备的效率,是乙醇制备工艺发展的未来技术。
4结语
生物耦合技术范文3
关键带中发生的复杂的物理、化学和生物过程相互耦合使其成为不可分割、有机联系、不断变化的动态系统。按照其性质与作用,这些过程大致可分为三类:生态过程、生物地球化学过程和水文过程[8]。生态过程通过植物、微生物等生产者的作用将土壤中的物质合成为植物量,经消费者消费后又被微生物分解返回土壤。人类活动可被看作是生态循环的一部分。由于人类活动对生态过程的影响越来越大,有人又将其单分出来作为一类过程加以研究[9]。生物地球化学过程将生物过程与非生物过程联系在一起,通过流体、沉积和气体作用,使碳、氮等化学元素和物质在空间上的分布发生变化。水文过程通过水分运移转化使物质和能量在空间上重新分布。生物地球化学过程和水文过程相互耦合,推动了生态过程的持续进行,又共同决定了关键带的整体形态和功能。但是,受传统学科研究视角和方法的限制,研究人员很少将关键带作为一个整体框架,而是人为地将生态过程、生物地球化学过程和水文过程割裂开来进行研究。例如,土壤学往往将研究对象局限在植物根区分布的土壤范围,而很少考虑植物根区之下的包气带和饱水带;水文地质学以含水层为研究重点,往往将上覆包气带作为“黑箱”进行处理;生态学以地表面之上的植物为研究重点,对地质环境则重视不够。当今经济社会所面临的水资源管理、自然灾害防治、全球变化应对、生态环境保护等重大战略问题,迫切需要不同的学科相互交叉融合,形成一个新的整体框架,对近地表圈层进行系统研究。这正是国际地学界提出“地球关键带”的意义所在。关键带在空间展布上呈现出高度的非均质性。大量的调查和观测数据表明,构成关键带的地质介质和发生在其中的生态过程、生物地球化学过程和水文过程随空间的变化表现出明显的变异。这种变异特性随空间尺度的变化呈现出不同的特点[10]。造成关键带高度变异性的原因很复杂,可归纳为三个方面:与地质、水文等有关的内在因素,与气候、自然火灾等有关的外在因素,与土地利用、城市化等有关的人类活动[11]。按照研究空间范围的大小,通常可划分为微观尺度、中观尺度和宏观尺度。目前,人们观测关键带的途径包括两大类:一类是利用传感器技术和测量技术进行点上监测,对应于微观尺度;一类是利用遥感技术进行大面积面上监测,对应于宏观尺度。针对介于二者之间的中观尺度的观测技术还很不成熟,亟待发展。关键带过程的发生尺度与人们的观测尺度存在的不一致,对关键带过程研究与建立模型造成了很大的挑战,尺度转换成为关键带科学研究的重要问题[12]。关键带在垂向上呈现出明显的分层特征。如图1所示,关键带通常由地面之上的植物冠层、植物根系生长的土壤层、土壤层之下的包气带、含水层等组成,并且每一层可能还可细分为多个亚层。例如,土壤层可分为腐殖质亚层、淋溶亚层、淀积亚层等[13],包气带和饱水带之间存在一个过渡的、近饱和的毛细上升区[14]。层与层之间形成了关键带的界面,主要界面有土壤-大气界面、土壤-植被界面、包气带-饱水带界面、地表水-地下水界面、含水层-基岩界面等,在沿海地区还有陆地-海洋界面。这些界面对关键带发生的各种过程具有重要的控制作用,也为人为调控关键带过程提供了重要的切入点。例如,作为包气带-饱水带界面的潜水面对土壤剖面的含水量和水势分布有很大影响,是土壤发生盐渍化的重要原因,也是地表生态格局变化的影响因子之一[15]。关键带在外在过程的作用下不断发生着短期的变化和长期的演化。NRC将外在过程归纳为四类:由地球内部能量驱动的构造运动,总的趋势是增大地表的起伏不平;由地球外部能量驱动的风化过程,总的趋势是削平填洼,使地表趋平;由压力梯度驱动的流体运动,使物质发生空间迁移;由生存需求驱动的生物活动,对土壤、岩石、水等要素施加了越来越大的影响[3]。
2关键带研究思路与范式
2.1DPSIR体系框架DPSIR(驱动力-压力-状态-影响-响应)体系描述了一条引发环境问题的起源和结果之间的因果链,为开展关键带科学研究提供了可供借鉴的技术框架(图2)。这条因果链表明了关键带与社会经济之间的相互作用关系,社会经济活动作为长期驱动力作用于关键带,对关键带产生压力,造成关键带状态的变化,从而对关键带及其发生的各种过程产生影响,这些影响促使经济社会对关键带状态的变化做出响应,响应措施又作用于驱动力、压力、状态和影响。该体系从系统分析的角度看待社会经济与关键带的相互作用,是组织环境状态信息的通用框架[16]。驱动力指影响关键带的外部过程变化的趋势,是造成关键带变化的潜在原因。例如,人类社会通过人口增长、土地利用等方式作用于关键带,成为关键带变化越来越重要的驱动力[17]。压力指人类活动对关键带的直接作用。社会经济从关键带获取所需要的水、粮食、建筑材料等资源,同时在生产和消费过程中排出工业废物、生活垃圾、废水等,是造成关键带变化的直接因素。状态用来描述不同时空尺度关键带的动态变化。影响描述的是当外界对关键带施加压力时其状态随之发生变化,这些变化对于关键带功能和服务所产生的效应。响应指改善或适应关键带变化而采取的相关措施,如法律法规、技术调控措施等。关键带科学研究的成果,应以易于理解的形式,传递给管理者和决策者,从而采取相应的资源、环境和生态管理措施。例如,Banwart等人建议采用生态服务方法将关键带的功能和服务转化为可以量化的价值,在科学研究成果与管理政策之间架起一座沟通的桥梁[18]。2.2填图-监测-建模循环体系框架循环上升的填图-监测-建模体系(简称3M框架)为研究复杂、非均质、动态的关键带提供了一条整合研究的技术框架(图3)。通过填图、监测和建模的循环进行,不断深化对关键带及其过程随时间和空间变化规律的认识,积累越来越多的图件、数据和成果。在此基础上,通过对图件、数据和成果的集成与分析,针对管理者、科学家、社会公众等不同的服务对象生产各种产品,将关键带研究成果最大程度地传递给社会[19]。填图是了解关键带组成与结构的基础,也是部署监测和开展建模的基础。关键带在空间展布上的高度非均质性和在垂向上的分层性,要求采用各种技术手段对不同尺度的关键带进行调查,获取关键带各种要素的物理和化学参数,为建立地球关键带框架模型提供基础数据。监测是了解关键带随时间变化的基础,为建模提供所需的输入数据和校正数据。需要监测的内容应涵盖关键带各种要素,也应包含模型运行需要输入的相关数据。建模是开展关键带过程机理研究的重要手段,也是开展关键带定量评价、预判关键带变化的重要工具。建模将填图所获得的空间数据与监测所获得的时间数据整合在一起,对关键带中所发生的水文过程、生物地球化学过程和生态过程进行数学模拟,以探求隐藏在表象之下的自然规律。填图、监测、建模构成关键带科学研究的完整框架,三者相辅相成、循环上升、互为促进。
3关键带研究进展
3.1填图20世纪末,近地表圈层得到了越来越多的北美水文地质学家的重视[20]。近地表地质圈包括土壤、包气带、浅层地下水、生物栖息地、湿地、河溪下层区和农业用地等。1998年,美国地质调查局(USGS)了2000~2010年地质科学战略,将近地表圈层作为研究重点之一,确定开展地质填图、地球物理填图、地球化学填图和钻孔测量,查明控制地下水流及污染的地质框架[21]。截至2010年,USGS完成的1∶10万以上比例尺的地质图达到了美国国土面积的64%;完成了全国65个主要含水层12%的三维地质调查,建立了三维水文地质框架模型;完成了15个县面向地质灾害的三维地质调查,建立了用于减灾的地质框架。在美国国家科学基金会资助下,加州大学、科罗拉多大学等单位于2007年开始在Christina、BoulderCreek等6个地区以流域为单元开展关键带填图工作,调查确定关键带基岩、土壤、植被和地形的三维空间分布与特性,研究关键带结构随时间的演化规律、风化层与土壤的形成与空间变化特征[22]。2012年,USGS了其核心科学体系科学战略(2013~2023),明确将关键带作为其研究的核心靶区,提出针对关键带的结构和过程进行调查,建立关键带3D/4D地质框架模型。重点研究内容包括利用先进的微分析技术开展点上小至分子尺度的调查,利用先进的遥感技术开展面上大至全球尺度的调查,研发关键带及其过程的3D/4D模型,形成不同比例尺的地质图、地理图和生物多样性图[23]。针对水资源管理需要,建立不同尺度的3D/4D水文地质框架模型;针对自然灾害防治需要,建立地球表层地质、水文和生态框架[24]。2006年,针对土壤侵蚀、盐渍化、有机质减少和滑坡等土壤环境问题,欧盟委员会了土壤保护主题战略,将传统的1~2m深的土壤层扩展到地表至基岩之间的未固结土层进行调查和研究[7],类似于NRC所提出的地球关键带。该战略认为,土壤结构是影响关键带过程和功能的主要因子。在实际调查工作中,强调利用各种技术开展关键带空间分布和土壤结构的调查。例如,在卢森堡和意大利托斯卡纳区分别采用地电技术、地震探测技术、地质雷达技术和高光谱技术对土壤粘土含量、含石量、碳含量和土壤层厚度进行了调查和填图;在瑞典Damma、奥地利Fuchsenbigl、捷克Lysina和希腊Koiliaris等地区对土壤的物理结构、化学结构和生物结构进行了调查和填图[25]。关键带填图的主要目标之一是回答“关键带如何形成与演化”的基本科学问题。科罗拉多大学联合USGS采用浅层地震折射方法对GordonGulch流域的风化层厚度、风化锋面深度进行了调查,发现山坡北坡的风化锋面比南坡的风化锋面更深,风化程度也更高[26]。Anderson等根据野外调查和模型模拟结果认为,关键带可视为一个连通反应器,下端的风化锋面将未风化的基岩纳入反应器,上端的生物物理作用为反应器提供了反应的动力,物理风化和化学风化作用共同决定了关键带的形成过程[27]。Amundson等试图将关键带形成与演化的生物作用从生物-非生物的耦合作用中抽离出来,定量刻画生物作用对关键带物质组成与地貌变化的影响[28]。欧盟资助的欧洲流域土壤变化项目选择了代表土壤形成不同阶段的4个地区进行调查研究,分析确定关键带形成演化的影响因素和关键带生态服务的可持续性。3.2监测根据NRC提出的关键带科学研究战略,美国国家科学基金会于2007年启动了关键带观测计划。首批在加州的SouthernSierra、科州的BoulderCreek、宾州的SusquehannaShaleHills建立了3个关键带观测站,于2009年又资助在新墨西哥州的Jemez-SantaCatalina、特拉华州的Christina流域、波多黎各的Luquillo增建了3个关键带观测站[29]。目前,6个关键带观测站共有250名科学家、技术人员和研究生在开展研究工作。关键带观测站以流域为单元,对关键带各种要素进行长期观测,为研究关键带变化提供科学数据。6个关键带观测站按照相同的标准进行观测,观测对象包括大气、植被及微生物、土壤(包气带)、含水层及基岩(饱水带)、地表水,主要监测内容如表1[30]。例如,BoulderCreek流域关键带观测站观测范围为1158km2的BoulderCreek流域,利用USGS和特拉华州水文站、观测井对地表水和地下水进行监测,设立了3座气象站对空气和土壤参数进行监测,埋设了15组土壤传感器对土壤含水量、土水势等土壤参数进行监测,安装了75台蒸渗仪对蒸腾蒸发量、深层渗漏量等进行监测,在下游河谷地区布设了6眼地下水观测井对地下水质进行监测。在美国关键带观测站的影响下,德国亥姆霍兹联合会于2008年启动了陆地环境观测建设项目,主要目标是为区域尺度全球气候变化对生态、社会和经济的长期影响研究提供地下水、包气带水、地表水、生物和大气的基础观测数据。目前,已在德国东北低地、Eifel/LowerRhine山谷、中部低地和BavarianAlps等地区建立了4个陆地环境观测站[31]。观测站观测范围为小流域尺度,面积一般小于104km2,以观测站为平台进行陆地系统实时监测、开展科学实验、测量不同时空尺度环境长期变化。法国等国家则通过提升现有的“河流盆地网络”所属的观测站,建设关键带观测设施,以流域为单元对关键带要素进行观测。法国河流盆地网络包含20个观测站,自2011年开始由关键带提升项目(CTRTEX)资助增设关键带观测仪器设备和基础设施。为了贯彻落实土壤保护主题战略,欧盟委员会于2009年启动了“欧洲流域土壤变化”项目,其中一项重要任务是对地球关键带进行长期观测。该项目强调土壤是地球关键带的核心,将土壤监测作为地球关键带长期观测的重点。根据土壤形成的不同阶段,选择了4个典型地点建立了欧盟地球关键带观测站:瑞典的Damma,处于土壤新形成阶段;奥地利的Fuchsenbigl,处于冲积平原土壤肥力发展阶段;捷克的Lysina,处于土壤遭到酸雨破坏后人工恢复阶段;希腊的Koiliaris,处于土壤遭受荒漠化威胁阶段[32]。欧盟与美国在关键带观测方面建立了紧密的合作关系,其观测内容与美国观测站相似,主要包括陆地-大气水碳转化、土壤含水量变化、孔隙水化学、地表水-土壤水-地下水转化、土壤长期演化等[33]。3.3建模模型对于深化对关键带形成、运行与演化的科学认识具有重要的作用,始终是关键带科学研究的重要领域之一。例如,美国关键带观测计划的重要目标之一是建立能够描述关键带生态过程、生物地球化学过程和水文过程的系统模型,定量预测气候变化、地质作用和人类活动下关键带结构和功能的响应。关键带过程模型大致可分为两类:一类是描述单个过程的数学模型,如地下水流动、土壤溶质运移、植物对水分胁迫响应等单个关键带过程;一类是描述多个过程叠加的耦合过程的数学模型,如地表水-地下水-大气水转化、生态-水文过程等关键带耦合过程。对于第一类过程,目前已建立了较为成熟的模拟模型[34];而对于第二类过程,是关键带建模的重点和难点,尽管近年来做了很多探索工作,耦合模型还远不成熟。包气带与饱和带水文过程耦合模型研究取得了新的进展。通常有两种做法将包气带与饱和带的水文过程耦合在一起。一种做法是把包气带方程与地下水方程耦合在一起,例如,TOPOG_Dynamic模型采用一维Richards方程描述垂向土壤水流,采用二维Boussinesq方程描述地下水水平运动,采用CDE描述溶质运移,土壤与含水层由二者接合处土壤水流量进行连接[35]。另一种做法是把包气带和饱和带作为一个统一的系统,采用三维Richards方程从机理上描述土壤与地下水水流和溶质运移,如SWMS_3D和FEMWATER模型[36]。Lin等认为上述基于传统小尺度物理学方法的数学模型,由于没有将包气带的结构考虑在内,对于包气带中普遍存在的优先流不能进行准确刻画[37]。因此,关键带建模的挑战之一是将结构与过程同时纳入统一的模型。生态过程与水文过程耦合建模研究也取得了很大进展。以研究生态过程与水文过程相互作用为基础,通常将植物生长模型与水文模型耦合建立生态水文模型,以定量刻画植被生长与水文变化的耦合过程,分析全球变化对流域生态-水文过程演变的影响机制[38]。例如,BEPS-TerrainLab模型在DSHVM模型基础上耦合生物地球化学循环模型BEPs建立了流域生态水文模型,用于加拿大北部森林区碳循环与水循环耦合的基础和应用研究;RHESSys生态水文模型以水文模型TOPMODEL为基础,考虑了植被对水文过程的作用,耦合了碳循环过程Biome-BGC模型和氮循环过程Century模型,可以用来模拟关键带水、碳、氮的耦合循环[39]。美国Luquillo关键带观测站采用生态水文模型tRIBS-VEGGIE对区域关键带生态-水文过程进行了模拟,该模型可模拟复杂地形背景下河流盆地植被生长动态变化过程与水文变化过程[40]。
4结论与建议
生物耦合技术范文4
工业生物技术是人类实现可持续发展的重要途径。众所周知,以化石原料为基础的物质制造业在现代工业社会中占据着重要的位置,但它正面临着严峻的挑战:化石原料可用量日益减少,环境污染日益严重。以再生资源为基础的循环产业的形成是解决现代工业社会危机的重要途径。生态环境脆弱和资源短缺是我国的基本国情,也是限制我国产业经济可持续发展的瓶颈。工业生物技术被OECD(OrganizationofEconomicCooperationandDevelopment)定位为构建和环境协调产业体系的关键技术,是实现人类可持续发展目标的重要领域。世界各国对工业生物技术都给予了极大的重视。目前,据统计至少有129个利用生物技术进行工业化生产的例子。但是,工业生物技术的工业化成功的例子仍然很有限。这主要是因为自然界的生物催化剂大都只能在温和的条件下起作用,往往难以直接用于工业过程,比如通常酶或细胞很难在高温、高压、有机溶剂等条件下起作用,其稳定性低,容易失活。但是,随着对生物酶来源的多样性、酶催化机理、结构及功能之间关系认识的逐步提高和现代工业社会发展对生物技术需求的高涨,建立发现、改造和使用生物催化剂技术平台成为工业生物技术研究的热点领域之一。
化学物质是人类社会赖以发展的基础。但人工化合物的大规模制造和使用造成了严重的环境污染,成为被全球普遍关注的严峻问题。众多的人工化合物释放到生态环境中后,微生物还没有足够的时间和充分的环境条件来“进化”其代谢途径,因此表现出有机化合物的难生物降解性。化合物对环境产生的风险(Risk)可由以下的公式来表示,取决于化合物本身的危害度(Hazard)和在环境中的暴露程度(Exposure)。
Risk=Hazard×Exposure
因此,为降低化学物质对环境带来的危害或负担,开发清洁生物生产工艺生产环境友好的化合物具有重要的意义,与此同时必须开发减少化学物质在环境中的暴露程度(浓度和时间),即化合物的生物降解或生物处理技术。随着难降解化合物的污染问题的表面化和人们对环境污染问题认识加深,于上世纪90年代形成了环境生物技术这一学科方向。环境生物技术是生物技术与环境科学和化学工程等领域交叉的学科,是工业生物技术领域的新方向。2002年10月的美国科学杂志(Science)刊登了环境微生物技术的研究特辑,英国的自然生物技术杂志(NatureBiotechnology)于2003年2月刊登了具有芳香化合物降解能力的假单胞杆菌(Pseudomonassp.)作为多样生物催化剂的可能性,近几年,国外还涌现出了大量的有关环境生物技术的书籍,足见环境生物技术研究在国际上已成为重要的前沿研究领域。
本文以利用融合蛋白技术高效生产工业用肝素酶及剩余污泥减量化好氧-厌氧反复耦合废水生物处理技术研发过程为主,介绍工业生物技术在医药化学品、生物能源及环境中的应用研究进展。
1)肝素酶的重组大肠杆菌高效生产、分离耦合及其应用技术研究
肝素酶I(heparinaseI,EC4.2.2.7,商品名Neutralase,Hepzyme,IBEX,加拿大蒙特利尔公司生产)是一种特异作用于肝素(heparin)和类肝素分子的多糖列解酶。肝素酶具有重要的应用价值,肝素酶及其底物多糖肝素之间的相互作用有助于阐明多糖裂解酶的作用机制;肝素酶可以用于解析肝素等复杂粘多糖的结构及其生物学功能;肝素酶可以用于解析人体内的凝血和抗凝血机制;肝素酶可以用于制备具有高效抗凝血作用的低分子肝素;肝素酶还可以用作临床血液肝素化的去除,防止手术后出血。我国是肝素原料的生产大国,开发酶法低分子肝素生产技术具有重要的意义。
商业化的肝素酶I从肝素黄杆菌(Flavobacteriumheparinum)中纯化得到,但表达需要价格昂贵的肝素诱导,同时由于肝素酶II和III的共表达增加了纯化的困难和成本[1]。肝素酶I的基因已被克隆并在大肠杆菌中表达,但产生的都是无活性的包涵体,需要蛋白质复性才能获得有活性的酶[2-4]。
我们利用融合蛋白技术构建了一套大肠杆菌的表达系统,能够高效的表达可溶性的肝素酶I,并同过亲和分离简化了肝素酶的纯化操作。实验研究结果表明在我们的肝素酶表达生产体系中,90%以上的肝素酶I以有活性的可溶性蛋白形式存在,从而省去了复性的操作,降低了操作成本;目前酶活可达16000IUl-1,远远高于肝素黄杆菌的表达水平;通过一步亲和分离,回收的肝素酶纯度达95%以上。同时利用绿色荧光蛋白(GFP)基因,构建了利用荧光快速定量酶活的新方法,而且肝素酶与GFP的融合蛋白有助于肝素酶失活机理的研究。
利用融合蛋白的亲和吸附能力容易实现肝素酶I的定向固定化,使开发高效肝素酶反应器成为可能。通过实验证明融合肝素酶I能够和商品酶一样有效的降解肝素,制备出理想的低分子量肝素(LMWH)。通过控制酶解反应条件,得到了一系列分子量分布范围窄的低分子量肝素(平均分子量在5000-6000)。本研究为肝素酶的工业化生产及其应用奠定了技术基础。
2)好氧-厌氧反复耦合生物反应器处理废水新工艺研究进展
活性污泥法作为有机废水的生物处理技术被广泛的应用。但是活性污泥法的最大缺点是产生大量的剩余污泥,因其含水率高,体积大,易腐烂,易产生恶臭味,造成污泥处理和处置困难。目前由于经济效益问题难以彻底解决污水处理普遍存在的污泥问题,因此从源头上减少污泥产率或实现剩余污泥原位降解的污水生物处理技术的开发是值得重视的方向。
生物耦合技术范文5
关键词:微波消解;电感耦合等离子体质谱;肉及肉制品;重金属
Abstract: A method for the simultaneous determination of 7 trace elements (lead, arsenic, cadmium, chromium, selenium, mercury, and nickel) in meat and meat products by inductively coupled plasma mass spectrometry (ICP-MS) with microwave digestion was established. Samples were pretreated by microwave digestion and determined by ICP-MS with rhodium (Rh) as the internal standard. The microwave digestion conditions and the instrumental parameters were optimized. It was found that the instrumental signal drift and matrix effect could be overcome by using the internal standard method. The developed standard curve was linear in the range of 0 to 20 ng/mL, with a correlation coefficient of more than 0.999. The recoveries of the analytes in spiked samples ranged from 89.4% to 98.9% and the precision expressed as relative standard deviation was less than 5%. The limits of detection for the trace elements were all lower than those stipulated in the Chinese national standards. The proposed method was rapid, accurate, reliable, sensitive and suitable for simultaneous multi-element analysis of meat and meat products.
Key words: microwave digestion; inductively coupled plasma mass spectrometry (ICP-MS); meat and meat products; heavy metal
中图分类号:TS254 文献标志码:A 文章编号:1001-8123(2015)03-0027-03
doi: 10.7506/rlyj1001-8123-201503007
人民生活水平日益提高的今天,食品安全问题已经成为人类共同关注的焦点,由于环境、运输、各种加工助剂污染造成各种食品的污染物含量超标问题也逐渐凸显,这其中尤以重金属污染为重[1-4]。重金属是指密度在
5×10-3 kg/m3以上的金属,主要包括汞(Hg)、镉(Cd)、铬(Cr)、铅(Pb)、砷(As)、锌(Zn)、锡(Sn)等[5-7]。肉及肉制品作为人类赖以生存的动物蛋白的良好来源,其食用安全性关系到千家万户的生命健康,其中重金属的污染也有众多途径[8],其一动物从环境中摄取的重金属通过食物链的生物放大作用,在较高级生物体内成千上万倍的富集起来,通过加工成肉制品后进入人体内,其二来自于畜产品及其制品在生产加工、贮藏运输过程中出现的污染等途径带来的重金属也会在最终产品中残存和富集,有毒重金属具有排出困难的特点,一旦在体内沉淀会给身体带来很多潜在危害。因此检测其肉及肉制品中重金属残留的重要性不言而喻[9-14]。
目前对于重金属等无机化学分析的仪器主要有原子吸收光谱仪(atomic absorption spectroscopy,AAS)、原子荧光光谱仪(atomic fluorescence spectrometry,AFS)、电感耦合等离子体发射光谱(inductively coupled plasma-atomic emission spectrometer,ICP-AES)和电感耦合等离子体质谱(inductively coupled plasma mass spectrometry,ICP-MS)等[9-14]。电感耦合等离子体质谱法具有一次进样可同时测定多种元素的优点[15-16],该法具有效率高,所有待测元素可同时测定;分析速度快,重复测定7 个元素3 次只需2~3 min;检出限低,大多数元素检出限为ng/kg或μg/kg;精密度高等诸多优点[17-19]。结合微波消解的前处理手段则采用HNO3-H2O2体系,样品消化完全,待测溶液中含有的硝酸介质对ICP-MS法的测定干扰少[20]。该方法的建立对指导各检测机构对肉及肉制品中重金属的检测及监督市场状况有及其重要的意义[21]。
[7] 李冰, 杨红霞. 电感耦合等离子体质谱技术最新进展[J]. 分析实验室, 2003, 22(1): 94-100.
[8] 赖增龙. 浅谈腊肉制品中砷铅汞镉的危害及其测定方法研究[J]. 中小企业管理与科技旬刊, 2014(20): 217.
[9] 毛红, 刘丽萍, 张妮娜, 等. 应用ICP-MS与AAS测定食品中铅、镉、铜方法研究及比较[J]. 中国卫生检验杂志, 2007, 17(11): 1954-1956.
[10] 金鹏飞, 宋丽洁, 邹定, 等. ICP-MS同时分析中药材中7 种微量元素的方法研究[J]. 中国药学杂志, 2007, 42(21): 1660-1664.
[11] HELEN J, REID A, ABDUL A, et al. Determination of lodine and molybdenum in milk by quadrupole ICP-MS[J]. Talanta, 2008, 75: 189-197.
[12] 王丙涛, 颜治, 林燕奎, 等. ICP-MS 检测奶粉中多元素的干扰研究[J]. 光谱实验室, 2010, 27(2): 720-723.
[13] 刘平, 董速伟, 李安运, 等. ICP-MS 在稀土元素分析中的应用[J]. 有色金属科学与工程, 2011, 2(3): 83-87.
[14] 王小平, 马以瑾, 伊藤光雄. 密封消解ICP-AES和ICP-MS测定中日两国茶叶中23种矿质元素[J]. 光谱学与光谱分析, 2005, 25(10): 1703-1707.
[15] 戴京晶, 刘奋, 梁伟, 等. ICP-MS法分析禽类肉中10种元素[J]. 现代预防医学, 2014, 36(6): 877-879.
[16] 陈登云. ICP-MS技术及其应用[J]. 现代仪器, 2001(4): 8-11.
[17] 陈国友. 微波消解ICP-MS法同时测定蔬菜中14种元素分析[J]. 测试学, 2012, 26(5): 742-745.
[18] 兴丽, 王梅, 赵凤敏, 等. ICP-MS两种模式下测定亚麻籽中微量元素及其不确定度评定[J]. 光谱学与光谱分析, 2014, 34(1): 226-230.
[19] 诸遥 王君. 微波消解-ICP-AES/ICP-MS 测定大米中微量元素[J]. 中国测试, 2010, 36(1): 53-56.
生物耦合技术范文6
关键词:无线电能传输;非接触;磁耦合;共振
作者简介:王敏星(1964-),男,河南济源人,河南省济源市质量技术监督局,工程师;李大伟(1987-),男,河南济源人,河南省电力公司济源供电公司。(河南 济源 459000)
中图分类号:TM724 文献标识码:A 文章编号:1007-0079(2014)06-0263-03
无线电能传输技术(WPT,Wireless Power transfer)能够实现无导线连接情况下的电能传递,在医学应用、矿井采掘、移动设备充电等特殊场合具有较大的应用前景。随着移动通信设备、物联网、电动汽车等技术的快速发展,近年来发展非常迅速,并且取得了较大的进展。伴随着研究和市场化的不断深入,作为一种前景广阔的电能传输方式,在电磁兼容、人体健康和传输效率等方面都产生新的研究问题,需要进一步明晰研究方向并针对存在的问题深入研究。
一、无线电能传输技术的方式
虽然采用超声波和其他机械波能够无线传输能量,但目前无线电能传输的主流方式仍是利用电磁场传输能量。从频率的角度来说,采用的频率包括从若干GHz跨越到若干kHz的广大范围。在较高频率段,利用微波传输能量(甚高频以上的频率范围,频率>300MHz)通常采用直接照射接收端的方式,通过控制发射天线的朝向使能量以电磁波的形式准确发射到接收天线。该方法传输方向性较强、传输距离较远,但易被障碍物遮挡,还需要较复杂的天线对准装置。而且高频电磁波的生物安全性较差,高功率的电磁波对人体有较大伤害,因此在民用领域应用的机会较少。磁耦合谐振式无线电能传输方式(MCRWPT,Magnetic Coupled Resonant Wireless Power Transfer)采用磁场频率在10MHz以下,通过电谐振体之间的耦合磁场来传输电能。这种方法可以在一定的距离(几厘米到几米)范围内传送能量,功率值可以达到几百瓦。而感应耦合无线电能传输方式(MIWPT,Magnetic Inductive wireless Power Transfer)借助磁材料提高磁场的耦合程度,可以传送较大的功率,效率较高。但由于磁材料的限制,工作频率不宜过高,通常在1MHz以下。在距离增大时,磁材料之间的气隙增加,耦合程度急剧降低,因此传输距离相对较近(常常在几毫米到几十厘米)。在民用和工业应用中,磁耦合谐振式无线电能传输(MCRWPT)和感应耦合式(MIWPT)的传输距离基本满足常用设备的充电距离要求,从理论上能够获得更大的功率和更高的效率,因此具有较大前景,是目前研究的热点。本文从几个方面介绍此两项技术的研究与发展。
二、研究内容和研究方向
1.基本理论和技术研究
率及效率的模型研究:目前对无线电能传输方式的研究模型主要有耦合模分析法[1,2]电磁场分析方法、[3,4]等效电路法[5]等。
耦合模方法可见文献[1]所采用的基本方程表达式:
(1)
其中:为代表谐振体中的能量;为激励角频率;为自损耗系数;为谐振体m和n之间的耦合系数;为代表外加驱动的驱动项。
其基本思想是,给出系统的源、损耗及特征量,通过求解器损耗与特征量的关系,即求得系统效率及传输功率的解。电磁场方法根据电磁场理论求解电磁场方程,以此求得传输效率等结果。而等效电路方法主要针对磁耦合的特点,利用电路理论求解电路方程,以此获得系统的结果。
几种建模方法各有优劣:耦合模方法可以从能量角度进行分析,但是不够直观;电磁场分析方法理论上可以计算非常详尽的电磁场分布[3],理论上可以计算出耦合磁场能量传输细节。但过于复杂性,不便于系统设计和参数优化。通常借助电磁场仿真软件以求得分部场的直观数值解。等效电路法应用直观,是目前采用较多的方法,但是由于对电磁场进行了低频简化,对高频条件下电磁特性描述较粗略,不利于有关电磁场方面的研究。理论未来的研究方向将建立更加准确和合理的分析模型,甚至提出更加新颖的传输模式,从理论高度提高系统的指标,并以此指导设计和制造无线电能传输装置。
第二,线圈结构及设计。根据电路互感模型的一般结构,如图2所示。
通常可以得到以下矩阵形式的方程:
(2)
谐振条件下传输效率:
线圈2在线圈1中产生的反映阻抗为,可见反映阻抗中负载侧电阻值位于分母中,对于源侧的影响变为负向变化。即负载侧电阻值越高,传输效率越小。实际电路中,通常源内阻和负载线圈侧的电阻RB2往往较大。因此,双线圈结构传输效率往往较低。但根据上述分析,通过改变系统线圈结构和数量,可以改变不同线圈中的反映阻抗,进而改变耦合系统的效率、传输功率和传输效率。因此出现了三线圈[5]、四线圈[1]和多线圈[6]等情况。
第三,参数匹配方法及参数设计。在确定整体结构形式的基础上,还需要计算和均衡线圈的各项参数。线圈按照谐振的形式主要有自谐振线圈和电容-线圈谐振线圈。按照线圈的缠绕方式可分为密绕线圈、平面线圈、螺旋线圈等。电路参数主要有电感值、电容值和电阻值等。对于高频线圈还存在着寄生电容等高频参数。在分析和设计中,对上述参数进行优化,通过增加耦合程度、减少内阻和提高品质因数以提高系统性能。目前的研究主要集中在线圈结构和参数设计等方面,[7]针对线圈的新构形和新材料的研究也是一个重要的研究方向。
2.无线电能传输的激励源
激励源是无线电能传输的核心元件。相对于普通的高频信号源和开关电源,激励源不但工作在高频条件下,而且还要承担功率变换的功能。作为能量传输路径中第一个环节,对无线电能传输系统的总体指标的影响非常显著。而且由于电路中谐振作用,功率元件往往要承受谐振电压或者谐振电流的冲击,其数值会远超过系统输入电压或者输入电流。因此,无线电能传输的激励源设计更加困难。目前多采用的是D类开关型和E类谐振型放大电路。按照功率元件的数量和结构,有单管、非对称半桥、全桥等。该方向的发展方向是实现高频大功率条件下的高效率、低损耗和微型化,设计出更加适合无线电能传输的专用高频激励源。
3.电路结构研究
由于无线电能传输技术的应用范围愈加广阔,需要适应和满足更加苛刻和多样化的工作条件与限制。例如为了实现电动汽车在电网运行中能量缓冲的作用,无线充电装置不仅需要单向充电,而且还需要将能量从电动汽车反向传输给电网。医用领域中对系统的体积和可靠性指标的要求非常苛刻,因此无线电能传输装置既要尽量压缩体积、提高可靠性,而且还要实现能量和信号的同时传输。越来越多新的应用呼唤更加多功能和更强适应性的无线电能传输装置。因此需要提出更多新型的多功能电路结构,以增强电路的紧凑性、可靠性、通信能力、[8]能量控制水平等。[9]
4.标准、规章及医学影响
目前,已经出现了三个主要的无线电能传输标准(联盟),其中Qi联盟成立于2008年12月,目前已推出针对便携电子产品的低于5W以下设备的标准,未来还将会提出更大功率的标准进而形成体系。[10]
对人体影响的疑虑贯穿于整个无线电能技术的发展,这方面的研究始终是重点之一,包括医学相关性、辐射限制和磁场控制等多个方面。目前多采用计算机仿真和人体模拟的方式研究对人体的影响。未来将会进一步深入研究无线电能传输装置的生物性影响;同时,通过技术手段减少磁场泄露和影响,以满足相关的限制性标准。
5.医学应用研究
由于无线电能传输避免了导线的束缚,人体内部植入设备的应用将会变得非常便利,因此无线电能传输在医学方面的应用始终受到最大的关注。[11]但人体内植入设备中,体积要求十分苛刻而且传输路径需要经过人体组织。因此提高微小尺寸线圈的品质因数,提高传输效率[12]和研究高频电磁场对人体组织的影响是目前的主要研究方向。现在,无线电能传输技术在经皮植入装置、心脏起搏器、消化道机器人等方面已经取得了长足的进步。通过无线电能传输技术的应用,未来人体植入医疗设备将会有较大的发展,会大大改变人类的诊断和治疗方式。
6.电动汽车充电装置
由于具有无接触、无连接和无漏电的特性,无线电能充电装置在电动汽车充电领域具有较大的应用前景,已经成为无线电能传输的一个热门研究方向,而且正在逐步实用化。主要分为固定式和移动式两大方向。固定式在充电过程中车体保持不动,其传输距离和传输功率已经能够满足电动汽车底盘高度、电动汽车充电功率的要求。移动式电动汽车无线充电方式可以随时向行进中的电动汽车补充能量,因此可以减少相同运行里程条件下电动汽车所需的电池容量。目前,电动汽车充电技术的主要研究方向是进一步提高传输效率、距离和功率,并且针对偏移情况、双向传输、控制方式等问题展开研究。电动汽车的无线充电技术将会推动电动汽车的实用进程,无线充电技术的需求也将越来越大,市场前景更加广阔。
三、结论
无线电能传输技术经过几年的快速发展,其发展趋势愈加迅猛。未来的研究将更加深入和细致,并且进一步向应用方向推进,实用化脚步愈发加快。随着研究内容更加深入及人们对该技术的逐渐接受和认可,未来其市场和应用前景更加广阔。
参考文献:
[1]Kurs A,Karalis A,Moffatt R,et al.Wireless power transfer via strongly coupled magnetic resonances [J].Science,2007,317(5834):83-86.
[2]Kiani M,Ghovanloo M.The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2012,59(9):2065-2074.
[3]Zeljko Pantic and Srdjan putationally-Efficient,Generalized Expressions for the Proximity -Effect in Multi-Layer,Multi-Turn Tubular Coils for Wireless Power Transfer Systems[J].IEEE Transaction s on Magnetic,2013,49(11):504-5416.
[4]Jaechun L,Sangwook N.Fundamental Aspects of near-Field Coupling Small Antennas for Wireless Power Transfer[J].IEEE Transactions on Antennas and Propagation,2010,58(11):3442-3449.
[5]Dukju Ahn and Songcheol Hong,A Study on Magnetic Field Repeater in Wireless Power Transfer[J].IEEE Transactions on Industrial Electronics,2013,60(1):360-371.
[6]Lee C,Zhong W,Hui S.Effects of Magnetic Coupling of Non-Adjacent Resonators on Wireless Power Domino- Resonator Systems[J].IEEE Transactions on Power Electronics,2012,27(4):1905-1916.
[7]Bernd Breitkreutz and Heino Henke,Calculation of Self-Resonant Spiral Coils for Wireless Power Transfer Systems With a Transmission Line Approach[J].IEEE Transactions on Magnetics,2013,49(9):5035-5042.
[8]Bawa G,Ghovanloo M.Active High Power Conversion Efficiency Rectifier with Built-in Dual-Mode Back Telemetry in Standard Cmos Technology[J].IEEE Transactions on Biomedical Circuits and Systems,2008,2(3):184-192.
[9]Wang G,Liu W,Sivaprakasam M,et al.Design and Analysis of an Adaptive Transcutaneous Power Telemetry for Biomedical Implants[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2005,52(10):2109-2117.
[10]S.Y.Hui,Planar Wireless Charging Technology for Portable Electronic Products and Qi[J].Proceedings of the IEEE,2013,101(6):1290-1301.