建筑抗震设计的基本准则范例6篇

建筑抗震设计的基本准则

建筑抗震设计的基本准则范文1

【关键词】汶川地震;JICA(日本国际协力机构)抗震;隔震;减震

2010年6月-8月,我有幸赴日本参加了为期两个月的中日抗震技术人员的培训学习。该项目是2008年5.12汶川特大地震以后,中日两国首脑确认的“总体合作框架”中就“城市建设”领域开展的灾后恢复重建合作项目,由中国科技部及住建部和日本国际协力机构(JICA)签约实施。该项目的主要目的是通过对中国建筑抗震技术和管理人员进行培训,借鉴日本建筑工程抗震领域的先进经验,以提高中国建筑抗震防灾能力,并推动中日两国在建筑抗震技术领域的深入全面合作。项目于2009-06-01启动,2013-05-31结束,为期四年。

通过两个月的研修,了解了日本的防灾减灾系统,日本抗震 设计法的发展历程,并对中日两国抗震设计有了细致的比较,学习了日本在隔震,减震方面的先进技术以及抗震加固的先进理念和方法。

首先简要介绍日本的防灾减灾系统:注重防灾减灾意识的培养和加强; 防灾知识普及常抓不懈,从我作起; 政府对既有建筑尤其是生命线工程和民生工程(学校,医院,聚居的住宅等)的抗震性现状调查常态化,掌握第一手资料;对抗震化鉴定和加固制定计划和目标,不因为大地震再现周期长而导致对抗震加固犹豫不决的态度,和侥幸的心理;提高地震应急判断和评估水平,避免次生灾害的发生,使灾区能尽快恢复正常的生产和生活。

日本的抗震设计法的发展历程:1916年 佐野利器博士提出震度法概念(考察1906年美国旧金山大地震后经过研究发表《建筑物抗震结构理论》中提出用震度乘以房屋重量来计算水平地震惯性力); 1923年 关东大地震,砖石结构破坏严重,(80%以上)从此该类结构从日本新建建筑舞台消失;同时因混凝土结构倒塌和发生严重破坏的较少,其抗震性能被认可;1924年 震度法被正式采用,K=0.1,地震作用取为建筑物重量的10%(容许应力度=材料强度的1/2);要求超过50尺(大约15m)的建筑须采用钢筋混凝土结构或者钢结构 ;1924~1950年间日本结构抗震领域展开“刚柔相争”(以刚度抵抗,或韧性顺应) 1950年颁布《建筑基本法》调整水平地震作用,K=0.2(容许应力度=材料强度);1971年修订《建筑基本法》,规定柱箍筋间距≤100mm。加强对柱混凝土的约束作用,旨在提高砼柱子的延性;1977年,制定了抗震诊断基准与修复设计指针,提出既有建筑加固办法 1981年颁布“新抗震设计法”,提出二次设计的要求(小震不坏,大震不倒),并提出保有耐力的设计计算法 ;1983年,隔震橡胶在日本应用于民用建筑,开始出现隔震建筑 ;2000年 增加“基于性能的抗震设计法”(极限承载力计算法)95年阪神地震很多建筑虽未严重破坏,但塑性变形过大使修复成本过高或丧失正常功能;2005年补充“基于能量平衡的抗震设计法”(主要用于钢结构)地震输入能量=弹性应变能We+塑性应变能Es.,建筑物必须吸收的最低能量=地震输入能量-弹性应变能We。

日本建筑物按规模和高度进行安全性与分类 :第一号建筑物:高度超过60m的建筑物,即超高层建筑物; 第二号建筑物:高度低于60m建筑物中的大规模建筑物(高度一般指31m以上); 第三号建筑物:高度低于60m建筑物中的中规模建筑物;第四号建筑物:以上一号至三号以外的小规模建筑物,无需进行结构计算。日本的抗震设计原则主要是:

60m以下的建筑物:

1)新抗震设计法,二次设计方法,满足小震不坏(地震加速度约80gal,建筑加速度反应约0.2g)、大震不倒(地震加速度约400gal,建筑加速度反应约1.0g),采用容应 力 度计算法+保有耐力计算法。从1981年沿用至今,概念清晰,方便操作。

2)基于性能的抗震设计法(极限承载力计算法),实际应用不多。

3)基于能量平衡的抗震设计法(主要用于钢结构),理论较深(能量法),实际应用很少。

60m以上的建筑物:

必须进行弹塑性时程分析验证其抗震性能,设计文件送交国土交通省大臣指定的审查单位进行审查。(类似国内的超限高层的抗震专项审查)

而我国的建筑抗震设计标准的制定则是经历了一下几个过程:1974年:《工业与民用建筑抗震设计规范》(TJ11-74) 规定建筑物遭遇到相当于设计烈度的地震影响时,建筑物允许有一定的损 坏,不加或稍加修理仍能继续使用; 1978年:《工业与民用建筑抗震设计规范》(TJ11-78)基于唐山大地震,输入的水平地震动较大,采用基底剪力法;1989年:《建筑抗震设计规范》(GBJ11-89)增加震源距的影响(近震、远震),三水准设防,两阶段设计。2001年:《建筑抗震设计规范》(GB50011-2001)引入设计地震分组;2008年:《建筑抗震设计规范》(GB50011-2001,2008年版) 汶川地震后基于抗震概念设计的修编(震后调查,楼梯间作为逃生通道或安全岛采取构造加强措施等);2010年:《建筑抗震设计规范》(GB50011-2010) 对一些有专门要求的建筑结构,允许采用抗震性能化设计。

我国抗震设计的方针是:三水准设防,两阶段设计 。所谓三水准性能目标:“小震不坏、中震可修、大震不倒”,现行《建筑抗震设计规范》GB50011-2010增加了性能化设计目标,即使用功能或其他方面有专门要求的建筑,当采用抗震性能化设计时,具有更具体或更高的抗震设防目标。以抗震设防烈度为抗震设计的基本依据,引入“设计地震分组”,体现地震震级、震中距影响,不同类型的结构需采用不同的地震作用计算方法:高度低于40m,以剪切变形为主且质量和刚度沿高度分布较均匀以及近似于单质点体系的结构采用底部剪力法,除此以外用阵型分解反应谱法,对于特别不规则的建筑甲类建筑或高度超过抗规表5.1.2列高度的建筑。并利用“地震作用效应调整系数”,体现抗震概念设计的要求,把抗震计算和抗震措施作为不可分割的组成部分,强调通过概念设计,协调各项抗震措施,从而实现“大震不倒”;同时采用二阶段设计实现三个水准的设防目标:第一阶段设计:是承载力验算,取第一水准的地震动参数计算结构的弹性地震作用标准值和相应的地震作用效应,进行结构构件的截面承载力验算及变形验算。既满足了在第一水准下强度要求,又满足第二水准的变形要求。第二阶段设计: 采用第三水准烈度的地震动参数,进行弹塑性变形验算,并结合采取相应的抗震构造措施,实现第三水准的设防要求。

从中日两国抗震设计基准以及抗震鉴定抗震加固促进法的建立和发展的历史得到的启示:在每一次大地震的震害调查中总结经验和教训,适时对现行设计基准作出必要的修订和改进,找出差距,调整思路,从而使建筑的耐震化不断加强,建筑物的性能在地震后的维持与恢复能力也不断提高。 在这一点上我感觉中日两国的做法基本相仿,中国曾在1976年唐山大地震的震害调查中发现砌体结构如有很好的钢筋混凝土构造柱和圈梁的约束系统,由此系统提供延性,也能在大震后裂而不倒。此后结构科研人员据此进行了一系列的相关试验,对74抗规进行修编从而完善了砌体结构的抗震构造搓施,这在08年5.12汶川地震的震后表现中也得到了检验;在对汶川地震震害调查和分析后,《建筑抗震设防分类标准》把中小学校舍及医疗建筑的设防标准提高到重点设防类,01抗规的08版又对一些条文进行了修改补充,如楼梯间的相关构造等。

对日本隔震减震结构的几点认识:1.基于能量法的原理以及性能设计的要求,阪神淡路地震后日本的隔震减震结构迅速发展起来,包括新建和抗震化改修建筑都多有利用,半主动,主动减震系统,各种形式的隔震支座和耗能支撑也不断被开发;2.隔震结构因其极大的降低了地震动向隔震层上部结构的输入,使构件截面尺寸及配筋等比先前单纯抗震设计时大为减小,尤其在处理不规则结构无缝设计时起到了非常重要的作用;3.隔震支座的布置应该注意上部柱子的内力,对于周界等有可能出现弯矩而产生拉应力时不可选择纯滑动支座。(我们现地参观的东京品川御殿山工程以及三洋化成的隔震加固等项目);4.耗能减震支撑可以结合结构型式合理选择,尽可能多的减少结构自身的反应,达到其耗能的目的;5.隔减震结构在震度较大的地区应加以推广应用,在我国随着隔震层以及耗能支撑材料的不断开发,在设防烈度较高的区域应是可推行的非常优越的结构体系。

另外,日本的抗震加固方法也是非常多样化,从原理上分可以是韧性加固,也可以刚度强度加固,甚至对于一些特殊用途和要求的建筑可以采用隔震,减震等的加固方式,从降低地震动的输入着眼,即从根本上卸载不堪重负的原结构构件所需承担的水平地震力,从而使其满足要求。从形式上讲可以是改善原结构的延性,也可以加大墙柱等抗侧力构件截面,增设带框支撑,增加混凝土墙,加设减震器或增加耗能支撑等等措施。隔震加固因为施工难度大,间接成本过高,除重点文物等保护性建筑以及因其他因素而使加大截面或增设构件满足不了抗震要求的,一般不建议采用隔震加固。

从日本现阶段抗震设计的理念和方法以及日本国内建筑材料及施工技术的发展我有几点感想:1.结构设计不但要保证构建筑物的安全,同时应满足性能要求,并且在震后能尽快恢复,修复的成本也需考虑。即安全+安心。(性能设计);2.结构方案的选取可多样化,不必拘泥于结构型式和体系的限制,只要能满足两阶段设计的各项指标,限高通过批准,地震动输入适合,时程分析计算满足要求即可。可以刚柔相济,以柔佐刚,也可抗震,减震,隔震协调并行,这样就给建筑的平立面设计创造了非常宽广的施展空间,也为我们的城市带来更多亮丽的风景。(这点应该是我们的抗震设计规范非常有必要借鉴的地方)3.高强混凝土的开发和高强钢筋的利用以及减震结构的实施(能量原理),使得延性框架结构在超高层建筑中的应用成为可能。我们现地参观的东京东池袋丁目的高层住宅,189m高,纯框架,在6~22层位移较大的搂层使用了低屈服钢的减震柱)4.先进的施工工法,精良的施工设备使建筑的工厂化成为可能,加快了施工速度,同时也减轻了对环境的污染;5.结构的概念在施工安装中的构造处理应用:为了减轻隔墙对框架柱可能产生的约束作用,尤其是通条窗或柱边框们的下护墙或上顶壁,隔墙都在梁上下设置卡口固定,使其与柱子脱开;预制大孔板的应用,有效的减弱了板对梁的约束,使得梁的屈曲更易实现。

建筑抗震是一个系统性问题,从建筑选址开始就必须慎之又慎,应注重对活断层的判别,规定活断层近前的建筑及市政设施的限制;要深入研究地基,地基与建筑物相互作用的影响,结构计算时输入的地震动参数要适合建筑的抗震设防烈度,抗震等级以及场地类别和地震分组等,抗震加固时要对建筑物抗震性能余力进行再评价,要刚柔结合,顺势而为,充分发挥被加建筑的功能再利用。

现阶段地震的发生不可预测,但做好建筑物的抗震及加固,做到有备无患则是我们结构抗震工作着必须担当的责任。

参考文献:

[1]《抗震设计标准Ⅱ2010年中国耐震建筑研修课件》神户大学,孙玉平

建筑抗震设计的基本准则范文2

关键词:高层建筑;平面规则性超限;抗震设计

1 引言

在高层建筑设计的过程中,抗震设计一直是一个非常重要的环节,其设计的水平直接影响到了建筑工程自身的安全性,当前随着相关技术的发展,平面规则性超限技术在不断的发展和应用,这种技术的应用使得高层建筑抗震的质量和水平得到了非常显著的提升,所以对其进行全面的研究也有着十分积极的现实意义。

2 基于性能的结构抗震设计基本原理

基于性能的抗震设计在当前的建筑抗震设计当中发挥着十分重要的作用,同时其在很多国家都得到了非常广泛的应用,它是一种相对比较先进的设计思想,这种设计方法是上个世纪末由美国的专家学者提出的,但是这个概念本身并不是一个创新,在20世纪70年代的时候,波兰的学者就提出了和这种概念十分类似的观点,在很多地区和国家发生了地震之后,当地建筑物的损伤现象并不是十分的严重,这样也在很大程度上保证了人们的生命和财产安全,但是在经济方面却造成了非常严重的损失,所以为了可以更好的对这种现象予以控制,在实际的工作中,很多学者也逐渐的意识到建筑结构抗震性能设计的重要性和必要性,在研究的过程中所树立的目标就是借助抗震设计使得整个建筑结构的安全性和稳定性都得到较好的保证,对建筑物自身的破坏程度也要进行有效的控制,将生命和财产损失控制在一个相对较为合理的水平,只有通过结构自身的抗震设计,才能更好的保证以上目标的顺利实现。

目前,很多国内外的专家和学者对于基于性能的抗震设计工作的关注程度越来越高,在实际的工作中也对其进行了非常积极的研究,取得了非常好的成果,对于这种设计方法的研究不断的加深,但是在对其定义进行描述的过程中,很多学者都有自己的看法,因此还没有形成统一的定义,虽然他们之间存在着一定的差异,但是这些描述当中的基本思想是相同的,在设计的过程中必须要考虑到建筑结构在使用期限之内,如果遇到了不同程度的地震作用的时候,其要按照事先设定好的抗震标准、结构发生的变化和损坏程度对其进行设计,这样就使其在安全性、可靠性和经济性上能够达到一种相对较为平衡的状态。在开展性能设计的过程中,业主可以根据其实际的经济状况提出一个比较科学合理的性能指标,同时设计人员也可以按照工程的实际情况对其进行设定处理,这样也就给设计人员对各个因素全面深入的分析提供了非常好的条件,此外在这一过程中也要针对不同形式的建筑采取不同的措施,制定一个更加贴合实际的目标。综上所述,基于性能的抗震方法在我国的高层建筑抗震设计工作中还是存在着非常强的科学性和合理性的。

3 钢筋混凝土结构基于性能的抗震设计方法

3.1 基于性能抗震设计的基本步骤

基于性能的抗震设计在实际实行的过程中,必须要按照工程实际的情况对其进行处理,比如设防烈度、建筑的高度和建筑立面的形式等等。此外在这一过程中还要充分的考虑到业主对建筑抗震性能的实际需要,以及自身的经济水平,之后才能设定一个相对比较科学合理的目标,并按照其设计的基本步骤逐步操作。基于性能抗震设计的基本步骤流程图如图1所示。

3.2 超限高层结构抗震性能目标的设定和选用

建筑物的抗震性能目标通常就是指在设定了地震作用等级的条件下,结构自身的预期性能水平。不同标准下抗震性能目标和性能水准示意图如图2所示。

实际工程中的超限高层建筑可根据具体建筑的场地条件、设防烈度、建筑高度及建筑不规则及建筑超限程度,综合业主对建筑的建造成本、建筑重要性及震后损失、修复等方面的考虑,参考图2选择合适该超限工程的性能目标。

需要注意的是:建筑的超限程度对结构的延性变形能力会产生直接的影响,而结构的延性变形能力与其承载力要求成反比关系,即:结构及构件的承载力较高,对其延性变形能力要求则较低;结构及构件的承载力较低,对其延性变形能力的要求则较高。超限高层建筑结构抗震设计应根据建筑高度的超高情况及结构不规则程度,在考虑提高结构承载力和延性变形能力时,应注意两者的协调从而选择既合理又能保证结构安全抗震性能手段。

4 建立在我国设计规范上的基于性能设计方法

根据《高层建筑混凝土结构技术规程》3.11条规定,结构抗震性能设计有两项主要工作:首先,对结构工程进行分析判别,确定其采用抗震性能设计方法的必要性。结构分析与判别主要包括对建筑方案的高度、结构类型、结构规则性、场地条件及抗震设防标准等方面进行分析,并以此作为抗震性能目标选用的主要依据。其次,综合考虑建筑物的设防烈度、场地条件、重要性、造价、震后损坏和修复难易程度等各项因素,作为选定合适的抗震性能目标的主要依据。对结构进行抗震性能设计时,对抗震性能目标的选用需十分谨慎,同时应作深入的分析论证。由于地震地面运动难以预测,对结构在强烈地震作用下的非线性分析计算的模型及参数选用等方面也存在经验因素,实际工程也缺少实际震害的验证,因此对结构抗震性能作出准确判断难度很大,对超高层建筑由于其自振周期较长及结构自身的复杂性和不规则性,对其抗震性能作出准确判断就更困难了。因此在性能目标选用时,考虑到地震作用的不确定性,性能目标选择时适宜偏于安全、保守。

结束语

基于性能的抗震设计是一个相对比较新颖的设计思想,当前,对这种方法的研究在不断的深入,而且很多研究已经有了非常好的成果,但是要想在工程中应用这些研究成果,还需要一定的时间,必须要保证这种技术处于非常成熟的状态之后,才能对其予以应用。

参考文献

[1]方虎生.某超限高层结构分析设计[J].广东建材,2007(5).

建筑抗震设计的基本准则范文3

关键词:超限高层建筑;抗震设计;基本方法

Abstract: Tall building seismic design from the overall consideration, from all aspects of construction control. Structural seismic resistance has been the emergence of new technologies and measures, in the future; there will be a better preventive measures for earthquake damage control. This article is on the high rise building a seismic design method research.

Key words: high-rise building; seismic design; basic method

中图分类号:TU972+.9 文献标识码:A 文章编号:

抗震简而言之就是抵抗在地震力的作用下对建筑物产生的破坏,采取各种有效的御防或善后措施,尽可能减轻人员生命财产的损失。建筑结构的优化设计目的是设计出合理的满足各种科学数据的最佳方案。上世纪 90 年代后,我国房地产产业迅猛发展,同时,随着钢产量、成型制造技术以及经济科技的发展,技术得到多方面支持,高层钢结构运用在高层住宅建筑中已经成为可能,并且人们也越来越重视优化设计在建筑上的作用。由于我国地处地震多发区,高层住宅结构抗震优化设计将得到设计人员更多的关注和重视。

1.超限高层建筑工程抗震设防的基本要求

(1)采用钢筋混凝土框架结构和抗震墙结构,其高度不得超过《抗规》的最大适用高度。采用钢筋混凝土框架-抗震墙结构和筒体结构,9 度设防时一般不得超过《抗规》、《高规》的最大适用高度,8 度设防时高度不得超过《抗规》、《高规》的最大适用高度的 20%, 6 度和 7 度设防时高度不得超过《抗规》、《高规》的最大适用高度的 30 %;

(2)在房屋高度、高宽比和体型规则性至少应有一方面满足《抗规》、《高规》的有关规定;

(3)应采用比《抗规》、《高规》规定更严的抗震措施;

(4)计算分析应采用两个及两个以上符合结构实际情况的力学模型,且计算程序应经国务院建设行政主管部门鉴定认可;

(5)对房屋高度超过《抗规》、《高规》最大适用高度较多、体型特别复杂或结构类型特殊的结构,应进行小比例的整体结构模型、大比例的局部结构模型的抗震性能试验研究和实际结构的动力特性测试;

(6)特殊超限高层及有明显薄弱层的超限高层建筑工程,应进行结构的弹塑性时程分析。

2.高层住宅建筑抗震结构的设计需要遵循的准则

我国现行建筑抗震设计规范采用两阶段设计方法实现“小震不坏、中震可修、大震不倒”的三水准性能目标。

“三水准”指的是:小震不坏——遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用;中震可修——当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,但经一般修理或不需修理仍可继续使用;大震不倒——当遭受高于本地区抗震设防烈度的预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。

“两阶段设计”指的是:第一阶段设计:①小震弹性计算,地震效应与其他荷载效应组合并引入承载力抗震调整系数,进行构件截面设计,——满足小震强度要求;②限制小震的弹性层间位移角;同时采取相应的抗震构造措施,保证结构的延性、变形能力和耗能能力,——自动满足中震变形要求。第二阶段设计:限制大震下结构弹塑性层间位移角;并采取必要的抗震构造措施——满足大震防倒塌要求。

抗震设计要做到刚柔并济,选择合理的结构布置形式,遵循“强柱弱梁“、”强剪弱弯”的设计准则。满足结构刚度的要求,增强抗震的效果,确保高层抗震结构在地震力的作用下达到我们设计要求。高层建筑结构抗震设计应保持在弹性范围内。即使建筑本身的结构引起变形,结构形态也不会发生根本的破坏,经维护能正常使用。随着我国房地产业的发展,在提高建筑物高度的同时,允许结构进入弹塑性状态,但建筑物本身结构的安全也必须要达到相应的标准。我国规范规定,六级以上必须进行抗震设计。建筑抗震设计不能只单一考虑提高抗震的抗力,地震往往都会伴随着多次的余震,由于地震作用的复杂性和地震作用发生的强度的不确定性,以及结构和体积的差异等,如果只设置一道防线,就会大大降低建筑的抗震效果,且也会增加结构的刚度。建筑物的抗震设计,必须满足减小地震力对建筑主体的作用,使建筑主体结构不产生破坏性变形,此两点为结构抗震设计的目的。只有通过对结构构件及节点的消能减震,设计才能达到抗震的要求,使建筑物在地震发生时,损失降到最低。研究结果表明,如果高层建筑的抗震结构体系刚度太柔,在经第一次地震后就会遭到严重破坏,当余震来临时,建筑物无法再次承受地震的破坏力。所以,建筑物的抗震结构设计既要有一定的刚度也要有适当的柔度。延性较好的分体系组成,地震发生时不会发生整体倾覆,因此,由若干个在地震发生时由具有较好延性。

3.超限高层建筑结构抗震设计要点

3.1结构规则性

建筑在结构方案设计的初期,结合抗震设计的要求,对建筑平面及使用功能进行合理优化和布局,特别是高层住宅建筑,应保证建筑物有足够的扭转刚度以减小结构的扭转影响,要求建筑物平面对称均匀,柱网剪力墙布置合理。因为该种结构建筑容易估计出其地震反映,对建筑进行合理的布置,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。并应尽量满足建筑物在竖向上重力荷载受力均匀,体型简单,结构刚度。大量的地震灾害表明,在地震时,只有建筑物受力均匀,平立面布局简洁对称合理,这样的结构才能满足抗震设防的设计要求。

3.2层间位移限制

我们在进行高层建筑物结构设计时要注意建筑的高宽比,位移的限制和结构材料、结构体系甚至装修标准以及侧向荷载等问题。其中钢筋混凝土结构的位移限值要求严格,以及所处的地理位置进行设计,稳定性以及正常使用功能等。其在风力和地震作用下往往能够产生较大的层间位移,满足其具有足够的刚度又要避免超过结构的承载力,位移限值风荷载作用下的限值比地震作用下的要求严格,在水平荷载的作用下产生过大的位移而影响结构的承载力。

4.超限高层建筑抗震设计的基本方法

建筑结构的抗震设计,主要从减少地震作用力的输入和增强地震抵抗力两个大方面进行,分别从以下几个小的方面进行全面的分析。

建筑抗震设计的基本准则范文4

    【关键词】建筑结构 抗震 概念设计

    一、关于建筑结构抗震概念设计的概述

    我国结构计算理论经历了经验估算、容许应力法、破损阶段计算、极限状态计算,到目前普遍采用的概率极限状态理论等阶段。现行的《建筑结构可靠度设计统一标准》(GB50068-2001)则采用以概率理论为基础的结构极限状态设计准则,以使建筑结构的设计得以符合技术先进、经济合理、安全适用的原则。概率极限状态设计法更科学、更合理,但该法在运算过程中还带有一定程度近似,只能视作近似概率法,并且仅凭极限状态设计也很难估算建筑物的真正承载力。事实上,建筑物是一个空间结构,各种构件以相当复杂的方式共同工作,并非是脱离结构体系的单独构件。

    地震具有随机性、不确定性和复杂性,要准确预测建筑物所遭遇地震的特性和参数,目前是很难做到的。而建筑物本身又是一个庞大复杂的系统,在遭受地震作用后其破坏机理和破坏过程十分复杂。且在结构分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不确定性。因此,结构工程抗震问题不能完全依赖“计算设计”解决。应立足于工程抗震基本理论及长期工程抗震经验总结的工程抗震基本概念,从“概念设计”的角度着眼于结构的总体地震反应,按照结构的破坏过程,灵活运用抗震设计准则,全面合理地解决结构设计中的基本问题,既注意总体布置上的大原则,又顾及到关键部位的细节构造,从根本上提高结构的抗震能力。

    二、抗震概念设计的基本原则与要求

    1.选择有利场地。造成建筑物震害的原因是多方面的,场地条件是其中之一。由于场地因素引起的震害往往特别严重,而且有些情况仅仅依靠工程措施来弥补是很困难的。因此,选择工程场址时,应进行详细勘察,搞清地形、地质情况,挑选对建筑抗震有利的地段,尽可能避开对建筑抗震不利的地段,任何情况下均不得在抗震危险地段上建造可能引起人员伤亡或较大经济损失的建筑物。

    对建筑抗震有利的地段,一般是指位于开阔平坦地带的坚硬场地土或密实均匀中硬场地土。建造于这类场地上的建筑一般不会发生由于地基失效导致的震害,从而可从根本上减轻地震对建筑物的影响。对建筑抗震不利的地段,就地形而言,一般是指条状突出的山嘴、孤立的山包和山梁的顶部、高差较大的台地边缘、非岩质的陡坡、河岸和边坡的边缘;就场地土质而言,一般是指软弱土、易液化土、故河道、断层破碎带、暗埋塘浜沟谷或半挖半填地基等,以及在平面分布上成因、岩性、状态明显不均匀的地段。

    2.采用合理的建筑平立面。建筑物的动力性能基本上取决于其建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,就能从根本上保证房屋具有良好的抗震性能。

    经验表明,简单、规则、对称的建筑抗震能力强,在地震时不易破坏;反之,如果房屋体形不规则,平面上凸出凹进,立面上高低错落,在地震时容易产生震害。而且,简单、规则、对称结构容易准确计算其地震反应,可以保证地震作用具有明确直接的传递途径,容易采取抗震构造措施和进行细部处理。

    3.选择合理的结构形式。抗震结构体系是抗震设计应考虑的关键问题。按结构材料分类,目前主要应用的结构体系有砌体结构、钢结构、钢筋混凝土结构、钢-混凝土结构等;按结构形式分类,目前常见的有框架结构、剪力墙结构、框架剪力墙结构、简体结构等。结构体系的确定受到抗震设防烈度、建筑高度、场地条件以及建筑材料、施工条件、经济条件等诸多因素影响,是一个综合的技术经济问题,需进行周密考虑确定。

    抗震规范对建筑结构体系主要有以下规定:①结构体系应具有明确的计算简图和合理的地震作用传递途径;②结构体系宜具有多道抗震防线,应避免因部分结构或构件破坏而导致整个体系丧失抗震能力或对重力荷载的承载能力;③结构体系应具有必要的抗震承载力,良好的变形能力和耗能能力;④结构体系宜具有合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中,对可能出现的薄弱部位,应采取措施提高抗震能力;⑤结构在两个主轴方向的动力特性宜相近,在结构布置时,应遵循平面布置对称、立面布置均匀的原则,以避免质心和刚心不重合而造成扭转振动和产生薄弱层。

    4.提高结构的延性。结构的延性可定义为结构在承载力无明显降低的前提下发生非弹性变形的能力。结构的延性反映了结构的变形能力,是防止在地震作用下倒塌的关键因素之一。

    结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。而结构延性和耗能的大小,取决于构件的破坏形态及其塑化过程,弯曲构件的延性远远大于剪切构件,构件弯曲屈服直至破坏所消耗的地震输入能量,也远远高于构件剪切破坏所消耗的能量。因此,结构设计应力求避免构件的剪切破坏,争取更多的构件实现弯曲破坏。始终遵循“强柱弱梁,强煎弱弯、强节点、弱锚固”原则。构件的破坏和退出工作,使整个结构从一种稳定体系过渡到另外一种稳定体系,致使结构的周期发生变化,以避免地震卓越周期长时间持续作用引起的共振效应。

建筑抗震设计的基本准则范文5

关键词:地震建筑物震害经验教训

一.基本概况

一九九九年九月二十一日凌晨一时四十七分,在我国台湾省中部南投县集集镇,发生了里氏7。3级的强烈地震,地震地面最大加速度高达984伽,而本区抗震设计采用的地震地面最大加速度为230伽。地震持续的时间长达40秒钟,而且地震是上下、水平同时发生。地面垂直错位最大有10米。本次大地震造成严重人员伤亡和财产损失,死亡2246人,受伤8735人,毁坏房屋17484栋,其中包括619栋学校及许多公共建筑,直接经济损失超过1000亿新台币。大量的建筑如骨牌一般应声倒塌,充分暴露了台湾建筑行业在技术标准规范、设计、施工、使用和管理各方面的问题。

二.建筑物震害基本特征

据统计资料显示,台湾省五个县的十六个市、镇、乡共倒塌房屋17484栋,其中严重毁坏的有9909栋,半倒塌的有7575栋,其中很多是当地称为“三合院”“土角厝”,是以黄泥、石灰加稻草屑制成的土坯砌墙、木屋架上铺小青瓦的民房,在地震时几乎100%倒塌;在城镇也有大量的多、高层钢筋混凝土建筑倒塌破坏,其中不乏高级住宅、银行、写字楼和豪华酒店,还有学校、车站等公共建筑,与1995年日本阪神地震和1996年云南丽江地震相比,本次地震中,多、高层钢筋混凝土结构破坏较多。

由大量倒塌的多、高层建筑破坏实例可以看出,几乎倒塌的多、高层建筑,全是被当地称为“软脚虾”“骑楼”的建筑。所谓“软脚虾”就是指住户及建筑商为制造空间,而把一楼挑高、掏空,作为车库及商业用房,形成建筑中的“薄弱层”;所谓“骑楼”是指沿主要大街的房屋,一层收进,二层以上伸出,作为防雨遮阳的人行通道。

三.震害原因分析和经验教训

1.地震预报和地震区划的不准确

地震学家多年来一直认为台湾东部为地震高危险区,建筑物的抗震设防标准高于中部一至二级。本次地震发生在台湾中部,震中震度高出设防标准二级以上,即地震力比设计中地震力高出4倍以上,实际的仪器记录也证明了这一点。

2.抗震规范方面

台湾现行的“建筑物耐震设计规范”是1998年制订的,而在次之前一直采用1982年制订的“建筑物耐震设计规范”。这本规范基本上照搬美国的“统一建筑规范”UBC的版本,台湾工程界认为此规范对抗震概念设计相当薄弱,构造措施也很粗糙。而且对于现有建筑结构的抗震鉴定、评估和加固则也无标准规范可循。

3.设计问题较多

根据有关资料,以下几种典型设计失误造成了建筑震害

(1)建筑平面布置不规则

当地传统的带有骑楼的“透天厝”楼房,在骑楼前部仅由柱子支撑,正门为做店面大开洞加玻璃橱窗。地震时柱子折断,骑楼倒塌带动主体结构前倾,层层跌落。本次在台湾许多沿街建筑属此类破坏。这种建筑形式在大陆闽南、潮汕地区也很常见。

另一种是底层作车库、商场,也就是正门大开洞,三面有墙,建筑平面刚度不均匀。地震时底层倒塌,带动上部结构层层跨落成“千层饼”破坏形状。如彰化县员村镇富贵名门大楼为16层钢筋混凝土结构,平面为碟形,下部为车库,属不对称平面布置,地震时扭转效应严重,导致五层以下塌平,五层以上各层重叠成阶梯形塌落。

(2)建筑立面布置不规则,竖向刚度突变。

建筑沿竖向或因层高突然变化(所谓“挑高”),或在某层抽掉柱子形成空旷(所谓“挑空”),或为追求大开间无梁无柱等均导致结构竖向不规则,刚度和强度突变。此类建筑在本次地震中破坏最为严重,而且破坏多集中在这些薄弱部位。比较典型的有:南投县汽车站三层建筑底层候车大厅空旷少墙,二、三层为办公用房,横墙较多,地震时底层塌平;台北市“东星大楼”(12)层,地下有大型停车场,地上一、二层为银行写字楼,抽柱削梁墙也少,三层以上为住宅,刚度很大,地震时底部倒塌带动上部各层一起倒塌,九楼变一楼。

以上震害实例分析证明合理的建筑布置在抗震设计中是头等重要,提倡平、立面简单对称。因为震害表明,简单、对称的建筑在地震时较不易破坏。而且道理也很清楚,简单、对称的结构容易估计其地震时的反应,也容易采取抗震构造措施和进行细部处理。“规则”包含了对建筑的平、立面外形尺寸,抗侧力构件布置、质量分布,直至承载力分布等诸多因素的综合要求。“规则”的具体界限随结构类型的不同而异,需要建筑师与结构工程师互相配合,才能设计出抗震性能良好的建筑。

(3)抗震措施和抗震构造措施不当。

在抗震设计中,“抗震措施”和“抗震构造措施”是两个不同的概念。“抗震措施”是指除地震作用计算以外的抗震设计内容,包括建筑总体布置、结构选型、地基抗液化措施等,主要是考虑概念设计要求对地震作用效应的调整,以及各种结构措施;“抗震构造措施”是指根据抗震概念设计的原则,一般不需做计算而对结构和非结构各部分所采取的细部构造。抗震构造措施要求是作为抗震验算的一种补充和保证。这就足以证明抗震措施和抗震构造措施的重要性,但由于是构造措施而往往容易被人们忽视。

本次通过对台湾大地震严重破坏但未倒塌的建筑物结构分析表明:某些结构设计梁柱节点配筋不足,窗间墙过短,短柱,承重墙体高宽比过大,柔性底层建筑,抗震墙不连续,不规则开洞,悬挑构件过长等。在地震时破坏集中在这些薄弱部位。

(4)个别结构设计过于大胆,设计缺乏抗震概念设计。

从本次破坏情况分析来看,有的建筑结构系统规划不周全,结构设计过于大胆,再加上施工质量有问题,剪力墙面积太少,中庭挑高影响结构安全。如:中山国宾大楼为中庭挑高建筑,一楼作为公共空间,故墙壁很少,且整个大楼外墙未设剪力墙,且开窗很多,形成建筑抗震上的所谓“柔软”底层而倒塌。

(5)建筑规划和选址不当。

城市中楼房间距太小,过分密集,导致一栋楼房倒塌祸及其他楼房。如:台中县丰原市十一层“向阳永照”大楼倒塌后,压倒临近建筑。

房屋建造在软弱地基或可液化场地或临近地震断层,地震对场地液化导致地基失效,房屋倾斜。如:南投县中兴新村一座钟楼和十一层的“金陵世家”住宅楼由于场地液化造成建筑严重倾斜。

四.施工质量问题

本次地震时倒塌和破坏的建筑物暴露出许多严重的施工质量问题。据台湾媒体报道“施工不确定(不按设计要求施工),设计与实际施工不同,偷工减料,未按抗震设计要求施工”等也是倒塌的重要原因。如:部分楼房柱子过细,配筋不足,箍筋间距过大,弯钩、搭接长度、锚固长度、纵筋在同一截面搭接等均不符合抗震设计要求。

建筑抗震设计的基本准则范文6

【关键词】高层建筑;结构设计;抗震设计

0、引言

由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,计算方法还很不完善,单靠微观的数学力学计算还很难使建筑结构在遭遇地震时真正确保具有良好的抗震能力。建筑结构抗震设计的基本要求:抗震设计主要包括三方面的内容:概念设计,计算设计和构造设计。结构工程师按抗震设计要求进行结构分析与设计,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现规范中要求的“小震不坏,中震可修,大震不倒”的目的。

1、从理论上分析高层建筑的抗震设计

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计,包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容的法定性文件。它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

(1)拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数即地震系数。

(2)反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

(3)动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2、高层建筑的抗震结构设计理念

高层建筑的抗震要能做到:当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3、建筑设计和建筑结构的规则性

建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。建筑及其抗侧力结构的平面布置宜规则、对称、整体性较好:建筑的立面和竖向抗拉力构件的截面尺寸和材料温度宜自下而上逐步减小,避免抗侧力结构的侧向刚度和承载力突变。对平面不规则和竖向不规则类型的建筑结构应按《抗震规范》要求进行水平地震作用计算和内力调整,并对薄弱部位采取有效的抗震措施。