前言:中文期刊网精心挑选了数字集成电路设计基础范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数字集成电路设计基础范文1
关键词:集成电路专业;实践技能;人才培养
中图分类号:G642.0 文献标志码: A 文章编号:1002-0845(2012)09-0102-02
集成电路产业是关系到国家经济建设、社会发展和国家安全的新战略性产业,是国家核心竞争力的重要体现。《国民经济和社会发展第十二个五年规划纲要》明确将集成电路作为新一代信息技术产业的重点发展方向之一。
信息技术产业的特点决定了集成电路专业的毕业生应该具有很高的工程素质和实践能力。然而,目前很多应届毕业生实践技能较弱,走出校园后普遍还不具备直接参与集成电路设计的能力。其主要原因是一些高校对集成电路专业实践教学的重视程度不够,技能培养目标和内容不明确,导致培养学生实践技能的效果欠佳。因此,研究探索如何加强集成电路专业对学生实践技能的培养具有非常重要的现实意义。
一、集成电路专业实践技能培养的目标
集成电路专业是一门多学科交叉、高技术密集的学科,工程性和实践性非常强。其人才培养的目标是培养熟悉模拟电路、数字电路、信号处理和计算机等相关基础知识,以及集成电路制造的整个工艺流程,掌握集成电路设计基本理论和基本设计方法,掌握常用集成电路设计软件工具,具有集成电路设计、验证、测试及电子系统开发能力,能够从事相关领域前沿技术工作的应用型高级技术人才。
根据集成电路专业人才的培养目标,我们明确了集成电路专业的核心专业能力为:模拟集成电路设计、数字集成电路设计、射频集成电路设计以及嵌入式系统开发四个方面。围绕这四个方面的核心能力,集成电路专业人才实践技能培养的主要目标应确定为:掌握常用集成电路设计软件工具,具备模拟集成电路设计能力、数字集成电路设计能力、射频集成电路设计能力、集成电路版图设计能力以及嵌入式系统开发能力。
二、集成电路专业实践技能培养的内容
1.电子线路应用模块。主要培养学生具有模拟电路、数字电路和信号处理等方面的应用能力。其课程主要包含模拟电路、数字电路、电路分析、模拟电路实验、数字电路实验以及电路分析实验等。
2.嵌入式系统设计模块。主要培养学生掌握嵌入式软件、嵌入式硬件、SOPC和嵌入式应用领域的前沿知识,具备能够从事面向应用的嵌入式系统设计能力。其课程主要有C语言程序设计、单片机原理、单片机实训、传感器原理、传感器接口电路设计、FPGA原理与应用及SOPC系统设计等。
3.集成电路制造工艺模块。主要培养学生熟悉半导体集成电路制造工艺流程,掌握集成电路制造各工序工艺原理和操作方法,具备一定的集成电路版图设计能力。其课程主要包含半导体物理、半导体材料、集成电路专业实验、集成电路工艺实验和集成电路版图设计等。
4.模拟集成电路设计模块。主要培养学生掌握CMOS模拟集成电路设计原理与设计方法,熟悉模拟集成电路设计流程,熟练使用Cadence、Synopsis、Mentor等EDA工具,具备运用常用的集成电路EDA软件工具从事模拟集成电路设计的能力。其课程主要包含模拟电路、半导体物理、CMOS模拟集成电路设计、集成电路CAD设计、集成电路工艺原理、VLSI集成电路设计方法和混合集成电路设计等。此外,还包括Synopsis认证培训相关课程。
5.数字集成电路设计模块。主要培养学生掌握数字集成电路设计原理与设计方法,具备运用常用的集成电路EDA软件工具从事数字集成电路设计的能力。其课程主要包含数字电路、数字集成电路设计、硬件描述语言、VLSI测试技术、ASIC设计综合和时序分析等。
6.射频集成电路设计模块。主要培养学生掌握射频集成电路设计原理与设计方法,具备运用常用的集成电路EDA软件工具从事射频集成电路设计的能力。其课程主要包含CMOS射频集成电路设计、电磁场技术、电磁场与
天线和通讯原理等。
在实践教学内容的设置、安排上要符合认识规律,由易到难,由浅入深,充分考虑学生的理论知识基础与基本技能的训练,既要有利于启发学生的创新思维与意识,有利于培养学生创新进取的科学精神,有利于激发学生的学习兴趣,又要保证基础,注重发挥学生主观能动性,强化综合和创新。因此,在集成电路专业的实验教学安排上,应减少紧随理论课开设的验证性实验内容比例,增加综合设计型和研究创新型实验的内容,使学有余力的学生能发挥潜能,有利于因材施教。
三、集成电路专业实践技能培养的策略
1.改善实验教学条件,提高实验教学效果。学校应抓住教育部本科教学水平评估的机会,加大对实验室建设的经费投入,加大实验室软、硬件建设力度。同时加强实验室制度建设,制订修改实验教学文件,修订完善实验教学大纲,加强对实验教学的管理和指导。
2.改进实验教学方法,丰富实验教学手段。应以学生为主体,以教师为主导,积极改进实验教学方法,科学安排课程实验,合理设计实验内容,给学生充分的自由空间,引导学生独立思考应该怎样做,使实验成为可以激发学生理论联系实际的结合点,为学生创新提供条件。应注重利用多媒体技术来丰富和优化实验教学手段,如借助实验辅助教学平台,利用仿真技术,加强新技术在实验中的应用,使学生增加对实验的兴趣。
3.加强师资队伍建设,确保实验教学质量。高水平的实验师资队伍,是确保实验教学质量、培养创新人才的关键。应制定完善的有利于实验师资队伍建设的制度,对实验师资队伍的人员数量编制、年龄结构、学历结构和职称结构进行规划,从职称、待遇等方面对实验师资队伍予以倾斜,保证实验师资队伍的稳定和发展。
4.保障实习基地建设,增加就业竞争能力。开展校内外实习是提高学生实践技能的重要手段。
实习基地是学生获取科学知识、提高实践技能的重要场所,对集成电路专业人才培养起着重要作用。学校应积极联系那些具有一定实力并且在行业中有一定知名度的企业,给能够提供实习场所并愿意支持学校完成实习任务的单位挂实习基地牌匾。另外,可以把企业请进来,联合构建集成电路专业校内实践基地,把企业和高校的资源最大限度地整合起来,实现在校教育与产业需求的无缝联接。
5.重视毕业设计,全面提升学生的综合应用能力。毕业设计是集成电路专业教学中最重要的一个综合性实践教学环节。由于毕业设计工作一般都被安排在最后一个学期,此时学生面临找工作和准备考研复试的问题,毕业设计的时间和质量有时很难保证。为了进一步加强实践环节的教学,应让学生从大学四年级上半学期就开始毕业设计,因为那时学生已经完成基础课程和专业基础课程的学习,部分完成专业课程的学习,而专业课教师往往就是学生毕业设计的指导教师,在此时进行毕业设计,一方面可以和专业课学习紧密结合起来,另一方面便于指导教师加强对学生的教育和督促。
选题是毕业设计中非常关键的环节,通过选题来确定毕业设计的方向和主要内容,是做好毕业设计的基础,决定着毕业设计的效果。因此教师对毕业设计的指导应从帮助学生选好设计题目开始。集成电路专业毕业设计的选题要符合本学科研究和发展的方向,在选题过程中要注重培养学生综合分析和解决问题的能力。在毕业设计的过程中,可以让学生们适当地参与教师的科研活动,以激发其专业课学习的热情,在科研实践中发挥和巩固专业知识,提高实践能力。
6.全面考核评价,科学检验技能培养的效果。实践技能考核是检验实践培训效果的重要手段。相比理论教学的考核,实践教学的考核标准不易把握,操作困难,因此各高校普遍缺乏对实践教学的考核,影响了实践技能培养的效果。集成电路专业学生的实践技能培养贯穿于大学四年,每个培养环节都应进行科学的考核,既要加强实验教学的考核,也要加强毕业设计等环节的考核。
对实验教学考核可以分为事中考核和事后考核。事中考核是指在实验教学进行过程中进行的质量监控,教师要对学生在实验过程中的操作表现、学术态度以及参与程度等进行评价;事后考核是指实验结束后要对学生提交的实验报告进行评价。这两部分构成实验课考核成绩,并于期末计入课程总成绩。这样做使得学生对实验课的重视程度大大提高,能够有效地提高实验课效果。此外,还可将学生结合教师的科研开展实验的情况计入实验考核。
7.借助学科竞赛,培养团队协作意识和创新能力。集成电路专业的学科竞赛是通过针对基本理论知识以及解决实际问题的能力设计的、以学生为参赛主体的比赛。学科竞赛能够在紧密结合课堂教学或新技术应用的基础上,以竞赛的方式培养学生的综合能力,引导学生通过完成竞赛任务来发现问题、解决问题,并增强学生的学习兴趣及研究的主动性,培养学生的团队协作意识和创新精神。
在参加竞赛的整个过程中,学生不仅需要对学习过的若干门专业课程进行回顾,灵活运用,还要查阅资料、搜集信息,自主提出设计思想和解决问题的办法,既检验了学生的专业知识,又促使学生主动地学习,最终使学生的动手能力、自学能力、科学思维能力和创业创新能力都得到不断的提高。而教师通过考察学生在参赛过程中运用所学知识的能力,认真总结参赛经验,分析由此暴露出的相关教学环节的问题和不足,能够相应地改进教学方法与内容,有利于提高技能教学的有效性。
此外,还应鼓励学生积极申报校内的创新实验室项目和实验室开放基金项目,通过这些项目的研究可以极大地提高学生的实践动手能力和创新能力。
参考文献:
[1]袁颖,等.依托专业特色,培养创新人才[J]. 电子世界,2012(1).
[2]袁颖,等.集成电路设计实践教学课程体系的研究[J]. 实验技术与管理,2009(6).
[3]李山,等.以新理念完善工程应用型人才培养的创新模式[J]. 高教研究与实践,2011(1).
[4]刘胜辉,等.集成电路设计与集成系统专业课程体系研究与实践[J]. 计算机教育,2008(22).
数字集成电路设计基础范文2
关键词: 硬件描述语言 verilog HDL VHDL
1.引言
数字电子技术是电气信息类专业一门重要的技术基础课程,既具有一定的理论性,同时作为一门技术课程又有相当强的实践性。因此,我们必须为理论的讲述配置一定的实验项目。目前实验项目的组织有两种途径:一是采用原来传统的小规模(SSI)或中规模集成电路(MSI)为单元构建实验项目;二是以大规模(LSI)可编程CPLD/FPGA芯片为平台,利用专门的硬件描述语言来实现。
2.现状与需求
目前,在许多本科院校的数字电子技术课程实验教学和数字电路的设计中,仍采用传统的小规模(SSI)或中规模集成电路(MSI)为单元来构建和设计。这种思路已经不能适应教学和行业发展趋势的需要。它主要有如下几个方面的原因:一是实验室必须为每一个实验项目独立地准备实验器材,而且要保证实验元件的正确性和可靠性,这是一件很费时费力的工作,同时一旦有学生操作失误,芯片就有可能烧坏,从而浪费资源;二是目前的大学生电子设计大赛所设计的数字系统设计和一些接口电路已经涉及和要求掌握在大规模和超大规模可编程芯片基础上设计复杂的数字电路;三是目前随着微电子技术和计算机技术的飞速发展,工程中已经广泛采用以CPLD/FPGA为基础设计数字集成电路,用软件的方法设计硬件电路已经是行业的需要。
为此,有必要在课堂教学中引入硬件描述语言用以设计数字集成电路,并设置相应的实验项目以掌握硬件描述语言和熟悉相关开发工具。
3.硬件描述语言在数字电路设计中的应用
3.1硬件描述语言简介[1]
一般的硬件描述语言可以在三个层面上描述电路,其层次由低到高依次为门电路级、RTL级和行为级。任何一种硬件描述语言都要转换成门电路级才能被布线器所接受。综合的方向是由高到底:行为级RTL级门电路级。
3.2硬件描述语言分类及主要差异
目前主流的描述语言有Verilog HDL和VHDL两种,各有特点和优势。Verilog HDL更适合RTL和门电路的描述,是一种较为低级的语言。其综合过程只要经过RTL级门电路级,故较为容易控制电路资源,常用在专业的集成电路设计上。而VHDL语言则更适合行为级和RTL级的描述,因此其综合过程通常要经过行为级RTL级门电路级的转换。[2]
同时,Verilog HDL语言具有C语言的描述风格,是一种较为容易掌握的语言。VHDL语言入门较难,但熟悉后设计效率比Verilog HDL要高。
3.3硬件描述语言在数字电路设计中的应用举例
译码器是数字电路中应用最为广泛的中规模集成电路,常用于设计接口电路和扩展I/O口。下面是用VHDL语言来描述一个3―8译码器的例子。[3]
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;―IEEE库说明
ENTITY decoder IS
PORT(A:IN STD_LOGIC_VECTOR(2 DOWNTO 0);―实体说明,输入三位地址,高电平有效
S:IN STD_LOGIC;―使能信号,高电平有效
Y:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));―输出八个译码信号,高电平有效
END decoder;
ARCHITECTURE arch OF decoder IS―结构体描述
SIGNAL SEL:STD_LOGIC_VECTOR(3 DOWNTO 0);―敏感列表
BEGIN
SEL(0)<=S;
SEL(1)<=A(0);
SEL(2)<=A(1);
SEL(3)<=A(2);
WITH SEL SELECT
Y<="00000001"WHEN"0001",―功能描述
"00000010"WHEN"0011",
"00000100"WHEN"0101",
"00001000"WHEN"0111",
"00010000"WHEN"1001",
"00100000"WHEN"1011",
"01000000"WHEN"1101",
"10000000"WHEN"1111",
"11111111"WHEN ORTHERS,
END arch;
译码器种类繁多,输入输出电平有效值要求高低不同,在此我们只需稍改功能描述中的取值即可,非常方便。因此修改教学内容是非常方便的。不难看出内部结构比较复杂的译码器用VHDL语言描述就显得非常简洁易懂。其实一般较为复杂的器件比较适合用VHDL来描述,在RTL级和行为级上进行描述。
D触发器是时序电路的基础,是数字系统的基本单元。下面是利用Verilog HDL描述一个异步复位的D触发器。
module DFF(q,qb,d,clk,clr);模块名和端口列表
output q,qb;//端口输入输出说明,输出端q和反相qb
input d,clk,clr;//数据输入端d,时钟端clk和复位端clr
reg q;端口类型说明
wire qb,d,clk,clr;
assign qb=!q;//互非输出
always @(posedge clk or negedge clr)//异步复位时的敏感表
if(!clr)
q<=0;//低电平复位信号有效是清零
else
q<=d;
endmodule
将敏感列表稍加改动即可变为同步复位的D触发器。像触发器这样的时序器件用Verilog HDL描述是比较方便的。Verilog HDL语言对一些电气特性、时延特性的描述有非常强大的描述能力。
4.结论
以可编程器件为基础,利用硬件描述语言进行数字集成电路设计已经是业界不可避免的发展趋势。这不仅优化了教学资源和设计环境,而且提高了设计效率,对切实提高学生动手能力和适应市场以及技术发展的要求起着重要作用。
参考文献:
[1]潘松,王国栋.VHDL实用教程[M].成都:电子科技大学出版社,2000.
[2]夏宇闻.复杂数字电路与系统的Verilog HDL设计技术[M].北京航空航天大学出版社,2002.
数字集成电路设计基础范文3
关键词:ASIC;设计流程;数字集成电路
中图分类号:TN742 文献标识码:A 文章编号:1674-7712 (2012) 16-0028-02
进入21世纪以后,通信技术的发展与人民生活需求的不断增长,导致集成电路的需求出现井喷式的增长。集成电路分为专用集成电路和通用集成电路。相比通用集成电路,专用集成电路面向特定用户,品种多,批量少,需求设计和生产周期短,同时功耗更低,重量更轻,体积更小,性能更好,成本更低等优点。因此涌现出来一大批数字集成电路(简称ASIC)设计公司。其中,北京的微电子集成产业园和上海的张江微电子园集中了国内很多的芯片设计(简称IC设计)公司和国外顶尖IC设计公司驻中国研发部。而专用集成电路是现在集成电路设计的研究热点。包含有数字集成电路(简称ASIC)设计、模拟ASIC设计、数模混合ASIC设计、射频ASIC设计等类型。本论文研究集成电路中最为广泛的数字ASIC设计。ASIC设计过程总共分为5个阶段,分别为:项目策划、总体设计、详细设计与可测性设计、时序验证与版图设计、流片与整理。这5个阶段以文档的递交作为完成阶段性完成任务的分界点。本论文也将以此5个阶段为主线进行研究和讨论。
一、项目策划
在集成电路设计的第一个阶段是项目策划。这就需要开发团队在正式进入是实质性研发阶段之前,需要对该产品潜在的市场需求进行调研。根据调研的结果,做出可行性报告。将此可行性报告提交市场和研发部门进行论证,讨论该产品研发的正确性与否。如果可行,则写项目任务书,用以给出明确的产品性能的大致说明,项目进度、研发周期管理等的。
二、总体设计
第二阶段是总体设计。总体设计阶段的主要任务是:认真分析市场的需求,确定设计对象以及设计目标。在原先第一阶段给出的项目任务书的基础上,进一步充实芯片的功能确定,内外部性能的要求,芯片验收的参数指标。同时要积极组织各方面的人员论证各种实现可行的系统实现方案,选择最佳的实现方案,敲定最终的系统实现方案,以及加工工程,工艺水平。在系统实现方案完成之后,需要是使用仿真软件进行系统设计,并进行仿真,进行可行性验证。通过仿真结果,来初步估计产品的最终性能。这一阶段所做的工作,最终以系统规范化说明书为任务完成的标准。在系统规范化说明书中,主要包含有晶片面积的估计;.产品研发预算估计;初始的产品系统结构设计;风险分析;设立产品的目标、可行性和里程碑;设计路线和开发工具的选定。其中需要指出的是进行系统设计以及系统仿真的可行性分析。可行性分析是第二阶段最重要的一个环节,它是对该项目的利润模型、开发周期和风险性的分析。一方面,该ASIC开发项目的最终产品是替代目前的一个成功产品,则成本降低与功能增强是项目最突出的任务。另一方面,该ASIC开发项目旨在开辟新的市场或者替代目前尚未成功的产品,研发时间将是项目中首先关心的文图。由于项目的研发策略会对整个项目的结构设计、开发等产生巨大的影响,项目规划者需要根据项目的具体情况在正式研发阶段开始之前对项目的这些驱动因素进行归纳分析,以制定项目的研发策略。
三、详细设计与可测性设计
数字研发流程走到此,如果前面的任务全部走完,那么研发将进入实质性的开发阶段。这一个过程又拆分为如下的模块:
(一)顶层模块划分
顶层设计是一个富有创造性的阶段,在这个阶段,要定义产品的顶层架构。许多经典的工程折中问题都需要在这个阶段做出决定。产品的开销、设计的开销、产品上市时间、资源需求和风险之间的对比也是顶层结构设计过程中的一部分。这个阶段中的创造性思维对于产品的成功有着极大的影响。创造性可以体现在产品的创意、顶层架构设计创意和设计流程的创意等方面。这个阶段的工作主要由少数具有结构设计和系统设计才能的高级工程师参与。这一阶段的具体任务是:讨论几个顶层结构备选项;分析这几个顶层结构选项——需要考虑技术灵活性、资源需求及开发周期等;完成顶层结构设计说明;确定关键的模块(如果需要,这些模块可以尽早开始);确定需要使用的第三方IP模块;选择开发组成员;确定新的工具;确定开发路线/流程;讨论风险;预估硅片面积、输入输出引脚、开销和功耗等。这个阶段需要递交的文档则是这个阶段需要递交的文档:结构设计文档与ASIC开发计划文档。在结构设计文档中,设计者需要清楚地描述电路板、软件和ASIC的划分。通常ASIC作为系统中的一个重要部分,它的功能需要在顶层结构设计说明中详细的描述。ASIC开发计划:这个计划必须经过项目管理人员的验收通过。同时,还需要完成设计线路描述文档。这个文档要再次定义项目开发中所需要的工具、技术和方法。
(二)模块级详细设计
模块级详细设计,顾名思义,则是将顶层结构合理地划分成一些更小的模块。各个小设计模块间需认真细致的合理划分。划分着需要确定功能功能,模块与模块之间的联系等等。为了明了给对方展示划分结果,ASIC的层次化结构一般以图示方式表示。
本阶段的任务分别为:将顶层架构分解成更小的模块;定义模块的功能和接口;回顾上一阶段完成的初始项目开发计划和顶层结构设计文档;风险进一步分析;开发规范(代码编写风格,开发环境的目录结构);检查芯片设计规则(晶片温度,封装,引脚,供电等);还需要做的工作是重新估计芯片的门数。本阶段输出的则是各个模块的设计文档,以及准确的项目研发计划。同时,从该阶段开始,需要设计人员将ASIC的生产商必须确定下来。项目管理者必须与ASIC生产商建立例会制度,在这些例会中需要讨论ASIC的结构和设计路线。因为ASIC生产商有他们的一套生产流程和他们自己的技术特点,设计也需要遵循他们的设计规则。以免设计走不必要的弯路,耽误设计进度。
(三)模块实现
模块设计阶段,则是以文档引导设计。主要任务为:模块及设计、编码、测试和综合;芯片级的测试环境设计、编码和测试;给出一个更准确的芯片面积估计。在这个阶段,编码的测试一般使用VCS或者是modelsim软件。代码综合使用的综合器包括Synopsys公司的DesignCompiler或者SynplifyPro,Candence公司的BuilderGates等。这个阶段输出所有的模块设计、代码和模块织的测试;初始的模块级综合;最终决定的芯片引脚。
(四)系统仿真,综合和版图设计前门级仿真阶段
该阶段的主要任务是:撰写系统测试文档;编写测试伪代码;进行RTL(硬件描述语言)级与门级仿真;记录跟踪问题的解决过程,如可能,使用错误自动报告系统进行错误的反馈和修改;检查芯片设计是否满足设计规范;开始撰写芯片的使用指南;自行编写综合脚本,进行设计综合(这个时候就需要掌握TCL脚本的简单写法);依据芯片特性,大致画出芯片内模块摆放的方法成功地完成第这个阶段输出的条目如下:验收过的系统仿真;所有的RTL级仿真和门级仿真完成及测试报告;综合后的网表。
四、时序验证和版图设计
ASIC设计的第四部分是时序验证和版图设计。这个阶段是通过时序分析来指导版图设计。主要的流程如图1所示。
这个阶段需要多次进行预布局布线,从整个电路中提取出所有时序路径并计算信号沿在路径上的延迟传播,进而找出违背时序约束的错误(主要是SetupTime和HoldTime),这些信息添加进入下一轮布局布线方案,尽最大可能的合理布局布线,通过一次次的仿真确定最终的版图信息,并将最终版布局布线之后的版图进行后仿真。这些工作进行完毕以后需要输出物理设计与设计验证两个文档。物理设计(PhysicalDesign)是VLSI设计中最消耗时间的一步.他的工作是将电路设计中的每一个元器件(包括电阻、电容、晶体管、电感等)以及这些元器件之间的连线转换成集成电路制造所需要的版图信。而在版图设
计完成以后,非常重要的一步工作是版图验证。版图验证主要包括有设计规则检查(DRC),版图的电路提取(NE),电学规则检查(ERC)和寄生参数提取(PE)。对版图进行布局与布线不仅不要丰富的专业知识,同时更需要很多模拟电子以及布线的经验。布局布线使用的工具一般为SocEncounter。SOCEncounter采用层次化设计功能将芯片分割成多个小块,以便单独进行设计,再重新进行组装。SOCEncounter首先读入RTL或门级网表,并快速构建可准确代表最终芯片(包括时序、布线、芯片大小,功耗和信号完整性)的芯片“虚拟原型”。通过使用物理虚拟原型功能,设计师可以快速验证物理可行性并在逻辑上进行必要更改。在布局布线的时候,需要首先指定IO,电源和地的布置,制定平面布置、插入时钟树等工作之后,才可以进行开始使用工具进行自动的布局布线。最后得到的布局布线的结果仍然需要手工调整,才可以得到合理的设计版图。
五、流片与整理阶段
数字集成电路设计的最后阶段为流片与整理阶段。在完成版图设计之后的仿真和综合之后,网表被送去生产。生产签字文档将作为设计者和生产厂商之间的ASIC生产签字的根据。这个文档清楚地描述了网表的版本号、ASIC生产商所需要的测试向量、质量意向和商业上的问题等。签字之前,ASIC生产厂商需要仔细检查设计者提供的网表文件、版图设计结果和测试向量。通常ASIC生产厂商要求测试向量在签字之前是经过仿真的,这是一个比较长的过程。在样片返回设计公司以后,仍然需要测试芯片;用错误报告数据库跟踪测试中出现的错误;分析失败的测试例;对ASIC中出现的错误进行定位;针对ASIC中出现的错误,确定在网表中的改动;评估芯片的工作电压范围和温度范围(环境测试);进行与其他已有产品的互通性测试。确保生产的集成电路达到最初规定的性能与设计指标。
综上所述,由于底层工艺技术的不断变化,以及新工具厂商的出现,ASIC设计流程会出现一些流程上的调整,这个流程也不是一层不变。本论文所讲述的是现在各个IC设计公司通用的设计流程。
参考文献:
[1]我国数字频率合成芯片获突破性进展. /news_show.asp.
数字集成电路设计基础范文4
关键词 电子科学与技术专业;实习基地;定向培养
中图分类号:G642.0 文献标识码:B
文章编号:1671-489X(2014)02-0102-02
Exploration of School Enterprise Cooperation Mode of Electronic Science and Technology Specialty//Shi Jianxing, Xu Yanbin
Abstract Starting from the characteristics of Electronic Science and technology specialty, the training mode of school enterprise cooperation as a breakthrough point, to improve the students’ practical ability and training directly working talents as the goal, two aspects were summarized from the practice base construction and targeted training, explore the new road of school enterprise cooperation.
Key words electronic science and technology specialty; practice base; targeted training
2000年6月,国务院印发《鼓励软件产业和集成电路产业发展的若干政策》(国发2000〔18号〕),明确提出软件产业和集成电路产业是国家战略性新兴产业,是国民经济和社会信息化的重要基础[1]。大力发展我国集成电路产业和软件产业,是克服我国集成电路人才短缺,抓紧培养集成电路专业人才方面的重大举措。随着集成电路产业的飞速发展,国家和企业对集成电路各类人才的需求越来越多,对人才的要求也越来越高,这些都对电子科学与技术专业的本科教学提出了新的挑战。高等学校在人才培养的模式上必须进行有效的改革,校企合作体制的实施和更深层次的建设是高校人才培养模式改革的重要方面之一。通过校企合作体制的开展和教学质量的不断提高,使毕业生在准备就业的时候不仅具有深厚的理论功底,而且能够学习和掌握相关的设计软件,具有相关工作经验和解决实际问题的能力,了解行业背景和企业需求,为培养直接上岗型人才打下了良好的基础。
1 学校目前存在的问题
电子科学与技术专业是为国家和社会培养集成电路产业人才的重要专业分类。河北大学电子科学与技术专业的学生主要学习集成电路工艺和集成电路设计两大类课程,其中集成电路设计又包括电路设计和版图设计。通过两年的专业基础课和专业课的讲授,学生可以了解和掌握集成电路制造过程中的各种工艺加工工序(如硅片的清洗、氧化、光刻和扩散等)、集成电路中常用的设计方法(如全定制、半定制、CPLD和FPGA等)和集成电路基本单元的版图结构(如电阻、电容、BJT管和MOS管等)。虽然在理论授课的基础上也开设了相应的实验课程,但是实验软件落后,以及与社会生产实际相脱节的状态十分严重。这里以集成电路版图实验为例来加以说明。
在集成电路版图实验教学过程中,由于经费的限制,只能通过免费或者低级的版图绘制软件来完成实验教学工作。由于使用软件功能上的落后,没有办法让学生更好地了解如何对版图进行设计规则检查和电学规则检查,不能清楚地知道设计规程检查文件,不明白版图后仿真和电路图与版图的比较过程中需要注意哪些事项,不知道实际生产中相关元件的版图绘制方法,只能简单地绘制出某个元器件的版图,造成学生只是学习到了版图设计中的一点儿皮毛,相关知识匮乏,不能很好地满足企业的需求。
2 校企合作方案探索
实习基地的建立 2003年7月,教育部下发《教育部、科技部关于批准有关高等学校建设国家集成电路人才培养基地的通知》,通知中要求高校要大力推进“国家集成电路人才培养基地”的教学改革[1]。为了培养应用型的集成电路设计人才,了解企业需求,河北大学跟北京芯愿景软件有限公司保定分公司签订了校企合作协议。这既能让学生接触到先进的设计软件,增长自身技能,又能为企业培养所需的人才。
在签订了校企合作协议之后,双方又制定了详细的实习基地实施方案,主要从以下几个方面入手。
首先,暑期毕业实习。学校的毕业生需要在大三之后大四之前的暑期进入实习单位完成毕业实习的工作。实习基地建立之后,企业可以接纳电子科学与技术专业的学生进入单位实习并对学生提供培训。学生要严格按照企业的上下班制度等要求自己。在为期一个月的实习过程中,学生开阔了眼界,增长了见识,掌握了实际生产中相关元件的版图实现方法,明白了集成电路产业中各个环节的作用和实现方法,为就业奠定了良好的基础。
其次,双向选择,深入了解。在暑假毕业实习完成之后,企业对实习的学生进行了综合评定,学生也对企业和集成电路产业有了进一步的认识。通过双向选择的方式,学生可以在大四下学期毕业设计阶段进入实习基地进行更深层次的学习。毕业设计实行双导师制,由学校的指导教师和企业的指导教师共同指导学生完成毕业设计和毕业论文,保障学生能够顺利毕业。这既能增加学生的工作经验,又能为企业本身培养所需的人才。
最后,除本科生的实习以外,还对集成电路工程的硕士生制定了实习计划,并聘请了北京芯愿景软件有限公司的两名高级工程师担任学校的兼职硕士生导师,对集成电路工程专业的硕士生进行联合培养。企业根据不同层次的学生提供不同的培训方案,以满足各自的需要。
定向培养方案 校企合作的目的不仅仅是为了提高学生的能力,为就业打好基础,也是为了为合作企业培养合格的人才,实现双赢。因此,在专业课程教学过程中,根据校企合作协议以及市场对人才培养的需要,高校应该适时地调整教学方案。结合学校的实际情况,在本科教学过程中,从专业课开始到专业选修课,都融入了实际生产中会用到的相关内容。
如在数字集成电路原理与设计以及模拟集成电路原理与设计两个专业课的讲授过程中,凡是涉及集成电路设计方法和版图设计部分的内容时,都融入了芯愿景有限公司的相关书籍或资料作为补充内容,让学生更加直观地了解企业在进行集成电路设计时是如何进行综合考虑的。在数字集成电路综合实验和集成电路CAD课程设计这两门实验课中,采用芯愿景公司的软件和素材进行案例教学,让学生直观地感受到芯片制作过程中模块安排、虚拟结构单元、数字单元、模拟单元、有源器件、无源器件以及布局布线的相关知识,加深对集成电路芯片设计的认识。在集成电路版图设计和集成电路版图设计实验两门课程的开始过程中,从企业聘请了经验丰富的工程师进入课堂帮助任课教师进行理论教学和实验教学。
以上一系列的培养方案,使学生对集成电路设计流程有了更清楚的认识,让学生了解到了企业对毕业生的需求,为合作企业培养了所需的人才,使企业减少了招聘风险,降低了成本。
3 结束语
校企合作的实践教学模式,带给学生的不仅是对书本知识的深化和技能技巧的训练,更是一次记忆深刻的体验,是一次写在记忆中的成长经历[2]。校企合作协议签订半年多来,经过2009级电子科学与技术专业学生在毕业设计环节中的检验,学生深刻地感受到在理论知识与实际应用相结合的过程中自己还存在哪些方面的欠缺,校园里所学习的理论知识在实际工作中发挥了哪些作用。实习经历虽然短暂,但是学生收获颇丰,最终都找到了理想的工作。
笔者深信,随着校企合作的进一步开展和合作的进一步深入,致力于把合作真真正正地落到实处,带给学生的将是更加丰富的工作经验和待遇优越的就业岗位,带给企业的将是源源不断的就业生力军和企业品牌的进一步推广。
参考文献
数字集成电路设计基础范文5
【关键词】逻辑设计;目标定位;教学内容;模式手段
一、逻辑设计课程目标与定位
1、课程目标
使学生具备本专业的高素质技术应用型人才所必需的电子电路逻辑设计基本知识和灵活应用常用数字集成电路实现逻辑功能的基本技能;为学生全面掌握电子设计技术和技能,提高综合素质,增强职业变化的适应能力和继续学习能力打下一定基础;通过项目的引导与实现,培养学生团结协作、敬业爱岗和吃苦耐劳的品德和良好职业道德观。本课程目标具体包括知识目标、能力目标和素质目标。
(1)知识目标:熟悉数字电子技术的基本概念、术语,熟悉逻辑代数基本定律和逻辑函数化简;掌握门电路及触发器的逻辑功能和外特性;掌握常用组合逻辑电路和时序电路的功能及分析方法,学会一般组合逻辑电路的设计方法(用SSI和MSI器件),学会同步计数器的设计方法;熟悉脉冲波形产生与变换电路的工作原理及其应用;了解A/D,D/A电路及半导体存储器、PLA器件的原理及其应用。
(2)能力目标:具有正确使用脉冲信号发生器、示波器等实验仪器的能力;具有查阅手册合理选用大、中、小规模数字集成电路组件的能力;具有用逻辑思维方法分析常用数字电路逻辑功能的能力;具有数字电路设计初步的能力。
(3)素质目标:培养学生学习数字电路的兴趣;培养学生团结合作的意识,培养学生自己查找资料能力。
2、课程定位
《逻辑设计》是计算机应用技术专业和电子信息类专业的一门重要硬件基础课,其理论性和实践性很强,尤其强调工程应用。是现代电子技术、计算机硬件电路、通信电路、信息与自动化技术的和集成电路设计的基础。在高速发展的电子产业中数字电路具有较简单又容易集成。通过本课程学习,熟悉小中大规模数字集成电路分析与应用,突出数字电子技术应用性,获得数字电子技术必要的基本理论基本知识和基本技能;了解数字电子技术的应用和发展概况,为后继课程及从事相关工程技术工作和科研与设计工作打下一定基础。《逻辑设计》在电子信息专业课程的地位,表现在其先导课程为《电工电子技术》,要求学生掌握由分立元器件组成的电子电路的识别与检测、与基本分析方法,掌握有关晶体管以及晶体管电路的分析方法等;其后续课程有《微机原理与接口技术》、《单片机技术应用》、《EDA技术应用》等。学习集成电路芯片在计算机及相关电子设备中的应用与作用。
二、逻辑设计课程教学内容
1、教学内容选取依据
(1)以培养高素质技能型人才为目标,教学内容选择与组织突出“以能力为本位,以职业实践为主线,以项目主体--任务贯穿”为总体设计要求,在内容的选取上,首先立足于打好基础。在确保基本概念、基本原理和基本教学方法的前提下,简化集成电路内部结构和工作原理的讲述,减少小规模集成电路的内容,尽可能多地介绍中大规模集成电路及其应用。以能力培养为主线,以应用为目的,突出思路与方法阐述,力求反映当今数字电子技术的新发展。
(2)在教材内容编排上精心组合,深入浅出,做到概念清晰,逻辑设计思想严谨。教学实施中注重重点突出,层次分明,相互衔接,逻辑性强,以利于教学做一体化的整合。在讲义上力求简洁流畅,通俗易懂,便于学生自学。
(3)以实训项目为载体,采取任务驱动教学做一体化的实施,体现理论指导实践,实践深化理论的素质养成目的。
(4)依据各学习项目的内容总量以及在该门课程中的地位分配各学习项目的课时数。
(5)知识学习程度用语主要使用“了解”、“理解”、“能”或“会”等用来表述。“了解”用于表述事实性知识的学习程度,“理解”用于表述原理性知识的学习程度,“能”或“会”用于表述技能的学习程度。
2、教学具体内容安排
表决器电路设计与制作,抢答器电路设计与制作,同步计数器电路设计与制作,方波发生器电路设计与制作,数字钟电路设计与制作。
三、逻辑设计课程教学模式与手段
1、教材编写
教材编写体现项目课程的特色与设计思想,教材内容体现先进性、实用性,典型产品的选取科学,体现地区产业特点,具有可操作性。呈现方式图文并茂,文字表述规范、正确、科学。
2、教学模式
采取项目教学,以工作任务为出发点来激发学生的学习兴趣,教学过程中要注重创设教育情境,采取“教学做”一体化的教学模式,将知识、能力、素质的培养紧密结合,进一步加强职业教育教学改革研究,优化完善我校应用型人才培养体系。
3、教学方法
从教学手段、教案设计、教学思路、语言表述、教学资源等方面着手,对如何在课堂教学中提高学生的学习主动性和兴趣开展教研。教学过程有进行项目引导,任务贯穿,“提出问题”、“引导思考”、“假设结论”、“探索求证”,把握课程的进度,活跃课堂气氛,使大多数学生能够获得尽可能大的收获。采用“发现法”教学方式,使学生建立科学的思维方法与创新意识。学习内容的掌握依赖于学习者的实践,课程组加强了对教师教学及学生学习过程的管理;为使学生理解和有效掌握课程内容,在坚持课外习题练习、辅导答疑等教学环节的基础上,增加随堂练习、单元测验等即时性练习环节,督促学生复习和掌握已学知识点。
4、教学手段
充分利用挂图、投影、多媒体等现代化手段,发挥网络突破空间距离限制的优势,让学生能够最大限度的利用学习资源,自主地学习和提高,弥补课堂上未能及时消化吸收的部分内容。教学过程中相应教学班成立课程提高学习小组,任课教师课外指导该小组进行拓展学习及课外科技活动指导,达到因材施教的目的;一方面教师指导有兴趣能力强的学生进行课外学习,特别是对数字系统设计知识的答疑指导,为能力强的学生提供发展空间,解决因课时数限制而无法在课堂上深入讲授特定工程应用专题的矛盾。也加强了教师与学生的互动,教师可以第一手了解学生对教学过程的反馈,改进教学方法,利用学习好的学生带动整个班级的学习,促进良好班风学风的形成。探讨当前教学环境下,培养学生课外学习能力的新模式。
5、课程资源的开发与利用
整理并开发具有职教特色的自编教材,编写学生实训指导用书,引导学生查阅网络资源,要注重利用仿真软件的辅助设计功用。
参考文献
数字集成电路设计基础范文6
关键词 工程教育专业认证;射频微电子;卓越工程师
中图分类号:G642.3 文献标识码:B
文章编号:1671-489X(2015)11-0007-02
1 引言
工程教育专业认证对保证和提高工程教育质量、推动我国卓越工程师教育培养计划具有重要作用。我国工程教育于2013年6月在韩国首尔召开的国际工程联盟会议上成功加入《华盛顿协议》,成为预备会员,这标志着我国工程教育迈出重大步伐,为工程类学生今后走向世界提供了具有国际互认质量标准的“通行证”。工程教育专业认证作为国家工程师制度改革的基础和前提,也将为广大工科学生未来的工程执业提供便利[1-2]。
随着国内半导体制造现代化工艺线的不断建设和扩展,以及微电子技术的飞速发展,IC产业对微电子人才需求日益增加。目前我国正面临微电子技术人才奇缺的局面,对培养人才的要求也日益提高。射频微电子学课程作为电磁场与微波技术方向的专业核心课程,是数字通信、射频系统以及射频集成电路设计的基础。建立能适应新形势下满足工程教育认证标准要求的射频微电子学课程教学体系,提高射频微电子学课程教学水平,是电类专业顺利通过工程教育专业认证的重要环节之一。
为实施教育部“卓越工程师教育培养计划”,切实增强学生的工程实践能力、工程设计能力和工程创新能力,本文结合客观实际,从教学方式方法改革、学生工程实践能力培养、侧重学生对所学知识的应用和创新能力的教学评价方法的研究和实践等方面着手,建设面向工程教育专业认证的射频微电子学课程教学体系[3]。
2 改进教学方式方法,提高学生学习的积极性
采用先进现代教学手段是提高学生学习兴趣和积极性的重要方法之一。
1)在保证知识结构的系统性和知识点布局的全面性基础上,采用启发式互动教学法,充分调动学生学习微电子课程的积极主动性,引导学生主动分析工程实际问题,有效提高课程的教学质量。
2)改进多媒体课件,使教学更贴近工程实践。使用视频剪辑、动画、实物照片等教学手段,向学生展现该课程的核心内容以及所学理论的工程实践应用,增加学生对射频和微电子的感性认识。例如:在介绍S参数时,可以通过视频录像介绍工程实践中利用矢量网络分析仪测试射频无源器件及有源器件S参数的方法;在介绍微波传输线时,可以向学生展示由微带构成的射频前端系统中的馈电网络的实物照片和调试过程的视频录像;通过收集并展示各种射频无源(滤波器、功分器等)、有源器件(低噪声放大器、混频器等)的照片和实物,使学生更形象地认识射频器件,提高学生的学习兴趣。
3)推进课程网站的建设,以网络教学作为教学辅助手段。在教学网站上提供国外著名科教网络频道有关射频技术和微电子学的课程课件和相关教学资源,课堂教学课件、射频微电子技术常用的网络资源和网址,建立讨论区供学生相互讨论和教师答疑,建立专门的网页介绍射频微电子技术的前沿和发展方向,鼓励学生跟踪前沿技术自主创新。
4)在教学评价方面,侧重学生对所学知识的应用和创新能力的考查,将小组自主学习、研究性学习的情况纳入对学生成绩的评价,引导学生重视课程的实践环节,改变单一的考试成绩评价方式,重视学生在学习过程中的自我评价和自我改进。
3 注重学生面向工程实际的能力培养,改革射频微电子学实践教学内容
微电子学课程体系主要包括微电子器件和工艺、集成电路设计与应用两大类,应用性极强,学生需经过实际器件工艺的操作和具体集成电路的设计,才能深刻理解器件工作原理、掌握集成电路仿真和版图绘制方法,全面了解集成电路设计的全过程,达到很好的教学效果。
作为该课程体系中重要的一门课程,射频微电子学是一门理论性与工程性都很强的课程。如图1所示,射频微电子学涉及许多学科交叉领域,因此,学生不仅需要学习数字集成电路设计、模拟集成电路设计等理论课程,掌握集成电路原理,还要能利用各代工厂提供的工艺库和器件模型进行各种集成电路原理设计和版图绘制。现代射频集成电路的开发流程,由仿真域(设计、仿真、验证)实体域(电路实现)测试域(测试验证)三个环节构成。工业界需要的合格的射频微电子工程师必须具备在上述三个领域的全面知识和技能。目前培养的学生比较注重基础理论的学习,仅对仿真域中的设计环节比较熟悉,而仿真、电路实现、测试等方面的能力比较欠缺。
因此,在教学过程中,为了培养学生的工程实践能力,除了基础理论知识的教授外,还需教授学生掌握电路CAD软件、电磁场仿真设计工具(HFSS、IE3D或CST)、各种集成电路测试设备(矢量网络分析仪、示波器、信号源、频谱仪和噪声仪),并要求学生利用电磁仿真软件对所学的射频无源及有源器件(如滤波器、功分器,低噪声放大器、混频器、振荡器等)进行分析和设计,使学生不仅能更深刻地理解所学习的射频器件的工作原理及射频集成电路设计方法,也能熟悉和掌握仿真软件。学生在教师或助教的指导下,自主设计、仿真验证射频无源器件(如滤波器、功分器、工分器等)及其有源器件(如低噪声放大器、混频器等),在此基础上进行射频系统前端的集成电路设计,然后通过评估筛选出性能较好的设计,制作实物并进行工程测试。这样就实现了对学生在射频集成电路工程设计重要环节由仿真域(设计、仿真、验证)实体域(电路实现)测试域(测试验证)能力的培养。
在理论教学的基础上,通过小组学习讨论的方式,鼓励学生按课题小组设计多种射频元器件。但由于射频器件及射频系统前端的集成电路的制作和工程测试的成本较高,无法满足所有学生的需求,对器件的制作和测试必须择优进行。在实际的实践教学中,只进行某种器件设计的小组为参照组,评估完成整个设计、仿真、制作、测试流程的小组对该器件掌握的改善情况。
4 进行校企合作的卓越工程人才联合培养
射频微电子学教学可在校企联合培养机制下,建立必要的激励政策,充分发挥企业的行业优势,引导教学从注重学生“考试结果”向注重学生“学习过程”的转变。这反映到本课程的教学内容上,要强调理论性与本课程的有机结合,突出案例分析和实践研究;反映到教学过程中,要重视运用团队学习、案例分析、实践研究和模拟训练等方法的运用。在考核时,对校外课外的实践内容实行严格的考核,比如邀请校外射频微电子工程技术人员与校内专业教师组成考核小组,考核学生在企业实习的具体表现。根据实际条件,增加工厂生产实习环节,使学生能在综合运用所学知识的基础上,加强对企业岗位操作规程及相关管理规程等的详细了解。
5 结束语
本文在工程教育专业认证背景下并结合本校的本科卓越工程师教育培养和专业建设,基于笔者近两年来在微波技术与天线、射频微电子学课程授课过程中的总结,探讨建立新形势下能满足工程教育认证标准要求的射频微电子学课程教学体系,从而适应国际化、社会化、高素质、创新型人才的培养需求。需要指出的是,由于受到教学经验和客观实际的限制,笔者只是简要地讨论了在工程教育背景下本课程教学的转变,在未来的教学过程中会进一步进行思考和总结。
参考文献
[1]修开喜.中美工程教育专业认证体系的比较研究[D].辽宁:大连理工大学,2013.
[2]刘昭亚.本科院校工程教育专业认证制度研究[D].安徽:淮北师范大学,2014.
[3]林健.“卓越工程师教育培养计划”质量要求与工程教育认证[J].高等工程教育研究,2013(6):49-61.