工程技术在机械制造中应用探析3篇

工程技术在机械制造中应用探析3篇

第一篇:机电一体化技术在机械制造业中应用

摘要:科技的进步与发展速度愈来愈快,机电一体化技术有了全面的提升,在机械制造业中的应用受到更多的重视。如何合理对机电一体化技术进行应用并提升制造效率,对技术应用的提升以及机械制造业的发展都有着重要的意义。文章对机电一体化技术概念进行简要阐述,对其在机械制造业应用优势和具体应用情况进行研究,并对其发展进行展望。

关键词:机电一体化;机械制造;应用

0引言

机电一体化技术是多种技术的有机结合,以实现更加高效便捷的机械设备操作模式。随着研究的深入以及应用的完善和提升,机电一体化技术在机械制造业的应用更加广泛,其将机械操控程序有效简化,对于设备性能的提升、效率的提升有着重要的促进作用。

1机电一体化技术的概念及特征

1.1概念

机电一体化技术的组成包括了当前较为先进的技术内容,例如信息技术、计算机技术、通信技术、机械设备技术,通过将多种技术融合,发挥其各自优势,使机电一体化技术能够实现更多领域的应用。

1.2特征

体积小巧。机电一体化所依托的设备是集成电路,通过半导体技术实现结构优化,浓缩了设备的体积,重量也比较轻,占地少的情况下,还能够保障设备的性能和控制效率。效率高。集成电路把设备结构进行了优化,机电一体化技术又能进行优秀的控制效果,这使得机械效率得到很大提升。稳定性高。机电一体化技术的应用是建立单板、单片机作为控制机的基础上,加上专用芯片及模板组成结构紧凑的数控装置,其在稳定性方面有着较强的表现。

2机电一体化技术在机械制造业中的应用优势分析

2.1帮助机械进行调试

机电一体化系统的构建,是运用程序控制系统将机械设备进行连接,在生产过程中根据机械操作情况,给予机械运行状态反馈,能够结合机械性能进行调试,实现对机械设备的优化配置,尽可能发挥机械设备的性能。

2.2故障报警

机电一体化系统可以根据机械设备的需要,设置故障报警系统,根据既定程序内容,如果机械设备出现异常,会进行故障报警,同时提示故障代码,更加便捷的实现故障检测与修理。

2.3提升机械性能

机电一体化技术在机械制造业的应用,集合了机械监控、报警、修复等多种功能,对于机械制造效率的提升有着重要的促进作用。能够及时发现生产中的问题,监控、报警、检测高效完成。对于机械性能的提升,故障处理效率,风险控股等等都有着重要的作用。2.4降低操控难度,拓展适用范围机电一体化产品通过多种技术将机械操作控制集成化,操作更加便捷,工作流程更简单且容易操作。将一些复杂的机械操作内容写进操作程序中,使操控难度大大降低,提升机械控制运行效率的同时,也极大的拓展了机械设备适用范围。

3机电一体化技术在机械制造业的具体应用

3.1在监控系统中的应用

运营机电一体化技术在机械制造业中的应用,目前比较常见的是布设自动报警系统、故障诊断系统、监控系统。监控系统能够检测机械设备实时运行状况,监控过程中如果有异常情况,会及时将故障情况显示在系统中,同时以警报的方式作出提醒,使维修人员能够及时作出反应进行诊断维修,减少故障造成的损失。

3.2全自动包装工作中机电一体化技术的应用

经过了解,全自动包装机设备中对于机电一体化应用较为深化,包装机械设备运用了较多的知识和技术。全自动包装机的实际操作和控制工作是比较繁杂的,操作难度大,环节复杂。将机电一体化技术运用到包装机械中,同时运用机械工程知识、微处理技术等等,将复杂的操作步骤进行集成组合。这极大的缩减了实际操作的复杂性,是对以往控制系统的弥补和优化,通过软件和机械控制的有效结合实现包装机械全自动包装工作状态,有效提升工作效率。

3.3机床控制工作中机电一体化技术的应用分析

机床控制在实际机械制造方面对于精度、准确度的要求的较为严苛的,同时还需要具备较快的速度,这就要求机床控制做到较高的智能化水平和稳定性。机电一体化技术在机床控制中的应用,融入计算机处理技术,同时将DSP芯片进行的设置,以此有效提升机床控制的精度、准确度、稳定性。在应用机电一体化技术的机床控制效率和效果都得到了显著提升,这不仅提升了工艺水平,还使操作能力提到了提升,为机械制造的经济效益提升奠定了基础。

3.4机械能耗降低中机电一体化技术的应用

传统机械在机械效率方面相对较低,这主要是由于耗能较多且利用率较低的原因。在液压挖掘机燃料利用方面,其利用最大值仅为25%,在机械设备运转过程中很多燃料都是以能耗的方式造成了消耗,不利于长期的发展。在液压挖掘机设备上应用机电一体化技术,并通过电子监控系统监控设备运转状态,柴油机上安装电子调速器实现机械的自动调整。在此情况下,经过一段时间的观察测试,其能耗情况有明显的降低,这说明通过机电一体化技术能够达到机械设备的节能降耗目的。

3.5精度控制工作中机电一体化技术的应用

在机械制造中,精度控制一直是机械制造的关键质量控制措施,这对于产品质量有着重要的影响。机电一体化技术的应用中,能够将机械结构进行优化,简化机构组合,减少传动部件。在这种情况下机械的磨损将在机电设备控制下有所减少,同时增加配合的契合度,机械配件之前的配合以及受力变形情况将大大减少。与此同时,机电一体化技术能够通过计算及检测与控制技术实现对机械制造中的干扰进行补偿和校正,实现动态误差的合理控制。在机械制造中精度控制方面,机电一体化技术有较大的发挥空间。

3.6炼钢工作中机电一体化技术的应用

时展工程中,基础建设的发展与完善,使钢材料的使用量增速明显,同时由以往的低要求高产量,逐步演变为高要求高产量。为了能够新时代对钢材料的要求,多数企业在技术方面进行了改革和升级。例如机电一体化技术的应用,其将计算机处理器为中心,并将其他设备如操控系统、加热设备、显示设备及仪表仪器等等,实现技术组合的同时,保持各设备之间的联动,在生产过程中实现协同生产。不仅大大提升了生产效率,提高了产量,同时对于产品质量的控制也有较大的提升,还能够有效提升设备的使用寿命。此外交流传动方式在轧钢生产中得到广泛应用,其可以对交流调速系统的优势进行体现,由此可见机电一体化技术能够为炼钢工作提供强有力的技术支撑,可加快机械制造业的发展脚步。

3.7柴油机自动控制工作中机电一体化技术的应用机械制造业通常以柴油机作为动力核心,以满足生产制造所必须的机械功率要求,足够的动力源是保证机械控制工作的重要保证。机电一体化技术的应用,可以通过对设备运行状态信息进行收集,同时根据指标调整柴油机运行参数,通过对油门、调速器、自动升温等的自动协调控制,实现对柴油机的控制调整,以保证满足机械制造生产要求的同时,也实现绿色生产,节能减排,提高效益的目标。综上所述,将机电一体化技术引入到机械制造业中可以实现机械使用性能的最大化发挥,同时提高设备检修工作效率和质量。这样不仅有利于机械设备维护成本的控制,同时也从一定程度上延长了机械设备的使用寿命。

4机械制造业向机电一体化发展的方向

4.1高效化与智能化

目前在机械制造领域,机电一体化应用已经较为普遍,并且应用多中央处理器的数字化集成系统也较为先进,对于生产效率、生产质量方面有着较好的支持。在之后的发展中,机电一体化技术向高效化智能化发展是一个重要的发展方向,同时将吸收更多的先进技术,例如人工智能、运筹学、模糊数学等等,通过新方法新技术的运用,模拟人类的逻辑思维和判断选择能力,使机电一体化实现更加智能化的控制目标。

4.2微型化

在近些年的发展过程中,机械制造领域已经向集成化迈进了一大步,在硬件运算、控制系统方面都有不错的表现。国外对于微型化的发展称为微电子机械系统(MEMS),将机电一体化产品微型化的发展,定义在一立方厘米以内,同时向体积更小、功能更全、耗能更少、运算更快、应用更灵活等方面发展。4.3模块化模块化是当前机电一体化发展中的一个艰巨的任务,在发展过程中,由于开发单位较多,并没有统一规格标准的接口,因此在产品标准化、系列化方面依然有较大的发展空间。在具体的机电一体化产品研发方面,对动力单元、控制单元进行单独的模块化设计研发,形成标准单元,并以标准单元为基础迅速开发新的应用型产品,以此实现应用和生产规模的扩大。

4.4网络化

随着计算机互联网技术的发展,网络技术的兴起给机电一体化发展带来了新的契机,互联网、互联网+、物联网等新兴技术形成的新型业态,给予了传统行业更大的创新空间。机电一体化技术的网络化发展以及网络技术的结合应用,可以在原基础上突出远程控制、监控技术、物联网技术等等。现场总线与局域网技术有机结合,发挥网络化优势,为机电一体化技术的应用提供便利。

5结束语

机电一体化技术的应用与发展关乎很多领域技术的应用进步和完善,机电一体化技术通过信息技术、电子技术、机械技术等多种技术的集合实现将高科技技术有机结合,使之成为一个综合性的控制系统,通过合理的设计和开发,实现机械设备内部的结构优化,最终达到提升产品质量以及机械制造效率、生产效率的提升。机械制造业中应用机电一体化技术,对于机械设备性能提升有着较大影响。同时还能够为机械设备提供状态监控和故障报警,这为机械制造业中的故障维修效率提升、机械设备状态保持有良好的促进作用。目前机电一体化技术的应用依然还有发展的空间,需加大创新研发,积极提升应用效果。

参考文献:

[1]刘英建,王硕,孟天彬,申静怡.浅析机电一体化技术在现代机械制造业中的应用[J].科技经济导刊,2019(35).

[2]刘鑫俣.机械制造业中机电一体化技术的应用探讨[J].计算机产品与流通,2019(05).

[3]戴忠顺.机电一体化技术在机械制造业中的应用分析[J].南方农机,2019(01).[4]周阳,周旭妮.机电一体化技术在机械制造业中的应用分析[J].硅谷,2015(03).

[5]谢世权,谢丽.浅谈机械自动化技术在机械制造业中的应用及发展[J].知识经济,2013(09).

作者:侯效华 单位:阳泉煤矿高级技工学校

第二篇:逆向技术在机械制造中应用

摘要:随着智能制造的逐步发展,对生产设计的相关员工提出了更高的技术要求,有关人员应能够熟练地运用CAD、CAM等工具来完成相关的工作。主要分析了逆向工程技术,并针对其在机械制造领域的应用进行了研究。

关键词:逆向工程技术;机械制造领域;应用

0引言

目前,逆向造型、精密测量与检验等岗位具有越来越重要的地位。通过将逆向工程技术与CAD、CAM等先进的制造技术相结合,能够为计算机辅助设计系统的发展提供一个新的发展思路。对逆向工程技术进行研究和分析,能够有效地提高工业产品的设计水平。

1逆向工程技术概述

1.1逆向工程技术的基本概念

逆向工程又名反向工程,简称RE,是一种产品设计技术再现过程,即对一项目标产品进行逆向分析及研究,从而演绎并得出该产品的处理流程、组织结构、功能特性及技术规格等设计要素,以制作出功能相近但又不完全一样的产品。逆向工程源于商业及军事领域中的硬件分析,其主要目的是在不能轻易获得必要生产信息的情况下,直接从成品分析推导出产品的设计原理。逆向设计与正向设计相对应,正向设计是一个“从无到有”的过程,设计人员需要对产品的外观、结构、功能以及一些相关的技术参数进行构思,使用CAD技术构建产品的三维模型,最后把三维模型引入实际的生产制造中,完成设计制造的全部周期。而逆向工程则是一个“从有到无”的过程,首先需要根据现有的产品模型,反向推出产品设计的图纸以及相关的数据,之后再进入产品的制造阶段。

1.2逆向工程技术的分类

逆向工程技术根据所求的数据可以划分为几何反求、工艺反求以及材料反求等。几何反求就是根据实物样品的几何轮廓中的数字化信息来反求出样件的CAD模型。通过利用三维扫描仪能够对实物进行专业化的精准扫描,进而将搜集到的产品三维数据进行处理,在软件中实现对数据模型的CAD重构,从而得到样件的三维实体模型。通过三维实体模型能够对产品或者模具进行制作,也可以对原有的产品进行不同程度的改型以及仿型,实现产品设计的创新。工艺反求和材料反求则是对产品的制作工艺和使用流程进行推理,从而得出产品的实际制作方法。

2逆向工程中的关键技术

2.1常用的测量技术

在逆向工程中常用的有3种测量方法,分别是接触式测量、非接触式测量以及逐层扫描式测量。①接触式测量,一般在物理模型上打点时使用这种方法,通过利用三坐标测量机提取三维坐标打点的相关信息,接触式测量精度高,但测量效率较低。②非接触式测量,这种方法所能获得的测量数据较多,信息的密度较大,测量进度也好,因此在实际逆向开发的过程中得到了广泛地应用,在一定程度上提高了工作的效率。③逐层扫描式测量,这种方法不仅能够得到产品外形的相关数据信息,还能对产品的内部形状数据等进行逐层扫描和分析,能解决前面两种无法测量物体内部轮廓的问题。以上测量方法都有各自的特点和应用范围,选用那种测量方法应根据被测物体的形体特征和应用的场合来决定。

2.2数据处理技术

数据分割就是根据组成实物外形曲面的子曲面类型,将属于同一子曲面类型的数据分为一组,将全部数据划分成代表不同曲面类型的数据域,后续的曲面模型重建时,先分别拟合单个曲面片,再通过曲面的过渡、相交、裁减、倒圆等手段,将多个曲面“缝合”成一个整体,对模型进行重建。数据分割可以分为自动分割和基于测量的分割两种方式,自动分割又包括了基于面和基于边的两种基本方法。①基于面的数据分割是以曲面光滑连续为前提,对具有相同曲面性质的点进行推断,并根据相应参数的性质来对相同面的点进行判断,由于实际生活中的物体并不是完全光滑和连续的,因此使用这种方式推断出的参数也存在一定的误差;基于边的数据分割是要先将数据点集中起来,根据各种特征对具有相同类型的曲面片的边界点进行判断,从而实现数据的分割,这种方式的缺点在于尖锐边上的测量数据准确性较低。②基于测量的分割是在测量的过程中,有关工作人员将实物的外形特征进行分类,具有不同的外形特征的曲面被分成不同的子曲面,将其结果导入到CAD中,能够对不同的数据类型进行高效地处理和分析,为之后的造型提供一定的便利,这种方式在测量曲面特征明显的实物外形时最为适用,也可用于接触式的测量中。需要注意的是,使用这种方式时操作人员的经验和技术水平将会对测量的结果产生极大的影响。在测量数据时很容易产生一些噪音,通过数据平滑的方式能够尽可能地降低噪音、提高测量结果的准确性,如采用高斯滤波、均值滤波和中值滤波的计算方法。由于测量系统的不同,最终得到的数据格式也是不完全一致的,需要对数据进行进一步地处理,保证后续CAD模型重建的顺利进行。

2.3曲面重构技术

在逆向工程中曲面重构技术是一项关键的技术,在开始进行工作前,应对相关的零件进行检查和分析。一方面,需要形成一套完善的设计方案,在设计时考虑到前后的流程和具体的措施,之后再对模型的特征区域进行划分,最后对整体的设计思路进行整合,制定出更加完善的设计方案。另一方面,需要确定构成设计模型的曲面类型,在进行曲面重构的过程中选择合适的方法和工具来促进曲面重构技术的顺利进行。

3逆向工程技术在机械制造领域的应用

3.1损坏或磨损零件的还原

对于一些损坏或者磨损的零件,能够利用逆向工程技术对特征参数进行提取,之后对其进行还原和修补。由于零件表面已经发生磨损,这就容易在测量时出现误差,因此逆向工程系统需要具有一定的推理和判断能力。

3.2新产品开发领域的应用

逆向工程能够为机械制造领域提供一个高效的模型重构全新手段,帮助该领域完成从实物到三维模型的直接转换。在工业设计的过程中,存在一些产品对于外观的设计有特殊的要求,必须在设计中充分地考虑到产品外形的艺术性和美观性。如汽车、飞机等产品的设计,这些产品都是需要相关的设计师先结合产品的美观性和艺术性来建立一个比例模型,之后再进行一系列的实验,对模型产品进行必要的评估,逐步地完善设计方案,最后利用逆向工程技术将三维的CAD模型转化成实物,这不仅能够减少产品开发设计的周期,也能提高生产效率。

3.3模具制作领域的应用

在传统的模具制造过程中,需要对模具进行反复地试模和修改,最终得到满足要求的模具。逆向工程技术能够将样本模具作为产品的对象,对满足要求的模具进行测量,在重建数字化模型的基础上生成加工程序,提高模具的生成效率,降低模具的生产成本。除此之外,逆向工程技术还可以将实物的零件作为产品的对象,通过逆向推理的方式求得CAD模型,之后再对模具进行后续的设计,这种方式能够在一定程度上减少修模量。

3.4工艺艺术品的复制

对于一些有价值的工艺品来说,复制也是一项具有重大意义的工作,如一些手工艺大师的作品大多都只有一件,但是如果需要对其进行推广应用,就需使用逆向工程技术得到工艺品的三维数据信息,建立实物的三维模型,有助于艺术品后续进行复制推广。

4结语

逆向工程技术在机械制造领域的应用十分广泛,具有成本低、研发周期短等优势,这项技术在后续的发展中将会具有更加明显的优势和更为广阔的应用空间,从而为现代工业设计师实现产品造型的设计提供全新的方式。

参考文献:

[1]刘雯.浅谈逆向工程与快速成型技术在机械制造领域中的应用———评《逆向工程与快速成型技术应用》[J].材料保护,2020,53(4):175.

[2]王茂羽.逆向工程在机械设计制造中的应用探讨[J].数码设计(上),2020,9(3):65-66.

作者:张?龙 单位:广州市工贸技师学院

第三篇:自动化技术在汽车机械制造中应用

摘要:汽车作为重要的交通工具,在人们生活质量的逐步提升下,社会市场对于汽车需求量也在逐渐增加,间接加大汽车机械制造产业的压力。基于此,文章以自动化技术为切入点,阐述汽车机械制造中自动化技术的应用优势,探讨自动化技术在汽车机械制造中的应用,并对汽车自动化机械制造方向进行展望。

关键词:自动化技术;汽车机械制造;应用

0引言

工业产业、制造类产业的优化升级,主要是通过科学技术为主要驱动力,结合生产体系与技术体系所呈现出的共生属性,确保科学技术的更新是符合现阶段社会生产需求的。自动化技术的研发与应用,则是进一步强化我国智能制造产业的发展质量。通过自动化技术具备的集成功能、智能操控功能等,确保整个自动化生产体系运行的精准性。对于汽车制造行业来讲,受到社会需求量的逐渐增加,汽车制造产业的工作压力也在逐渐增大,特别是人们对多功能操控功能需求的增加,令汽车机械制造类产业呈现出精密化、自动化的发展趋势。通过自动化技术的应用,则可以有效实现对机械制造类产业的全过程操控,有效降低零部件及汽车结构生产过程中的故障产生几率,为汽车制造的产业创收更多的经济效益。本文则是针对自动化技术在汽车机械制造中的应用进行探讨,仅供参考。

1自动化技术概述

自动化技术具有一定的综合性,涵盖控制理论、信息技术以及智能操控技术等,其本身是依托于机械设备及相关平台来实现对组件的指令调控。这样对于整个操控体系而言,则可有效通过自动化控制平台取代传统的人工操作模式,降低岗位人员的工作压力。与此同时,通过自动化技术的应用,可以进一步拓展机械操控范畴,例如工业生产线、自动化加工流水线的建设,均是依靠自动化技术实现对整个操控流程的一体化控制,进而通过数据信息精准性传输,降低实际操作过程中所产生的误差,保证整体机械操控的质量性。自动化技术在具体实现过程中,是依托于系统功能性的拓展,实现对相关指令的调控,进而保证整项操控模式在运行过程中可以真实地反映出数据指令传输的对接性。从整体组成来讲,其需要通过不同单元结构之间的有效对接,实现对相关工序的协调性调控。第一,基于程序机构而实现的自动化控制技术,此类机构单元是整个系统操控的基础,其通过内部指令的调控模式,决定整个技术体系当前时间段内技术体系应当承担的实际操控效果。第二,基于作用机构而实现的自动化控制技术,此类机构可以看成是技术在落实过程中,通过信息质量来实现对相关操控工序的精准定位,保证技术驱动可以精准的作用于实际操控单元中。第三,基于传感机构的自动化控制技术,此类机构单元则相当于整个技术体系在落实过程中,通过信息反馈而实现对工作性能及工作状态的一种检测机构,保证各项技术指令的下达是符合系统预设的指令诉求。第四,基于制定机构而实现的自动化控制技术,此类机构单元则是属于自动化系统中的中枢传动单元,其是对各类数据信息、数字信号等进行采集与分析,并按照系统所设定的基准参数进行逐一核对,保证相关指令下达与执行的精准性。

2汽车机械制造中自动化技术的应用优势

对于汽车机械制造来讲,其所呈现出的制作状态是依据自动化框架对相关功能进行智能控制,保证整个机械制造体系中,不会因为数据传输误差而产生制造事故。在自动化技术的应用下,汽车机械制造产业将脱离出原有的控制体系,通过自动化技术所呈现出的优势来实现多模式的制造特性,强化汽车机械制造质量。

2.1提高操控稳定性

汽车机械制造体系中,其是通过主系统的集成控制来实现对各个分部机构的指令操控,在此过程中,自动化技术的实现则可进一步强化主系统的多线程操作功能,依托于计算机设备实现对不同接口与端口之间的处理。这样一来,便可有效保证数据信息在传输过程中,不会因为数据交错而产生独立性、冗余性的问题,保证各类数字信号信息传输的真实性,达到后续机械制造的精细化处理需求,提高机械制造体系运行的稳定性。

2.2优化控制流程

在自动化技术的实现下,可以全过程对机械制造体系中所产生的信息进行对接与处理,有效保证各类时间节点下机械制造所产生的信息,可以通过不同频率不同操控机构,令整个信息传输呈现出高清晰性的特点,保证后续实操过程中的精准性,强化机械制造及生产质量。2.3强化操控安全性自动化技术与汽车制造体系的融合可以通过精密类型的控制理论,对整个生产设备所呈现出的故障信息进行智能化分析,如果设备运行过程中产生故障问题时,则将由自动化控制技术实现对相关故障地点的精准定位,并同步传输到报警系统中。在岗位工作人员明晰到故障产生时间后,可制定更为完善的运维策略,确保机械生产制造的安全性,降低制造过程中的安全事故。

3自动化技术在汽车机械制造中的应用

3.1汽车机械制造中数控技术的运用

自动化技术支撑下的数控系统,充分结合自动控制理论、计算机控制理论等,搭载数控设备来实现对生产设计制造环节的一体化操控。对于整个汽车机械制造产业来讲,数控系统可以基本满足各类精细化加工、数量化加工等,强化整个汽车制造业的生产质量。但是此类技术系统仍存在一定的缺陷,即为数控技术所搭载的各类载体,在实际操控过程中具有一定的难度,特别是对于数控编程以及程序调节等,其需要专业人员依据整个汽车制造类型来设定出相对应的程序。正是受限于此类技术层面的局限,我国传统汽车制造产业中数控技术的实现仅仅局限在部分基础的加工方面,对于数控核心技术的掌控,则是需要引进国外先进的技术体系,实现对相关操作工序的认证。此类数控技术如果无法真正打破国外先进体系的垄断,则在一定程度上将降低我国汽车机械制造及发展质量。但是经过我国研发人员多年来的努力,通过自动化技术来实现对数控系统的精准调节,真正打破传统技术壁垒,且在部分核心技术层面实现了自主,真正对我国自动化产业迈入到一个新的阶层,对汽车机械制造行业起到一定的推进作用。

3.2汽车机械制造中智能技术的运用

基于智能化平台而实现的汽车机械制造,主要是在自动化技术的支撑下,依托于人工智能体系,对整个操控系统进行实时化的指令调控,确保技术在实现过程中是符合汽车机械制造综合性、复杂性的操控需求。从智能化技术的应用层面来讲,主要是通过机械自动操控模式来替代传统人工操作,有效保证整个汽车机械制造环境中真正实现机械化、电子化的操控,在大批量的生产过程中,降低实际生产误差,提高整体生产与制造质量。在智能化技术的应用下,其可以对整个汽车机械制造设计生产及加工过程进行数字化模拟,例如通过虚拟平台实现对相关设计参数的映射,这样通过数据模型可以进一步阐释出当前机械制造设计方案,在具体实施过程中所呈现出的各类指令参数,然后与预期基准参数进行核对,真正分析出整个设计操作过程中存在的问题,提高汽车制造可靠性。此外,智能化技术本身所具备的可拓展属性,有效保证的汽车生产及制造过程中,依托于数字化、智能化的分析,实时检测出生产体系中存在的一系列漏洞问题,并将此类信息同步反馈到专家系统中,明晰出整个操控体系所存在的安全隐患或者是实际故障点,进而为管理人员及设计人员提供数据支撑,确保汽车制造产业发展的稳定性与持续性。

3.3汽车机械制造中集成技术的运用

汽车机械制造体系中集成化技术的实现是以主测控系统为核心,针对汽车机械制造过程中的各个分系统进行整合化、集成化处理。然后由主系统的指令下达,实现对不同操控机构的协调性运作,有效保障整个主系统运行的逻辑性是符合机械设备部件加工的基础需求。从集成化技术的应用方向来讲,可以看成是汽车智能机械制造的一种延伸范畴,其本身是依据内部指令传输,实现对相关操作机构的精准化控制。这就需要在具体落实之前设定相对应的程序,真正令机械制造与实际生产相关联起来,保证各个独立运作的系统可以通过主系统等统筹性调控,令整项操作模式呈现出一定的持续性特点,形成基于数据机构之间的有效交互,满足汽车机械制造持续性加工诉求,强化整体生产质量。

3.4汽车机械制造中柔性技术的运用

自动化技术中的柔性功能,在实际体现时,其是通过对数据控制与计算机技术相结合的属性,将整个编程指令作为实际操控核心,令机械制造机床在实际加工过程中可以依据指令基准实现对相关操控速率的有效调控。与此同时,信息反馈系统的支撑下,可以针对当前操控信息所呈现出的各类属性,同步映射到整个计算机系统中,明晰出当前生产制造过程中所产生的参数信息是否符合预期设定需求,进一步由主系统进行操控效率的合理控制。这样一来,便可有效降低汽车制造企业人力资源的投入。从技术发展角度来讲,自动化技术中的柔性功能可以看成是人工智能系统的一种延伸,其主要是针对技术体系的应用程度进行逐步优化,避免隐性加工对相关部件所造成的损毁现象,提高整个机械制造设备的使用寿命。

4自动化技术在汽车机械制造中的发展趋势

汽车机械制造中自动化技术的实现是以主系统为操控中心,对整个设备运行模式进行协调操控,保证各类指令下达与执行的对接性。从我国现阶段汽车机械制造智能化实现特点来看,自主研发体系已经趋于完善,但是受到科学技术的不断创新,整个生产制造体系也将随之改变。这就需要自动化技术在具体实现过程中,需依据整个技术发展方向,实现对自身发展的有效调控。为此,应向智能化发展方向所推进。从长远目标来看,生产力是由科学技术程度而实现具体驱动的,而从现阶段机械制造行业的发展属性来讲,智能控制体系的建设,已经成为制造行业发展的主体目标。在此基础之上,将智能化体系与柔性化操控、信息化操控体系进行整合,通过主集成系统的应用,令整个机械制造体系可以通过智能操控模式,实现终端化、实时化的指令对接,解决汽车机械制造过程中所面临的一系列问题,提高生产制造水平。

5结语

综上所述,自动化技术支撑下的汽车机械制造产业,可以通过相对应的技术体系、理论体系等,令汽车机械制造呈现出多元化发展态势。为进一步强化自动化技术的应用力度,必须从机械制造工序为切入点,结合自动控制理论,分析出汽车机械制造体系中应当遵循的各类原则,进而为后续制造产业的发展提供数据支撑。

作者:朱晓睿 单位:山东财经大学燕山学院图书馆