混凝土材料范例6篇

混凝土材料

混凝土材料范文1

【关键词】hpc 高强度 耐久性 节约材料

[正文]混凝土(由胶凝材料将集料胶结成整体的工程复合人造石材)造价较低,是土建工程结构中的首选材料,广泛的应用于工业与民用的土建工程、水利工程、地下工程、公路、铁路、桥梁等工程中。

普通的混凝土材料是由胶结材料(石灰、水泥)、细骨料(砂子)、粗骨料(石子)和水 按一定比例配制,经搅拌振捣成型,在一定条件下养护而成的具有一定强度特性的人工建筑材料。过去,由于人们过分注重于混凝土的力学性能,把精力主要集中在如何提高混凝土的强度上,而用高压强度的比例关系来代表其性能的优劣,对混凝土的耐久性则不够重视,从而导致了部分工程结构的开裂,甚至崩塌,此外,由于普通混凝土材料本身的耐久性不高,致使混凝土建筑工程的维修费用急剧增大,所以如何延长混凝土材料的使用寿命,提高混凝土的性价比,发展新型高性能的混凝土材料势在必行。

一、高性能混凝土概述

混凝土技术经过多年的发展,现在新型外加剂和胶凝材料的出现使既有良好的工作性,又有优异的力学性能和耐久性能的混凝土的生产成为现实。高性能混凝土(High Performance Concrete),简称HPC。HPC的应用将对混凝土建筑施工技术和混凝土结构性能起重要作用,日益受到国际材料界和工程界的重视。

HPC组成材料包括水泥、粗细集料、多种矿物掺合料、水和超塑化剂,其组成和配比要比普通混凝土复杂,要求也高得多。HPC的优点体现在:

(1)由于HPC的高强(60Mpa~100MPa)和超高强(≥100MPa)特性,可使混凝土结构尺寸大大减少,从而减轻结构自重和对地基的荷载,并减少材料用量,增加使用空间,大幅度的降低工程造价。

(2)由于HPC具有高工作性,可以减轻施工劳动强度,节约施工能耗。

(3)HPC的高耐久性可增加对恶劣环境的抵御能力,延长建筑物的使用寿命,减少维修费用及对环境带来的影响,具有显著的社会和经济效益。

二、高性能混凝土的特性

1.新拌混凝土的工作性

新拌混凝土的工作性是一个综合指标,如流动性、可泵性、填充性、均匀性等。HPC要求新拌混凝土具有大流动性(坍落度20cm~25cm)及流动度经时损失小,以满足混凝土集中搅拌、运输、泵送、浇注的工艺要求。甚至在浇注时要求混凝土不振捣自流平,即好的填充性。最终得到均匀稳定的混凝土。这些要求是普通混凝土难以满足的。与普通混凝土相比,HPC的组分复杂,多种掺合料与超塑化剂配合使用,其目的是通过这些组分来调整性能。其中最关键的技术之一是超塑化剂及其组成。单一成分的超塑化剂(如萘系和三聚氰胺系高效减水剂)虽然对水泥浆有强的分散作用,减水率高达18以上,但并不能满足HPC对工作性的全部要求。因为单一成分的超塑化剂(SP)难以解决坍落度损失、离析分层等问题。因此,必须将高效减水剂与缓凝剂、引气剂、稳定剂等组成复合超塑化剂(CSP)才能较全面满足HPC对工作性的要求。

2.硬化混凝土的性能

现代建筑向高层化、大跨度方向发展,因此促进了高强HPC的研究和开发。在高层建筑中,混凝土强度是对应于柱子的轴力。可以说建筑物的层数是由所使用的混凝土强度来决定的。25~30层的建筑物要使用强度标号C35~C45的混凝土,30~35层要C45~C50,更高层的建筑就需要更高强的混凝土,如60层需用100MPa。目前建筑物设计和施工以30~35层(高度约100m)居多。因此,更高强度的HPC是目前研究和今后发展的方向,而大量使用的强度标号是C40混凝土。在此情况下,配合比设计可以参照普通混凝土的方法,但是主要组成材料和性能应满足HPC的要求。HPC可能比普通混凝土要耐久得多,这是因为在设计配合比时,就考虑到耐久性问题。特别是早期下沉和硬化收缩小、干缩小、水化放热低,因而提高了混凝土抗裂缝能力,无初始结构缺陷。硬化后的混凝土密实、渗透性低。这些都使混凝土抵抗外部因素的能力得到提高,最终得到耐久性好的混凝土。

三、高性能混凝土的应用与研究

每年工程上混凝土的用量非常之大,工程规模大、耗资大、应用范围广,作为现代工程主要材料的地位依然不被撼动。纵观混凝土技术的发展进程,其发展主要遵循复合化、高强化、高性能化三大技术路线长期以来,人们过分注重于混凝土的力学性能,主要集中在提高混凝土的强度上,以搞压强度的比例关系来代表其性能的优劣,而对影响混凝土耐久性则重视不够,从而导致了许多工程结构的开裂,甚至崩塌。例如,1980年3月,北海Stavanger近海钻井平台Alexander Kjell号突然破坏;乌克兰境内的切尔诺贝利核电站的泄漏;日本的一些钢筋混凝土桥梁,投入不到20年因不能使用而被炸毁;辽宁盘锦辽河大桥的断毁等等。此外,由于混凝土耐久性不高,致使混凝土工程的维修费急剧增大。如何延长混凝土的使用寿命,发展高性能混凝土势在必行。

2001年10月用高性能混凝土成功浇捣的航站楼工程第一块大面积楼板,为浇筑量约8003m的主楼南区二层楼板。该楼板呈长条型,宽约20m,长约80m,厚500mm,浇筑前沿楼板长度方向由南往北布置2条施工泵管,分别提供泵送混凝土。施工浇筑时,投入混凝土生产线2条、混凝土搅拌车22台、混凝土泵机2台,施工用时14h,施工过程顺利。其后,在检查认可了这种新型混凝土抗裂性以及总结了它的施工养护经验的基础上,陆续浇捣了其它的大面积楼板,整个航站楼施工补偿收缩纤维混凝土总量超过4万方。经检验,所有应用补偿收缩纤维混凝土施工的楼板强度均达到设计要求,没有发现任何明显的肉眼可见裂缝,抗裂效果得到各方认可和好评。

随着高性能混凝土的优越性不断地得到认可,混凝土应用技术的进步,城市建设速度的加快,高性能混凝土获得了迅速发展。高性能混凝土在实际工程中获得了越来越广泛的应用,尤其是在高层建筑、大跨度桥梁、海上采油平台、矿井工程、海港码头等工程中的应用日益增多。

四、高性能混凝土的发展前景

随着HPC的开发和应用,建筑对生态环境产生的影响正引起社会的关注。建筑物在建造和运行的过程中需消耗大量的自然资源和能源,并对环境产生不同程度的影响。有专家指出,作为建筑工业主要原料的水泥,实际上是一种不可持续发展的产品。因此,高性能混凝土的技术核心是在限制水泥用量以获得混凝土高性能的同时,坚持其可持续性的发展原则。

在节材方面,如果能够将目前使用的钢材和混凝土提高一个强度等级,则可以获得明显的经济效益和社会效益。粗略计算,到2010年,仅通过推广应用高强钢和高性能混凝土,就可节省大量建设资金并且同时产生丰厚的间接经济效益。另外,采用高强材料,可以提高施工作业效率,提高建筑质量,延长使用年限,减少维护使用费用,解决了建筑结构中肥梁胖柱问题,这样不仅能增加建筑使用面积,增大建筑使用空间,也可以使结构设计更加灵活,提高建筑使用功能。推广应用高强钢和高性能混凝土,在建设阶段可以节约钢材和混凝土,减少资源和能源的消耗量,进而减少二氧化碳、二氧化硫等有害气体和废渣的排放。

任何新技术、新材料的发展,都需要经历漫长的、反复的过程。在需要克服的诸多障碍中,首先是人们的观念和认识。当前我国正处于基础设施建设的高潮,对于HPC的发展应该是一个难得的机遇。当然,任何发展迅速的新技术,都必定给相关的业界带来显著的效益。

应用大掺量粉煤灰混凝土和大掺量矿渣混凝土发展HPC是最可行的途径,因为它不仅能够提高混凝土的品质,还能有效地降低生产成本。在人们对发展HPC取得共识的基础上,注重提高骨料品质,并将大掺量粉煤灰混凝土和大掺量矿渣混凝土恰当地用于我国的基础设施建设,不仅有利于混凝土业的可持续发展,对整个国民经济建设的可持续发展都会发挥一定的促进作用。HPC的研究与应用在短短的十几年内发展很快,现在采用高效减水剂和硅粉,利用普通工艺即可很方便地配制出高强混凝土。

据报道,日本正在研制使用寿命在500年以上的超高耐久性混凝土。目前一些超高强预应力混凝土结构甚至已经可以用来代替钢结构。我国在最近几年中胭脂路超高性碱渣混凝土、沸石粉混凝土、高强粉煤灰混凝土、铁(硫)绿酸盐水泥混凝土、230MPa矿物集料混凝土、200MPa超高强钢纤维混凝土、92MPa抗冲耐磨混凝土等第一系列HPC。在保塑剂的研制方面也有进步。

五、结语

大力开展高性能混凝土的研究和应用具有重要意义,为更好的推广应用,设计人员必须及时地掌握规范,正确理解与应用,跟踪新技术的发展,而对于施工人员,必须全面掌握混凝土的技术要点,不能照搬普通混凝土的施工与养护方法,对于监理人员,必须深入理解规范、灵活运用规范,同时,相应的国家规范也必须进行适当的修改,以利于促进高性能混凝土的应用。

参考文献

[1]普通混凝土用砂、石质量及检验方法标准(JTJ52-2006)[S].北京:中国建筑工业出版社. 2006

[2]刘泽渊.论科学技术与发展[M]. 大连:大连理工大学出版社,1997.

[3]孙振平.绿色高性能混凝土与建筑工程材料的可持续发展[J].北京:建筑材料学报,1(3):278-283.

[4]张长清.混凝土材料的环境资源问题和对策[J]. 建筑技术开发,27(3):6-8.

[5]李湘州.21世纪混凝土技术展望[J]. 山西建材,2000(1):35-38.

[6]邢振贤.再生混凝土的基本性能研究[J]. 华北水利水电学报,19

(2):30-32.

混凝土材料范文2

关键词:新型混凝土;土木工程;意义;应用分析

1新型混凝土含义及其应用在土木工程领域的意义概述

1.1新型混凝土

根据笔者研究可知,新型混凝土主要指在传统混凝土生产制作中将诸如煤炭颗粒、矿物质以及纤维等化学或非化学成分按一定比例搭配掺入而制作而成的新型混凝土,结合实践来看,其可以看作是传统混凝土的升级版本。

1.2新型混凝土应用在土木工程领域的意义

对土木工程而言,混凝土是其最重要的建筑原材料之一,其质量与性能高低会在很大程度上决定着土木工程质量是否符合建设要求,并且加之当前施工技术要求不断提升,对材料的要求也越来越高,为此人们不断加大对混凝土的研究开发,以期能够有效地满足当前土木工程建设所需。正是在这样的背景下,新型混凝土材料应运而生。结合实践来看,新型混凝土材料应用在土木工程领域主要具有以下几方面重要意义:首先,正如上文所述新型混凝土是传统混凝土的升级版本,因此其质量与性能上有着很大提升,因而将其应用到土木工程领域有助于实现良好的建设质量。其次,相比于传统混凝土,新型混凝土材料具有诸如强度高、耐久性强以及节能环保等众多优点,因而将其应用到土木工程领域之中不但能够在降低建设成本情况下提升建筑企业经济效益,同时也有利于减少对自然环境的影响与污染。

2新型混凝土材料在土木工程领域中的应用分析

2.1活性微粉混凝土

活性微粉混凝土,指的是一种具有超高强度的混凝土,其每单位的抗压强度可为200MPa到800MPa,其抗拉强度为25MPa到150MPa,其断裂每平方可达到30kJ,单位的体积质量每立方可达到2.5t到3.0t。对于一般混凝土上成为活性微粉混凝土的重要对策是:①缩小颗粒中的最大范围,改良混凝土的均匀性。②对微粉和极微粉材料进行使用的过程中,需要成为最优的堆积密度。③增放钢纤维来保证其延性。④减少混凝土用水量,运用非水化水泥颗粒当作是填料,来加大堆积密度。⑤在硬化中需要进行加压和加温等举措,使其实现较强的强度。一般混凝土的级配曲线具有连续性,而活性微粉混凝土的级配曲线是没有连续的台阶形曲线,其骨料粒直径是比较小的,几乎相等于水泥颗粒的尺寸。

2.2高性能混凝土

自1980年以来,一些西方国家已逐渐开展对高性能混凝土的研究和应用,使得混凝土迈入了新兴的高科技行列,引起了全球材料界以及工程界的关注。许多国家把高性能混凝土当作是跨世纪新材料来进行探索和运用,使得混凝土成为当时研究以及应用中的一个重要对象。高性能混凝土的优势主要表现为:①因为高性能混凝土的强度达到60Mpa到100MPa,超高强可以超过100MPa的特性,这样就使得混凝土结构的尺寸大小大大缩小了,进而降低结构自重以及对地基的荷载,减少材料的用量,提高使用的空间,最大程度上使得工程造价有所减少。②因为高性能混凝土有着较高的工作性,能够降低施工中的劳动强度,节省施工的消耗。③高性能混凝土的高耐久性可提高对较差环境中的抗御性能,增加建筑物中的运用,降低维修费用和对环境造成的作用,有明显的社会以及经济利益。因为高性能混凝土的优良特性,所以,在这十几年来全世界范围内获得了广泛的应用。

2.3碾压混凝土

碾压混凝土发展的较为迅速,经常运用于大体积的混凝土结构(比如:水工大坝)、公路路面、工业厂房地面和机场道面当中。用于碾压混凝土结构施工的浇筑机具和一般混凝土是不一样的,需要平整运用推土机,振实用碾压机,中间解决用刷毛机,切缝用切缝机。在整体的施工过程当中,其机械化水平往往是比较高的,施工效率也是比较高的,可加入较多的粉煤灰。和一般混凝土相较来说,浇筑工期可减少1/3到1/2,用水量可降低百分之二十,水泥用量可降低百分之三十到百分之六十。碾压混凝土中的间层抗剪特性是被用来修建混凝土高坝的核心。

2.4纤维增强混凝土

为了可以攻克混凝土的抗拉性能差、延性差等问题,在混凝土中加入了纤维来改良混凝土特性的研究,其获得了一定的发展。相较于承重结构来说,发展较迅速、运用较为广泛的是钢纤维混凝土,主要是用于土木建筑工程的碳素钢纤维以及耐火材料工业中的不锈钢纤维。当纤维长度和长径比在一般尺寸中,纤维掺量就会在1%-2%的范围内,和基体混凝土相较来看,钢纤维混凝土的抗拉强度可提升4到8成,抗弯强度则提升0.6-1.2倍,抗剪强度则提升百分之五十到百分之百,抗压强度则最大可提升百分之二十五。而弹性阶段的变形和基体混凝土性能对比来看,是没有明显差异的,然而可最大程度上提升衡量钢纤维混凝土塑性变形特性的韧性。

2.5智能混凝土

智能混凝土是运用混凝土所构成的改变,对混凝土中一些不好的性质予以改变。比如;高强混凝土的水泥用量是比较多的,水灰比较低,加入了硅灰相关的活性材料,在通过硬化以后,其混凝土的密实度会比较好。然而,高强混凝土在硬化的前期,是有着显著的自生收缩以及其孔隙率是比较高的,很容易就会发生开裂等现象。在处理这些问题时,最主要的办法就是,用掺量为百分之二十的预湿轻骨料来作为骨料,进而使得在混凝土内部可以成为一个“蓄水器”,使得混凝土可以取得高效性的潮湿养护。这样加入“预湿骨料”的办法,能够使混凝土的自生收缩大为下降,减弱了微细裂缝的数量。高强混凝土的另一个问题就是良好的密实性所引发的防火性能得到下降。这就是因为在碰到高温时,砂浆中的自由水以及化学互相结合水变成了水气,然而,不可以从密实的混凝土逸出,进而变成气压,致使柱子的保护层剥落,最大水平上降低了柱的承载力。处理这个问题的另一种办法就是在每方混凝土中加如2千克的聚丙烯纤维,在高温状态下,使得纤维熔化,变成了能使水气从边界区逸出的通道,降低了气压,进而避免了柱子的保护层剥落。

3结束语

综上所述,由上文所述我们不难发现,新型混凝土材料在应用在土木工程领域中所具有的重要意义,因而这就要求我们必须做好其应用。对此,上文在充分结合笔者研究实践情况下,重点探究几种新型混凝土材料在土木工程领域中地应用,以供广大同行参考。

参考文献:

[1]吴丽琴.新型混凝土材料在土木工程领域中的应用[J].广东科技,2014(8):135~136.

[2]王淑钰.新型混凝土材料在土木工程中的应用探讨[J].城市建设理论研究:电子版,2015,5(13).

混凝土材料范文3

Abstract: At present, the modern cement industry, cement processing technology and construction technology developed rapidly, the increasing variety of concrete material, so the new concrete material status in engineering construction is increasingly important.

Key words: civil engineering; concrete; high performance concrete (HPC)

中图分类号:TU5

引言:普通的混凝土材料系由胶结材料(石灰、水泥)、细骨料(砂子)、粗骨料(石子)和水所组成。在性能及其应用与发展的普通混凝土基础上,根据添加材料和施工工艺的不同,派生出名目繁多、性能特异、用途不一的新型混凝土,本文以高性能新型混凝为例,探讨了其在建筑工程领域中的应用。一、高性能混凝土(High Performance Concrete)概述

混凝土技术发展已有170多年的历史,在缓慢的发展过程中,曾出现几次变革,那就是1919年发现了水灰比定理,1938年发现了引气剂,60年代初出现高效减水剂。目前,混凝土技术发展又处在一个变革时期。新型外加剂和胶凝材料的出现使既有良好的工作性,又有优异的力学性能和耐久性能的混凝土的生产成为现实。这种新型混凝土称为高性能混凝土(High Performance Concrete),简称HPC。HPC的应用将对混凝土建筑施工技术和混凝土结构性能起重要作用。因此,美国、日本、英国、法国、加拿大、挪威等国都将HPC作为跨世纪的新材料,投入大量人力物力进行研究和开发。

20世纪80年代以来,一些发达国家相继研制成功高性能混凝土(以下称HPC),使混凝土进入了高科技时代,日益受到国际材料界和工程界的重视。很多国家把HPC作为跨世纪的新材料加以研究与利用,使其成为当代混凝土研究和应用领域中的一个热点。HPC组成材料包括水泥、粗细集料、多种矿物掺合料、水和超塑化剂,其组成和配比要比普通混凝土复杂,要求也高得多。

HPC的优点体现在:

1.由于HPC的高强(60Mpa~100MPa)和超高强(≥IOOMPa)特性,可使混凝土结构尺寸大大减少,从而减轻结构自重和对地基的荷载,并减少材料用量,增加使用空间,大幅度的降低工程造价。

2.由于HPC具有高工作性,可以减轻施工劳动强度,节约施工能耗。3.HPC的高耐久性可增加对恶劣环境的抵御能力,延长建筑物的使用寿命,减少维修费用及对环境带来的影响,具有显著的社会和经济效益。

二、高性能混凝土在建筑工程中的应用为了分析高性能混凝土在建筑工程中的应用,笔者首先从高性能混凝土的特性来了解高性能混凝土。

1.高性能混凝土特性

(1)新拌混凝土的工作性。新拌混凝土的工作性是一个综合指标,如流动性、可泵性、填充性、均匀性等。HPC要求新拌混凝土具有大流动性(坍落度20cm~25cm)及流动度经时损失小,以满足混凝土集中搅拌、运输、泵送、浇注的工艺要求。甚至在浇注时要求混凝土不振捣自流平,即好的填充性。最终得到均匀稳定的混凝土。这些要求是普通混凝土难以满足的。与普通混凝土相比,HPC的组分复杂,多种掺合料与超塑化剂配合使用,其目的是通过这些组分来调整性能。其中最关键的技术之一是超塑化剂及其组成。单一成分的超塑化剂(如萘系和三聚氰胺系高效减水剂)虽然对水泥浆有强的分散作用,减水率高达18以上,但并不能满足HPC对工作性的全部要求。因为单一成分的超塑化剂(SP)难以解决坍落度损失、离析分层等问题。因此,必须将高效减水剂与缓凝剂、引气剂、稳定剂等组成复合超塑化剂(CSP)才能较全面满足HPC对工作性的要求.

(2)硬化混凝土的性能。现代建筑向高层化、大跨度方向发展,因此促进了高强HPC的研究和开发。在高层建筑中,混凝土强度是对应于柱子的轴力。可以说建筑物的层数是由所使用的混凝土强度来决定的。25~30层的建筑物要使用强度36MPa~42MPa的混凝土,30~35层要42MPa~48MPa,更高层的建筑就需要更高强的混凝土,如60层需用100MPa。目前建筑物设计和施工以30~35层(高度约lOOm)居多。因此,上述讨论的强度范围60MPa~120MPa的HPC是目前研究和今后发展的方向,而大量使用的强度标号是C40混凝土。在此情况下,配合比设计可以参照普通混凝土的方法,但是主要组成材料和性能应满足HPC的要求。HPC可能比普通混凝土要耐久得多,这是因为在设计配合比时,就考虑到耐久性问题。特别是早期下沉和硬化收缩小、干缩小、水化放热低,因而提高了混凝土抗裂缝能力,无初始结构缺陷。硬化后的混凝土密实、渗透性低。这些都使混凝土抵抗外部因素的能力得到提高,最终得到耐久性好的混凝土。

2.高性能混凝土的应用研究

据悉,全世界每年混凝土用量可达90亿吨,规模之大、耗资之巨、应用之广,作为现代工程主要材料的地位依然不被撼动。混凝土用于工程结构至今已有170多年历史了,纵观混凝土技术的发展进程,其发展主要遵循复合化、高强化、高性能化三大技术路线长期以来,人们过分注重于混凝土的力学性能,主要集中在提高混凝土的强度上,以搞压强度的比例关系来代表其性能的优劣,而对影响混凝土耐久性则重视不够,从而导致了许多工程结构的开裂,甚至崩塌。例如,1980年3月,北海Stavanger近海钻井平台Alexander Kjell号突然破坏;乌克兰境内的切尔诺贝利核电站的泄漏;日本的一些钢筋混凝土桥梁,投入不到20年因不能使用而被炸毁;辽宁盘锦辽河大桥的断毁等等。此外,由于混凝土耐久性不高,致使混凝土工程的维修费急剧增大。如何延长混凝土的使用寿命,发展高性能混凝土势在必行。

2001年10月用高性能混凝土成功浇捣的航站楼工程第一块大面积楼板,为浇筑量约800m3的主楼南区二层楼板。该楼板呈长条型,宽约20m,长约80m,厚500mm,浇筑前沿楼板长度方向由南往北布置2条施工泵管,分别提供泵送混凝土。施工浇筑时,投入混凝土生产线2条、混凝土搅拌车22台、混凝土泵机2台,施工用时14h,施工过程顺利。其后,在检查认可了这种新型混凝土抗裂性以及总结了它的施工养护经验的基础上,陆续浇捣了其它的大面积楼板,整个航站楼施工补偿收缩纤维混凝土总量超过4万m3。经检验,所有应用补偿收缩纤维混凝土施工的楼板强度均达到设计要求,没有发现任何明显的肉眼可见裂缝,抗裂效果得到各方认可和好评。

早在1992年,吴中伟首次将高性能混凝土介绍到国内。如今,我国高性能混凝土的研究、应用发展迅速。我国是生产和使用混凝土的大国,混凝土的质量在不断地提高,涉足高性能混凝土的研究和应用还是近10年的事。随着高性能混凝土的优越性不断地得到认可,混凝土应用技术的进步,城市建设速度的加快,高性能混凝土获得了迅速发展。

高性能混凝土在实际工程中获得了越来越广泛的应用,尤其是在高层建筑、大跨度桥梁、海上采油平台、矿井工程、海港码头等工程中的应用日益增多。例如:上海金茂大厦(C60)、北京静安中心大厦(C80)、辽宁物产大厦(C80)、南京希尔顿国际大酒店(C30和C50)、长春国际商贸城(C55)、广州虎门大桥(C50)、上海杨浦大桥(C50)等都是应用的典范。全国很多研究单位已经研制出普通泵送高性能混凝土、大掺量粉煤灰高性能混凝土、高流态自密实高性能混凝土、纤维增加高性能混凝土、轻骨料高性能混凝土、水下不分散高性能混凝土港工与海工高性能混凝土、高抛纤维高性能混凝土等等,研制出C30-C80的各种强度等级的高性能混凝土和完备的混凝土耐久性检测设备,以及掌握了配套的施工成套技术和各种混凝土耐久性检测技术等。其中具有优异耐久性的C30高性能混凝土即将在地质条件复杂的深圳地铁工程中大规模使用。

三、结束语如今我国HPC发展形势一片良好,但是要使HPC在建筑工程中推广使用还需一个认识和实践的过程。随着我国建筑基础建设的不断增强,HPC必将成为新世纪的重要建筑工程材料。

参考文献:

[1]张鹏.新型混凝土材料在土木工程领域中的应用[J].邢台职业技术学院学报,2008,(2).

混凝土材料范文4

关键词:纳米技术;纳米材料;新型混凝土

中图分类号:G642.3 文献标识码:B 文章编号:1002-7661(2013)32-002-01

一、纳米技术概述

随着社会经济发展的加速,建筑物如雨后春笋般矗立在祖国的大地上。而混凝土作为土木工程最基本的材料之一,其需求量越来越大,质量和功能的要求越来越高,所以传统的混凝土已经远不能满足如今的需要,使用新技术改良传统混凝土的性能成为建筑业首要的研究方向。

纳米技术是上个世纪八十年代兴起的新型技术,是指在纳米量级范围内,通过操纵原子、分子、原子团或分子团使其重新排列组合成新物质的技术,其产物纳米材料也是纳米技术发展的基础。纳米材料通常指的是颗粒尺寸在纳米量级也就是(1nm~100nm)之间超细材料,具有独特的光学、电学、热力学和磁能学的性能。所以纳米技术广泛的运用于建筑、军事、医药、半导体、通讯等领域,并起到了很重要的作用,是重要的组成部分之一。

二、混凝土概述

混凝土是如今用途最广、用量最大的建筑材料之一, 在1830年问世以后,持续使用了170多年。而且混凝土拥有耐火性强、使用方便、制作简易、抗压性好等优点,所以一直被人们沿用下来。不过混凝土的成分组成表明了其韧性和抗拉能力的不足,要想解决这样的问题必须去改变混凝土的组成成分。

三、纳米材料在新型混凝土材料中的应用

上面说到要想解决旧的混凝土材料的缺点,必须改变其组成成分。所以经过收集,现在新型混凝土材料有如下几类:

1、纳米复合水泥混凝土结构材料

经测量普通水泥颗粒粒径大约在 7微米~ 200微米之间,我们要向其中加入一种水化硅酸钙凝胶的原料,其尺寸经过精密测量在纳米级范围。然后在这种胶凝材料中引入纳米矿粉(主要包括纳米 SiO2、纳米CaCO3和纳米硅粉等),能够使其大大地提高水泥混凝土硬化浆体的性能和凝固后的耐久性,不过这种新型混凝土仍有不足,就是其成本相对比较高,制约了其广泛应用。需要继续探究其更广阔的发展前景。

2、纳米材料在光催化混凝土中的应用

实验表明TiO2具有净化空气的性质,所以锐钛型纳米TiO2具有洁净空气、灭菌、除臭、自洁等特殊功能,可以用于制备光催化混凝土,使其对污染空气进行净化。不过要注意光催化混凝土和催化剂的寿命问题,使其更长久。

3、纳米金属粉末在屏蔽混凝土中的应用

经发现纳米金属粉末有两项功能,第一是纳米金属粉末的硬度较高,而且在晶粒粒径减小的条件下,硬度不断提高,同时韧性更好;第二是纳米金属粉末可以吸收电磁波,可以起到很好的信号屏蔽作用,可以广泛运用去军用设施的建设。

4、纳米氧化物在多功能混凝土中的应用

氧化物的种类一般包括金属氧化物和非金属氧化物,其中以金属氧化物占据大部分。纳米金属氧化物具有一般纳米材料都具有的性质,而且其吸收电磁波的能力要强于纳米金属粉末。最重要的一点,纳米金属氧化物对环境变化非常敏感,周围环境的改变会引起氧化物表面电荷的变化,达到传递信号的目的。所以除了利用纳米金属氧化物材料屏蔽电磁外,利用其良好的传感作用还可以可以制备具有自动报警功能的水泥混凝土。用于检测建筑物结构情况,还有道路上的车重和车速等。

5、聚合物/无机纳米材料在功能混凝土中的应用

与传统材料相比,聚合物/无机纳米材料具有很多优点,具有很好的增强性、增韧性、耐热性、热稳定性和导电性等。由于这些优异的性能,使这种材料的应用研究成为复合材料中的大热门,关于这种材料的理论辩论也很多,如果将其应用与混凝土当中,不仅改良了旧混凝土的缺点,还能达到其他功用。

四、发展前景

在建筑行业飞速发展的今天,混凝土成为非常有前景的项目之一,因为混凝土使用广泛,数量庞大。在工程施工中,对混凝土的应用要求越来越高。而且目前,新型混凝土在市场的应用和推广越来越广泛。越来越多的建筑商建立了专门的研究部门,开始自主研发新型混凝土或与之相关的仪器设备。随着科学的发展,新型混凝土性能的不断提高,越来越体现出新型混凝土的优越性,所以,使得混凝土在工程中的应用越来越重要。

随着经济发展越来越快,科技成为第一生产力的同时,城市建设进程的不断加快,这直接带动了我国新型混凝土产业的发展和应用,然后新型混凝土产业不断进步的同时也带动了生产力的发展。在市场竞争中,新型混凝土的质量和性能也能保证工程的顺利进行,节省了资源。所以我们要更加努力的去探究,将纳米材料更好的应用在新型混凝土材料中。

参考文献:

[1] 王山峰.张文辉.土建混凝土施工技术问题浅析[J].科技创新与应用.2012.(17).

混凝土材料范文5

文献标识码:A

普通砼是由水泥、砂、石子加水按适当比例配合,经均匀搅制、密实成型,养护硬化而成的一种人造石材。粗骨料中堆聚成紧密的架构,砂与水泥、水混成砂浆,填充架构的空隙,骨料在普通砼中起到骨架作用。本文将就原材料品质对硷质量产生的影响进行初探:

一、原材料对混凝土质量优劣的重要意义

混凝土,广义上泛指将一种具有胶结性质的材料和砂石以及粉细颗粒混合并成型后,经凝固硬化而粘结成为具有一定强度的实体。砼主要原材料为水泥、骨料等。混凝土是当今世界上用量最大的建筑材料,年用量接近90亿吨。用量如此之大,与它的特点相关。混凝土工程质量的好坏直接影响着整个钢筋混凝土结构的整体质量,而混凝土原材料的好坏和选配是否恰当也直接影响着混凝土工程的质量因此,确保钢筋混凝土结构质量一个重要的因素是要从混凝土原材料的质量控制做起。原材料选用不当将导致混凝土工程产生质量缺陷或裂缝,直接影响着整个工程结构的质量。混凝土因材料选用不当产生质量缺陷或裂缝,一般认为是因为混凝土材料变形受约束所引起的内应力大于材料抗拉强度的缘故。混凝土广泛应用于建筑、交通、水利等工程建设中,是工程结构的重要组成部分,其质量直接影响到整个工程的质量;因此混凝土质量优劣将直接影响到工程质量,对混凝土有直接影响的原材料品质是我们值得研究的方面。

二、把握好原材料质量

原材料是组成混凝土的基础,原材料品质的优劣直接影响到混凝土质量的好坏,因此首先要把好原材料质量关。

1 水泥的强度和体积安定性直接影响混凝土的质量。水泥的强度上下波动,混凝土的强度就会发生相应的变化;水泥的体积安定性差,就会使混凝土产生膨胀性裂缝。因此,要选择好水泥品种,根据经验,大水泥厂生产的水泥质量比较稳定可靠。

2 黄砂最关键的是细度模数和含泥量,砂子太细或含泥过多,会增加混凝土的干缩裂缝。另外,砂石中含泥量高,不仅影响混凝土的强度,而且影响抗冻性、抗渗性和耐久性。因此,混凝土最好采用中粗砂,且含泥量和有机质的含量必须满足规范要求。

3 石子主要控制好级配、针片状含量和压碎值。经调查,目前,好多混凝土厂家的石子级配都不是很好,因此,如何确保石子级配连续,且在生产中切实可行,还值得进一步探讨研究。

4 现在汕尾市地区主要使用商品混凝土。选择商品混凝土厂家也是一件很重要的事情。根据体会,一定要选择信誉好的,设备比较先进的混凝土厂家,同时必须到现场对原材料进行定期和不定期的检查。

三、混凝土原材料的配合比

混凝土配合比是指单位体积的混凝土中各组成材料的重量比侧。水灰比、单位用水量和砂率是混凝土配合比设计的三个基本参数。它们与混凝土各项性能之间有着非常密切的关系。确定这三个基本参数的基本原则是:在满足混凝土强度和耐久性的基础上确定混凝土水灰比,在满足混凝土施工要求的和易性基础上,根据粗骨料的规格确定混凝土单位用水量,砂在骨料中的数量应以填充石子空隙后略有富余的原则来确定。

四、原材料各个组成部分对混凝土质量影响

1 冰泥矿物组成的影响

众所周知,硅酸盐水泥主要的组成矿物有四种,它们的水化性质不同,在水泥中所占比例不同时影响对水泥整体的性质。C3S虽对早期强度贡献较大,但水化热是其他矿物水化热的数倍。因此C3S含量较大的早强水泥容易因早期的温度收缩、自收缩和干燥收缩而开裂。目前我国混凝土尤其是C50以上强度等级的混凝土普遍使用高效减水剂和其他外加剂由于C3S水化速度最快。生成3个水化硅酸钙几乎不溶于水,而立即以胶体微粒析出,并渐渐凝聚而成为凝胶。对减水剂的吸附量也最大,它首先吸附了大量减水剂。因而C3S含量高的水泥一般与外加剂的适应性差。

2 水泥细度对混凝土的影响

在目前我国大多数水泥粉磨条件下,水泥磨得越细,其中的细颗粒越多。增加水泥的比表面积能提高水泥的水化速率,提高早期强度,但是粒径在1μm以下的颗粒不到一天就完全水化,几乎对后期强度没有任何贡献。倒是对早期的水化热、混凝土的自收缩和干燥收缩有贡献――水化快的水泥颗粒水化热释放得早;因水化快消耗混凝土内部的水分较快,引起混凝土的自干燥收缩;细颗粒容易水化充分产生更多的易于干燥收缩的凝胶和其他水化物。粗颗粒的减少,减少了稳定体积的去水化颗粒,因而影响到混凝土的长期性能我们现有的混凝土结构。一般的设计寿命是60年,而有专家预测,由于超细水泥颗粒含量太多,50年后,我们的混凝土强度只能达到设计强度的40%。随水泥比表面积的增加。与相同高效减水剂的适应性差。为减小流动度损失需要增加更多掺量的高效减水剂。不仅增加施工费用,而且可导致混凝土中水泥用量的增加,影响混凝土的耐久性。水泥细度还会影响混凝土的抗冻性、抗裂性。

3 骨料的品种、质量与数量

设计混凝土配合比时,都要求骨料的强度大于混凝土的强度。因此一般情况下,骨料质量对混凝土强度几乎没有什么影响。影响混凝土强度的主要是骨料中的有害物质。它影响骨料的粘结,降低混凝土的强度,硫酸盐和硫化物对水泥有腐蚀作用,它与水泥的水化物反应生成钙矾石,使水泥石体积膨胀。它除了能降低混凝土的强度外。还降低混凝土的抗冻性能。当骨料含有较多的软弱颗粒或杂质时,也会使混凝土强度下降表面棱角多的碎石表面圆滑的卵石与水泥石的粘结国力要强。混凝土中骨科的用量与水泥之间的比例关系,也直接影响混凝土的强度,尤其对于水泥用量比较大的高强混凝土。

4 掺加粉煤灰和加剂对混凝土强度的影响

在目前使用的高等级混凝土中,为了改善混凝土的物理力学性能,提高混凝土的强度,一般采用外加剂和粉煤灰双掺的办法比较好。粉煤灰作为活性材料,主要含有大量的三氧化铝和SiO。与水拌合后,本身不硬化,而是与气硬性(氢氧化钙)相拌合,不仅在空气中硬化,而且在水继续硬化,由于矿物颗粒比较细,具有填充效应和流化效应,增加强度。通过大量的工程实践充分证明了这一点,在提高混凝土强度的同时,但也带来了混凝土的早期强度偏低的现象,28d标准强度达不到设计要求,所以在配制高强混凝土时,要注意掺加量的比例要掌握准确,适应性如何等等,不要盲目掺加,否则影响混凝土强度。

混凝土材料范文6

关键词:混凝土;原材料;质量控制;管理

在公路工程建设领域之中,水泥混凝土材料是应用比例最大的建筑材料,其质量好坏与整个钢筋混凝土结构的质量有极为密切的关联,要全面分析和探讨水泥混凝土原材料的质量影响因素,针对混凝土原材料的质量控制问题进行分析和研究,并提出有效的混凝土原材料质量控制措施,实现对混合料的级配控制,更好地实现对混凝土原材料的存放管理,更好地促进工程建设的顺利实施。

1水泥对混凝土质量的影响及其质量控制措施分析

水泥是混凝土材料的重要组成部分,对于混凝土结构的耐久性能有极为密切的影响。

1.1水泥品种对混凝土质量的影响

(1)水泥品种对于混凝土的性能影响。不同的水泥品种对于混凝土的工作性能和力学性能都有较大的影响,在矿渣水泥和粉煤灰水泥之中,都含有超细粉煤灰和矿渣微粉,它们具有一定的减水功效,在相同的用水量条件下,当外加剂掺量较小时会产生较大的混凝土坍落度,不同品种的水泥对于混凝土的强度而言有大小不同的特性,具体表现为:当水泥混凝土在7天龄期时的混凝土强度最大的为纯硅酸盐水泥,其后依次为普通硅酸盐水泥、矿渣水泥、粉煤灰水泥;当水泥混凝土达到28天的龄期时,矿渣水泥混凝土的强度会比纯硅酸盐水泥强度高,而粉煤灰水泥混凝土的强度则最低。水泥品种对混凝土的碳化深度的影响也会发生一定的变化,具体表现为:当水泥在7天龄期时,粉煤灰水泥混凝土的碳化深度最大,普通硅酸盐水泥及矿渣水泥的混凝土碳化深度接近,纯硅酸盐水泥混凝土的碳化深度最小;当水泥在达到14天之后,其混凝土碳化深度变化的幅度减弱,且区别不大。不同的水泥品种对于混凝土抗氯离子渗透性能也有一定的影响,具体来说,普通硅酸盐水泥、粉煤灰水泥及矿渣水泥具有较强的混凝土抗氯离子渗透扩散性能,而纯硅酸盐水泥的抗氯离子渗透性能则最弱。(2)水泥细度对于混凝土的性能影响。不同的水泥细度对于混凝土的工作性能有一定的影响,随着养护时间的不断延长,水泥的水化程度逐渐加大,混凝土的抗压强度也随之增强。并且在混凝土的养护后期,随着养护时间不断延长,水泥细度越大则混凝土的强度增长逐渐趋缓。不同的水泥细度对于混凝土抗氯离子渗透性能的影响,具体表现为:当水泥细度逐渐增加时,混凝土的抗压强度也随之增加,混凝土抗氯离子的渗透性能也相应增加。

1.2水泥混凝土原材料的质量控制要点把握

(1)水泥品种会对混凝土质量产生一定的影响,如:混凝土强度、混凝土的碳化性能、混凝土的抗渗性能等,可以选用普通硅酸盐水泥、粉煤灰水泥及矿渣水泥,以提升混凝土的抗渗透性能。(2)还要综合考虑不同品种水泥的性能特点,结合不同的施工环境选用不同品种的水泥,通常来说,对于不受侵蚀的地下工程及无腐蚀性的受冻工程而言,可以选用普通水泥和纯硅酸盐水泥;对于地下工程、海水中的工程、有抗硫酸盐侵蚀的工程而言,则可以选用矿渣水泥;对于受海水侵蚀及含硫酸盐类溶液侵蚀的工程,则可以选用粉煤灰水泥。(3)要根据不同的公路工程和工作环境,实现对水泥细度的质量控制,应当适当提高水泥细度,以提升水泥的早期强度和抗渗透性能,然而也并非是水泥越细越好,应当将水泥的细度控制在一定的范围之内。如:大体积混凝土结构的浇筑施工,如果水泥的细度过大,则混凝土的收缩同时增大,增加混凝土出现裂缝的危险。为此,要严格控制水泥的细度,依照规定的水泥颗粒级配进行施工。

2粉煤灰对混凝土质量的影响及其质量控制措施分析

(1)粉煤灰对于水泥混凝土的微观结构有一定的影响,可以在改善其微观结构的前提下,减小对水的吸附能力,降低水泥水化的需水量,增加粉煤灰掺加的混凝土的抗裂性。同时,粉煤灰掺加到混凝土之中还可以较好地改善混凝土的和易性,提升混凝土的粘性,减少混凝土的离析和泌水现象,在节约水泥用量的同时提升混凝土的抗渗性、抗冻性及碱骨料反应。(2)高钙粉煤灰的碳化深度高于低钙粉煤灰混凝土,在受到较大的抗压强度的影响条件下,通常可以采用高钙粉煤灰;而在二氧化碳浓度高、碳化影响严重的不良环境中,则采用抗碳化侵蚀能力较好的低钙粉煤灰;同时,在桥墩、码头、海工建筑中通常也选用抗渗透性较好的低钙灰混凝土。

3外加剂对混凝土质量的影响及其质量控制措施分析

(1)不同类型的减水剂在一定程度上会影响混凝土的质量,要认真做好外加剂的对比选定工作,根据混凝土的技术性能、施工工艺等情况,进行比较确定。通常来说,对于混凝土早期强度要求较高的市政工程、二氧化碳浓度较高工程或者工期相对短的冬季施工工程,应当选用早期强度较好、对混凝土性能影响优越的聚羧酸减水剂。(2)要注意不同种类减水剂对于混凝土的影响,在工程中严格控制减水剂的掺加量,不可掺入过多的减水剂,以免对混凝土产生不良的影响。由于聚羧酸减水剂可以达到最高的减水率,并且对于混凝土的性能影响最小,为此,应当选用聚羧酸减水剂,以满足公路施工环境复合的要求。(3)对于一般混凝土而言通常选用普通减水剂,对于高强混凝土而言应当选用高效减水剂,温度较高时应当选取引气性较大的减水剂,温度较低时应当选取复合早强减水剂,对于泵送混凝土还应当使用泵送剂。同时,要对掺加减水剂的混凝土的搅拌施工严格控制其施工时间,其存储放置的时间应当控制在半个小时之内,并在运输过程中严密关注混凝土的匀质性,以免混凝土出现分层现象。

4骨料对混凝土质量的影响及质量控制措施分析

4.1骨料对混凝土质量的影响

细骨料的模数变化会对混凝土的性能产生一定的影响,如果砂细骨料的细度模数出现变化,则会使混凝土出现离析及泌水现象,导致混凝土的密实度、抗压强度出现波动现象。同时,细骨料级配不良也会对混凝土产生一定的影响,使混凝土的收缩性能、渗透性增加,提升有害介质在混凝土中的扩散系数。粗骨料是高性能混凝土的重要原材料,它与砂共同作用形成混凝土的骨架,约占混凝土总重量的45%,对于混凝土的强度、和易性、耐久性也有极为明显的影响。

4.2骨料混凝土原材料的质量控制分析

(1)要充分关注细骨料的细度模数对于混凝土拌合物的和易性的影响,当细骨料的细度模数越小时,混凝土拌合物的和易性越低。为此,应当考虑选取细度模数相对适中的细骨料作为混凝土的原材料,并在确保混凝土工作性能的前提下,选择正确的集料。(2)当工程施工环境恶劣、混凝土耐久性要求较高的工程,通常避免选用细度模数较小的细骨料,并在配制高强混凝土时选用粗砂,在配制普通流态混凝土时选用中砂。另外,对于预应力混凝土工程严禁选择海砂。(3)对于有一定的混凝土抗渗性要求的工程,通常选用粗骨料,并适当降低对粗骨料的要求;而对于碳化影响较高的工程环境,则应当严格控制粗骨料的强度、压碎指标,避免混凝土结构受到碳化侵蚀的影响而失效。(4)要选择质地均匀、粒型、级配良好、洁净而坚实的粗骨料,作为混凝土的原材料,其压碎值应当小于7%、吸水率应当小于2%;在冻融的工程环境中,粗骨料的吸水率应当小于1%、空隙率应当控制在40%之内、含泥量应当在0.7%之内、水溶性氯离子含量应当不超过骨料质量的0.02%。并且,粗骨料的最大粒径应当在25mm之内,且必须在保护层厚度的2/3,还应当选择线膨胀系数相对较小的粗骨料,以增强混凝土的抗裂性。

5水对混凝土质量的影响及质量控制措施分析

在混凝土的原材料之中,其用水包括普通淡水、回收浆水等,要根据具体的生产施工状况,严格控制混凝土的用水。对于C30以上强度等级的混凝土而言,严禁使用回收浆水;对于C20~C30低等级普通混凝土而言,可以选用50%的回收浆水;对于C20以下强度的混凝土而言,应当选用70%~100%的回收浆水。并且,为了确保混凝土回收浆水的使用,还要对回收浆水进行至少两次的浓度检测,以及时调整回收浆水的用量及比例,更好地满足工程使用要求。

6结束语

综上所述,混凝土原材料的质量控制涉及面广而复杂,其原材料的变化情况也差异较大,为此,要全面观察和分析混凝土不同原材料的性能变化,根据施工工程要求的具体情况,进行混凝土原材料的配合比例及数量的调节,较好地保证混凝土的力学性能,使之达到工程所需的强度、和易性、抗渗透性、抗裂性等,在节约使用混凝土的条件下,确保达到工程所需的质量控制要求。

参考文献:

[1]李兴来.论道路桥梁施工中混凝土原材料的质量控制[J].商品混凝土,2013(01).

[2]金大.浅谈在冬季路桥施工中混凝土浇筑的技术措施[J].黑龙江科技信息,2012(16).

[3]邝国强.浅议道路桥梁施工过程中混凝土原材料的质量控制分析[J].科技资讯,2011(18).

上一篇混凝土质量

下一篇防水混凝土