道路照明设计方案范例6篇

道路照明设计方案

道路照明设计方案范文1

变压器的设置方案。

关键词:供电方案、变压器设置

中图分类号:U223文献标识码:A

一、隧道用电需求分析

根据《公路隧道交通工程设计规范》(JTG/TD71-2004)中的规定:隧道电力

负荷应根据供电的可靠性和中断供电在社会、经济上所造成的损失的或影响程度

确定负荷分级。负荷分级如下表:

序号电力负荷名称负荷级别

1

应急照明

电光标志

交通监控设施

通风及照明控制设施

紧急呼叫设施

火灾检测、报警、控制设施

中央控制设施

一级①

2

消防水泵

基本照明

排烟设施

一级

3通风机②二级

4其余隧道电力负荷三级

注:①该一级负荷为特别重要负荷。

②此处系指除作为防灾排烟一级负荷以外的其它通风机。

由上表可见公路隧道内有大量的一级负荷及特一级负荷。根据《公路隧道交通

工程设计规范》(JTG/TD71-2004)中对隧道供电的要求:隧道一级负荷应有两

个电源供电,当一个电源发生故障时,另一个电源应不致同时受损。一级负荷容

量不大时应优先从邻近的电力系统取的第二路低压电源,亦可采用应急发电机组

作为备用电源。

二、隧道供电方案

隧道的供电方案与隧道功能、长度、外部电源、负荷等因素有关。对于不同长

度的隧道,由于低压供电距离的限制,供电方案也有所不同。长度小于1.3km的

隧道,可由隧道一端供电;长度为1.3~3km的隧道,适合由隧道两端供电,中

间可不增设高压供电点;隧道长度大于3km的隧道,除由隧道两端供电外,中

间需增设变配电所,采用高压电源引入。

由于高速公路隧道大部分处于山区,且山区的电源一般情况不是很丰富,从地

方接引两路电源(两路电源不同时受到损坏)非常困难,或者地方根本不能提供

两路电源,但又要满足一级负荷的用电需求,故一般情况下中、长隧道的供电采

用单市电+柴油发电机组的供电方案。

对于短隧道,根据工程的调研,考虑隧道地处偏远的山区,一般是无人值守,

电气的偷盗较严重,由于隧道较短基本照明灯具的功率较小,且在箱变内均设置

了不间断电源(UPS或EPS)为隧道的应急照明灯具供电,在断电情况下能满足

应急照明的时间不小于60分钟,故一般的设计院是采用箱变单电源供电。根据

负荷等级的分类基本照明属于一级负荷,需要双电源供电,应急照明为特一级负

荷,除需要双电源外还需要不间断电源,短隧道采用箱变单电源供电是不满足规

范要求。本人认为在离隧道较近的收费站或者管理所设置移动式汽油发电机,并

在箱变的低压配电柜预留汽油发电机的接口,当外电停电时(电力监控系统检

测),由收费站或者隧道管理所的值班人员把移动式汽油发电机带到箱变的位置,

通过预留的汽油发电机接口为隧道的基本照明及应急照明灯具供电。

特长隧道除由隧道两端供电外,中间需增设变配电所,采用高压电源引入。但

考虑到在隧道内设置柴油发电机组,无法克服其排烟、柴油发电机噪声的问题,

故不宜采用市电+柴油发电机组的方案。故特长隧道宜从地方接引两路地方电

源。

三、变压器设置方案

根据调研情况,隧道变电所变压器的设置有以下三种方案:

方案一、隧道内设置单台变压器,通风照明共用。

方案二、隧道内设置两台变压器,通风照明变压器分开。

方案三、隧道内设置两台变压器,均为通风照明共用,

方案一的变压器设置方案满足了《10kV及以下变电所设计规范》

(GB50053-1994)中3.3.4条的规定:在一般情况下动力与照明宜共用一台变压

器。这样做或许有人会说根据公路隧道交通工程设计规范》(JTG/TD71-2004)9.3.4

的规定:“隧道的动力和照明共用变压器严重影响照明质量及灯泡寿命时,宜设

照明专用变压器。”读者注意,设置照明专用变压器的前提是:隧道的动力照明

共用变压器严重影响照明质量及灯泡寿命。隧道内的动力设备一般是隧道风机

(轴流风机除外)及消防水泵,射流风机及消防水泵的的功率一般是22至37KW,

风机启动是单台顺序启动,启动的时间间隔一般大于10s。根据《通用用电设备

配电设计规范》(GB50055-2011)2.2.2规定:“交流电动机启动时配电母线上接

有照明或其他对电压波动较敏感的负荷电动机频繁启动时,配电母线的电压不宜

低于额定电压的90%,电动机不频繁启动时,不宜低于额定电压的85%”。经计

算对于隧道风机或消防泵,启动时的母线电压一般不小于95%,这个压降完全不

会对照明的质量及灯具寿命造成影响。该方案前期投资少,操作简单方便,现阶

段较受设计师的喜爱。在建项目的漳州南联络线南靖至龙海高速公路的西岩隧道

就是按照该方案实施。

方案二变压器的设置方案不仅消除了风机启动对照明产生的影响,而且从运营

角度来讲减少了变压器电能损耗。由于平时运营的时候风机是关闭的,如果动力

与照明变压器分开设置,则可以停运动力变压器,只开照明变压器,从而减少了

动力变压器的电能损耗。但是根据《10kV及以下变电所设计规范》

(GB50053-1994)3.3.2条规定:“装有两台及以上变压器的变电所,当其中任一

台变压器断开时,其余变压器的容量应满足一级负荷及二级负荷用电”根据该条

规定如果照明变压器要满足一级负荷及二级负荷用电则变压器的容量比较大,平

时运行时变压器的负载率较低,损耗较大。故总体来说改方案不甚合理。

方案三的变压器的设置方案的前提是引两路外部电源,每台变压器接引一路电

源,两台变压器设置母联开关。正常情况下两台变压器同时工作,当一台变压器

故障或停电时由另一台变压器为一二级负荷供电。该方案接引两路外部电源,实

现低压切换,操作方便,安全可靠,也较受设计师的喜爱。在建项目的泉州环城

高速公路南安至石井段按照该方案实施。

四、结论、

通过上面论述及实际的调研,本人认为对于隧道供电采用如下的供配电方案:

�对于短隧道采用单电源+预留汽油机接口的配电方案,设置单台变压器;

�中、长隧道采用单电源+柴油发电机组的方案,设置单台变压器的方案;

�特长隧道采用双电源的供电方案,设置两台等容量的变压器为隧道的通风

照明供电。

该方案经济、优质、可靠、环保,能很好的满足隧道运营对供电的需要。

参考文献:

[1]《供配电系统设计规范》(GB50052-2009)

[2]《10kV及以下变电所设计规范》(GB50053-1994)

[3]《建筑物防雷设计规范》(GB50057-94)

[4]《电力负荷控制系统通用技术条件》(GB/T15148-94)

[5]《建筑照明设计标准》(GB50034-2004)

[6]《公路隧道通风照明设计规范》(JTJ026.1-1999)

道路照明设计方案范文2

【关键词】火车站公共区;照明设计方法;照明设计软件DIALux

1 引言

由于客站的内部结构复杂,在照明设计过程中,需要根据不同区域、不同位置的功能划分,有效合理地设计布灯方案,让车站的整体照明效果不失灵活性。经验表明,一个好的照明设计方案可以很大程度上提升铁路站房的整体效果。本次照明设计先利用传统计算方法,根据《铁路电力设计规范》中对普通候车厅的照度要求,对站房候车厅进行照度计算,得到照明设计方案;然后使用德国的照明计算软件DIALux 4.7 版本,对本次设计进行核对,核对后进而总结出一套照明设计方案。

2 软件介绍

DIALux是目前国内外业内人士所热衷使用的专业的照明计算软件,广泛应用于住宅、公共建筑、体育馆、博物馆、道路等室内外照明设计。它支持世界上所有的灯具厂家如Philips,BJB,BEGA,ERCO,THORN,OSRAM,雷士等的照明插件,得到业内专业设计人员的一致认可。

3 铁路站房照明设计建模

本次研究设计以某火车站站房照明设计图纸为依据,建立电气照明设计仿真模型。该火车站长120m,宽33.6m,建筑高度18.1m,总建筑面积9,993mm2。共分二层,其中一层为候车厅、旅服、出站厅、变电所、快速进站厅、空调机房和车站办公室。本次照明节能设计主要研究候车厅等大空间,其他功能性部分未考虑在内,在建立三维模型时只建了候车厅部分。

1)候车厅整体建模图

图3-1 候车厅建模图

2)候车厅照明灯具设计

灯具选择飞利浦灯具,光源选择金属卤化物灯,根据传统计算,得到候车厅的灯具布置如下。一层候车厅建筑面积约为1292 m2,空间高度约7.5米,采用的是金属卤化物灯,吸顶式安装,安装高度7.5 m,灯具平面图参考图3-2。

图3-2 一层灯具布置图

如图,一层普通候车厅,共有14 个照明支路,每条支路由4 个灯具构成,一个灯具里有1 盏70W的金属卤化物灯。总功率为

14470=3920W

照明功率密度为3.08W/m2。

二层候车厅建筑面积约2118m2,进站大厅面积为912m2,空间高度为8.0 米,采用的是金属卤化物灯,吸顶式安装,安装高度8.0 m,灯具平面图参考图3-3。

图3-3 二层灯具布置图

如图,二层普通候车厅,共有20 个照明支路,其中4条支路由8个灯具构成,14条支路由5个灯具构成,2条支路由4个灯具构成,每个灯具里有1 盏70W的金属卤化物灯。其中,与一层候车厅共用部分为进站大厅,共14 个照明支路,每条支路由3个灯具构成,每个灯具里有1 盏150W的金属卤化物灯。进站大厅的总功率为

14 3150=6300W 照明功率密度为6.9W/m2。

3)校验照明功率密度值LPD 前面将照明方案进行了阐述,为验证设计结果的正确性,现用DIALux照明设计软件进行照度仿真计算。检验结果的标准是以《铁路电力设计规范》中对普通候车厅的照度值要求为150lx,对进站大厅的照度值要求为200lx。候车大厅一层建模及计算面积示意图。

图3-4 一/二层候车厅及进站大厅灯具布置图各个区域计算结果(见图3-5)综上

一层和二层的候车大厅及其进站大厅三个场所的照度标准值为表4-1。通过表4-1上面的数据,也可以确定DIALux 的照度仿真计算结果是准确的。

4 候车大厅的控制策略

候车厅等公共区设置智能控制单元,对灯具进行合理分组,在技术经济合理时,尽可能细分供电支线及控制区域、控制单元。利用智能照明控制系统预先设置好多个灯光场景,到时根据实际情况调用不同的灯光场景就能实现同一个区域的各种照明控制策略。

5 结论

本文某铁路站房为例,首先用照度计算方法提出照明设计方案,然后选用设计软件DIALux,建立铁路某车站的三维仿真模型,对站房候车大厅进行照明设计方案的仿真分析,寻求最优的铁路公共区的照明设计方法。

参考文献

[1]北京照明学会照明设计专业委员会.照明设计手册.北京:中国电

力出版188-193。

[2]中华人民共和国建设部.建筑照明设计标准GB 50034-2013。

道路照明设计方案范文3

关键词:道路照明节能

前言:伴随着我国经济的飞速发展,城市市政工程建设步伐的加快,城市道路照明工程也越来越受重视。道路照明一方面耗能增大,另一方面维护量也增大,高额的电费支出,增加了财政负担,道路照明节能已具有紧迫意义。本文是结合日常工作,介绍以下几种道路照明节能的方法。

1 优化照明设计

在进行道路照明设计前,详细了解和收集有关资料:确定该条道路的照明标准及其它特殊要求;收集道路平面布置、道路结构断面,地下管线等资料,在充分了解这些资料的基础上,以便于有针对性地进行照明设计;了解道路周围环境、城市建设及整体规划方案;收集供电电源的资料,确定供电电源及进线位置等。并结合其实际情况,针对路宽、长度、

夜间车流量以及四周的环境等确定总体的照明标准,选用合适的照度,在实际的道路照明设计中,道路的各个具体路段部分均有差异。由此,还应该根据各路段的具体情况,进行分段处理,在不同的路段设置不同的照度标准并进行设计,以从总体上符合照明和节能的要求。一般来说,对于道路的长直线段,可以采用较低照明标准照度值,以基本满足道路照明要求即可;而对于交叉路口、立交及其他事故多发段,则应当采取适当提高照度标准的方式,以提高该段的照明和视觉效果,防止事故的发生。在设计的过程中要多提几种方案,经过计算后,对符合照明标准的所有方案,进行综合经济分析比较,从中选取技术先进、经济合理又节约能源的最佳方案。

2 合理选择照明光源

选择高效率的光源有利于减少照明电能的消耗。我国目前普遍采用的路灯照明灯具以高压钠灯和金卤灯等气体放电灯为主,高压钠灯的特点是寿命长(24000小时)、光效高(100―120lm/W)、透雾性强,可广泛用于道路照明、泛光照明、广场照明等领域,用高压钠灯替代高压汞灯,在相同照度下,可节电37%。而高光效高压钠灯(增强型),其光效更高,寿命更长。以250W为例,增强型与原普通型相比,光效由1121m/W,提高到1281nm/W;光通量由28000kn,提高到332001m;寿命由24000小时提高到32000小时,在实际使用中,平均亮度提高14.2%,寿命延长33.3%。金属卤化物灯是一种在高压汞灯的基础上在放电管内添加金属卤化物,使金属原于或分子参与放电而发光的高压气体放电灯,它的特点是寿命长(8000-20000小时)、光效高(75-95lm/W)、显色性好,广泛应用于工业照明、城市亮化工程照明、商业照明、体育场馆照明等领域,用它替代高压汞灯,在相同照度条件下,可节电30%。根据高压钠灯和金卤灯的区别,在道路照明设计中,高压钠灯是首选方案,因为在相同的电功率下,高压钠灯光能量要比金卤灯高40%左右,且钠灯的透雾性能比较好;而在同样照度标准的道路照明要求下,金卤灯光源的电耗则多于高压钠灯。但是在经济方面,高压钠灯价格低寿命长发光效率高,金属卤灯相对较差。因此,在普通道路朋明的应用上,一般采用高压钠灯,而在道路交叉口、立交等需要明显改善视觉环境的场合,则采用金卤灯。

LED光源的出现则是照明领域的又一个重大技术创新,具有节约能源、污染少、光指向性好、寿命长、低电压、反应快的特点,有成为未来光源的趋势。在同样亮度下,LED灯的耗电量仅为普通白炽灯的1/而其寿命却可延长100倍,完全符合绿色照明的理念和要求。但是由于技术的原因,LED和传统照明光源在成本和发光效率等方面还有一段不小的差距。在道路照明领域的应用上,目前还面临不少的困难。但是根据美国次世代照明计划预期,到2010年LED发光效率可达120流明/瓦,到2020年则可达200流明/瓦,成本降为1%,寿命增为10倍。LED光源因其节能省电的特点,目前正越来越多地与太阳能装置相结合,组成最为节能环保的照明设施,其在道路照明方面的应用也将是未来的发展趋势。

3 选用节能型电感镇流器

电子镇流器本身能耗极低,高光效、低频闪并且有恒功率输出的特点,但由于电子镇流器含有较高的谐波量,三次谐波占基波的30%以上,需要增加谐波装置使之符合规范,另外,因为它是零序分量,会使中性线过载而发生事故,这是使用电子镇流器需要特别注意的。而电感镇流器相当于带铁芯的电感线圈,属于线性电路。只要合理的选择铁芯及其磁通密度,三次谐波含量极小,一般此问可不予考虑。有数据表明,节能型镇流器的节能效果已接近电子锁流器的水平比传统电感镇流器节约近50%的电能。同时节能型镇流器还具有电子镇流器所没有的售价低、可靠性高、与普通的灯管兼容性强且易于组织生产等特点,较适合我国的经济发展的潮流。

4 采用适当的照明控制方式

现在城市的主干道很宽,许多道路照明采用了双光源或多火灯,而下半夜车辆稀少,对照明质量的要求可以适当降低;此外,现在很多三块板式的道路结构,在照明设计时通常考虑了快、慢车道的照明,而在后半夜,慢车道的非机动车和行人很少,对照明的要求不高。在确保功能和效果的前提下,合理调整亮灯数量和时间。因此,采用合理的控制方式成为了照明节能的一个重点工作,智能光源降压一稳压一调光技术是国际上流行的全数字智能路灯节能控制技术,它充分考虑了城市道路照明的实际状况。依据人体工程学中的视觉理论,采用现代控制论中的最优控制方法,实现了对路灯电压及照度的动态智能化管理,即TPo管理(TIMB/PLACE/OCCAS10N)。此项技术的基本思路就是:在繁忙的时段,控制路灯保持较强的照度,接近午夜时分,开始自动调光,在后半夜车稀人少时,则控制路灯保持较低照度的照明(类似房灯的调光器,可以随需要而任意调光),它的主要优点就是在调光的同时也大幅降低了电耗,节约有功电耗达3096以上。

5 降低配电系统的线路损耗

对供配电系统而言,考虑路灯线路损耗主要是正比于电流平方的配电线路导线的电能损失,也称负载损失,无疑,降低线路电流和减小线路电阻是减少线路损耗的有效途径。道路照明绝大部分是气体放电灯,该类光源的特性是电流和电压不同步,运行功率因素往往不到0.5,因此工作电流较大,如果在配电柜处集中功率因数补偿,则从配电柜到灯具端的线路损耗很大;但如果在每个灯具内单独进行功率因数补偿到0.9以上,则线路电流可降低近一半,线损可减少3/4。在设计过程中,适当提高配电电缆规格也可以减少线路损耗。按导线截面的选择原则,可以确定满足要求的最小截面导线;但从长远来看,选用最小面导线并不经济。如果把理论最小截面导线适当加大,线损下降所节省的费用,足可以在较短时间内把增加的投资收回。

道路照明设计方案范文4

6月30日,飞利浦在新加坡2010世界城市峰会(WCS)上推出了EssentialLine系列 LED道路照明解决方案。EssentialLine作为飞利浦全新的LED道路照明产品系列,旨在帮助城市规划者们采用更加高效、环保的道路照明系统来改善城市的宜居性。 如今,城市生活消耗了全球70%的能源,而其中15%的能源消耗来自道路照明。在亚洲,快速的经济增长和能源消耗为城市建设规划者们带来了一系列新的环境问题。联合国的一项研究显示,2008年,在东南亚国家有45%的人口居住在城市地区。至2030年,这一比例预计会达到56.5%,将会给包括户外照明在内的基础设施带来更重的负荷。飞利浦EssentialLineLED道路照明系列堪称一个理想的绿色照明解决方案,可帮助城市创造更好的环境,同时在较低成本基础上改善城市的宜居性。 与现有的标准SON照明解决方案相比,应用飞利浦EssentialLineLED道路照明系列,可节省多达50%的能源。借助LEDGINE技术,飞利浦 EssentialLineLED道路照明产品能提供光效高达85lm/W的持续性高显色照明。这套LED系列采用的模块化设计使其还可方便地进行现场升级,并能更好地进行散热管理。 经济发展需要城市可持续发展的支持,飞利浦高级副总裁,亚太区照明总经理毕柏翎指出:“随着亚洲城市向全球化都市的转变,政府部门和城市规划者需要采取各种措施改善城市宜居性,这一点至关重要。在公共基础设施上采用高效节能的LED照明系统,可以更好地提升城市安全感,通过勾勒标志性的城市天际线和景观美化市容,并且有效降低城市中心的能源消耗和碳排放,可谓一举三得。” 飞利浦 EssentialLineLED道路照明系列有四种光照模式和三种瓦数可供选择,以适应不同宽度的道路,并能在多种道路应用中提供安全舒适的视觉体验。该系列产品寿命长达50,000小时,可节省更换照明设备产生的昂贵费用。 毕柏翎先生还表示:“飞利浦EssentialLine道路照明系列是飞利浦针对城市可持续发展需求而最新推出的产品。高效可靠的EssentialLine道路照明系列不仅可以减少能源消耗和照明维护费用,从而为市政当局节约大笔经费,同时还能在不降低安全标准的基础上减少温室气体排放,保护环境。飞利浦非常高兴能在‘2010世界城市峰会’这样的国际性会议上推出最新的LED照明解决方案,并将致力于与来自亚洲的业界人士通力合作,共同推动城市向高效节能照明解决方案的转换。” 2010世界城市峰会为飞利浦展示其最新城市道路照明产品 -- EssentialLine系列LED道路照明解决方案提供了一个战略性平台。此外,飞利浦还将在此次峰会上展示其现有道路照明产品 --突出城市道路美化功能的ClearLine LED道路照明产品和多样化城市照明创新产品ColorReachTMPowercore. ClearLineLED道路照明系列是一套创新的道路照明解决方案,其应用了最先进的LED技术和专业光学技术,可实现高效节能和最小眩光,其节能高达22%,寿命长达50,000小时,为城市发展提供了一套行之有效的解决方案。该系列产品配合道路调光系统的使用,在非交通高峰流量时段,既不影响道路安全,又能额外节约50%的能耗。 ColorReachTMPowercore是飞利浦LED照明的旗舰产品,它是一套高性能的建筑照明解决方案,也是首款能满足多色彩大规模立面照明需求的LED照明产品。这款功能强大的道路照明产品具有超高流明输出以及150多米远的光投射距离,是未来新一代户外照明的典

道路照明设计方案范文5

关键词:城市轨道交通;供电系统;中压电压

我国的经济建设规模不断扩大,带动了城市轨道交通建设也获得了快速的发展渠道。当前,各大城市都在部署或者已经开建各类城市轨道交通,特大城市的城市轨道交通已经进入了智能化网络化的发展时代。因此做好供电系统的设计工作,是发展城市轨道交通建设的动力和源泉。供电系统为城市轨道交通提供了源源不断的运营动力,电能是设备运行的唯一的能源,因此要保证城市轨道交通的安全运行,必须在服务水平、科学性和安全可靠性上下功夫,经过前期关于城市轨道交通的供电系统的研究,已经形成了适用于城市轨道交通供电系统的较为有效的设计理念和方法[1]。

1 城市轨道交通供电系统的设计任务

(1)现代项目管理理论中关于城市轨道交通的前期建设的程序设计、规划运营等,包含了项目的城市轨道交通网络规划可行性研究,城市轨道交通供电网络设计需要的资金支持以及筹措的方案等。具体的内容包括:对城市电网以及电源引入进行初步的调查,对供电系统方案进行初步的确定,对供电制式进行方案的初步设计,对车辆选型、供电牵引等进行去顶,估算供电系统的工程建设的投资,将分部分项的工程投资的估算精度加以控制。最终形成的供电系统的可行性研究报告中,关于供电系统的任务的描述是:确定城市轨道交通供电系统、外部电源、牵引供电方案、PSCADA等关系;电流腐蚀防护、接地计划等。关于工程的,是施工范围包含了电缆工程、变电所、牵引变电所、降压变电所、接触网等,关于供电系统的项目投资共算的误差率不能超过10%[2]。

(2)供电系统的前期设计阶段,根据供电系统设计的基本资料,对线路、行车、车辆等基本条件加以筹划。例如控制中心、车站、区间等关于城市轨道交通的建筑物,以及动力照明负荷等的估算。

2 城市轨道交通供电系统用电负荷估算

(1)对垒车的车辆的牵引负荷以及系统的设计运输能力进行估算,得到的牵引的负荷的年用电量的计算公式为:

G为单列机车的总重,N为日发车对数,T为年运行365天。L为机车运行里程。

不同的列车的运行线路包含了列车的牵引用电和辅助设备的用电,参考了既有线路运行的经验,将数据进行测试和积累,得到了关于列车的牵引设备用电设备的取值[3]。

(2)对动力照明符合的年用电量的计算,关于车站的动力负荷和照明负荷的低压电力的负荷,包含了通信、信号、监控等动力负荷数值,包括通风、排水、扶梯、AFC等。车站的公共其余的照明和附属的用房的照明在设计上根据运营的高峰和非高峰的实践,将灯具的数量进行了选择,开启后,办公管理房建的照明基本全部进入工作状态,设备房建中的照明没有开启。专业的电源以最大运行的状态进入了运行的前期阶段,达到了满载,设备的启动时间和运行错开后,设备的工况模式进入了一个合理的系数状态,能够将全线的年需要用电量的合理系数进行估算,从而能够将配电变压器的容量加以选择。

3 供电系统的方案设计

(1)经过对外部电源方案的规划,根据城市轨道交通的特殊用户的城网建设,估算出一条线路的用电范围在10~40公里之内,需要的功率呈现了线状的分布,采用外部电源方案进行了具体的工程的计算,得到了该城市轨道交通线网络规划的实际用电负荷,构成城市网中实际工程的电源方案,具体根据实际的工程情况进行集中供电和分散供电方式的选择[4]。

(2)经过对外部电源的方案的技术选择,采用集中或者分散的观点方式,主要要对外部主变电所的电源进行规划和设置,供电分区的划分包含了前期供电系统的设计重点和难点,对后期的设计进行了基础的开拓,这一项工作是与市规划部门进行了充分的沟通和协调后,达到的共识。

(3)中压电缆的网络部署方案,是将主变电所和降压变电所加以横向和纵向的连接,形成全线的变电所的牵引和联系,起到了电能的分配和传输的作用。电压等级构成的形式和属性包含了多种电压等级,如10、20、33、35kV的电压等级。技术经济综合比较的内容包括了系统的走向,线路的方案,站点的电力供应等。以此为来选择适合的电压等级。

(4)根据研究,牵引供电的制式、牵引网的设置方案等,根据地铁设计规范中关于供电制式的设计标准,形成了集中轨道建设的方式和架空接触网方式的应用。DV1500V电压等级多用于架空接触网上,如广州、天津等城市轨道交通中常用到的施工技术。DC750V电压等级较多用于接触轨,在一些城市道交通建设中也较为常用。技术的进步已经达到了采用钢铝复合导电轨道技术的阶段。

(5)牵引变电所的设置根据牵引网的等级、电压损失而定,还要考虑杂散电流腐蚀的防护、线路的能耗、电缆的铺设以及运营管理等方面,通过统筹设计,在故障和正常运行的模式下,按照城市轨道交通直流供电系统的牵引标准,要将牵引电压损失考虑在最大电压损失中,同时要将牵引变电所的设置的数量作为电压损失值的关键因素加以考虑。

上述公式可以计算出单边馈电时的最大瞬时电压损失。经过对直流牵引供电系统的电压水平的估算,得到了等效电路的模型的仿真计算,最大的电压损失往往发生在机动车的启动的瞬间,经过简单的计算,可以将牵引网的电压水平和钢轨电位进行初步的计算,得到了变电所的设置方案是可行的。

4 结语

城市轨道交通项目的供电项目进行如前期研究后,对基本任务要进行理解和分析,结合以往的设计方案,设计出适用于当前城市轨道交通供电系统的设计思路和方法。经过实践表明,这一方法能够满足供电系统的前期研究中的工程设计需要,而且具有简单有效的特点[5]。

参考文献

[1] 李寒生.城市轨道交通供电系统综合分析及其建设运营模式探索[J].铁道标准设计,2013,(5):119-122,131.

[2] 余红梅,陈刚,于纪利等.城市轨道交通供电系统35kV环网电缆敷设工程施工方案[J].城市轨道交通研究,2015,18(7):49-51,57

道路照明设计方案范文6

【关键词】LED照明改造;节能;北京地铁

中图分类号:TE08文献标识码: A

1 前言

北京地铁是世界上规模最大的城市地铁系统之一,从1969年1号线开通至今,已经驶了4 0多年的征程。截至2014年1月,北京地铁共有17条运营线路,覆盖北京市11个市辖区,预计到2016年底,北京地铁运营总里程将达到660 km以上;到2020年时,运营总里程将超过1000 km。而与此同时,由于其运输量大、总耗电量大,是城市中的用电大户,在地铁的日常运营过程中,照明系统的耗电量占运营总耗电量的5%~10%。本文以北京地铁1、2号线LED照明改造项目为例,通过对公共照明区域模拟分析,提出技术方案,并与实际改造效果进行对比,提出了适用于北京地铁LED 照明改造的方案,为进一步推动新型照明技术应用奠定基础。

2 北京1、2号地铁现状

北京地铁1号线是北京最早的地铁线路,西起苹果园站,东至四惠东站,全长31.58km,设23座车站和2座车辆段,是北京市第一条贯穿城市东部和西部地区的地铁线路;地铁2号线是北京的一条环线地铁,全长23.0km,设18座车站和1座车辆段。两条线路对于提高市民的出行效率,缓解道路交通拥堵起到了举足轻重作用。

由于两条线路均属于北京市较早开通的地铁线路,照明普遍采用的是荧光灯、节能灯、筒灯和高压钠灯为主的照明灯具,耗电量较大。以本次照明改造的34座地下车站为例,符合改造的区域主要包括站台、站厅、出入口,涉及灯具数量30121盏,改造前,年耗电量达800余万度。

图1 地铁1、2号线线路图

3 技术方案设计

根据《地铁设计规范》GB50157-2003、《城市轨道交通照明标准》GB/T16275-2008、《建筑照明设计标准》GB50034-2004,对地铁车站站厅、站台等处进行照明模拟与分析:

3.1 模拟条件

根据《城市轨道交通照明标准》 GB/T16275-2008要求,地下轨道建筑表面的反射比如下:

维护系数设定如下:

3. 2 照明模拟

3.2.1 站台照明

灯具布置图

灯具间距:3.7mX2.5m,灯具高度如上图所示。

站台照明模拟结果如下:

3.2.2 站厅照明

灯具间距:3.7mX2.5m,灯具高度3.1m,如上图所示。

站厅照明模拟结果如下:

3.2.3 走廊、通道照明

灯具间距:1.5mX1.5m,灯具高度:2m

走廊、通道照明模拟结果如下:

3.3 效果模拟

3.3.1 站厅(产品:T5灯管)

改造前 改造后

3.3.2 通道(产品:T5灯管)

改造前 改造后

3.3.3 通道(产品:8寸筒灯)

改造前 改造后

3.3.4 扶梯间(产品:8寸筒灯)

改造前 改造后

3.4 模拟及分析

通过模拟计算,站台地面的平均照度为230lx,站厅地面的平均照度为219lx,通道及走廊地面的平均照度为246lx,均满足地下铁道照明标准的最高要求。站台与站厅的照度均匀度大于0.8,亦满足《城市轨道交通照明标准》GB/T16275-2008照度均匀度0.7的要求。