节能降耗措施范例6篇

节能降耗措施

节能降耗措施范文1

主题词转油站能耗分析

1 能耗状况

近些年,以成本管理为核心,提高经济效益已成为石油企业管理的主题。因此,开展转油站节能降耗方法的研究与应用,对于降低油田生产成本,提高油田生产经济效益有重要的意义。

随着三次加密井的不断投产,生产总井数逐年增加,总注水量和产液量增加,而原油产量逐年递减,使吨油能耗逐年增加。为了降低能耗,需要对转油站生产运行过程中各个生产环节的能耗情况进行分析,以便分析重点耗能环节的节能潜力,探讨节能降耗的对策。

根据生产能耗统计,转油站耗电占总耗电的8.0%;转油站耗气占总耗气的79.5%,所以原油集输及处理系统的节能重点应是节气。

2 节能潜力分析

转油站耗电主要集中在转油站的各类机泵上,耗气主要集中在掺水炉、热洗炉和采暖炉上。这些已建的耗能设备随着油田开发时间的延长和产量变化,存在负荷率低、能耗升高的问题。如何减少浪费,需要对耗能的各个环节进行节能潜力分析。

1)各种机泵是转油站节电的重点研究对象。

生产中采用的泵大多为离心泵,其耗电量与输送量、输送压降成正比关系,与泵效成反比关系。一般情况下,机泵的输送量较稳定,但如果输量波动较大,偏离了高效区运行,泵就做了无用功,如何避免或减少泵做无用功,是这类泵节电的潜力所在。但对于掺水泵,目前生产中产生掺水量普遍偏大,与集油系统不适应,应根据实际而不断进行调整,以确定合理的掺水量,因此,掺水泵的节电潜力较大。

2)加热炉的主要耗气设施,其耗气量主要与被加热介质的量、加热前后的温差和加热炉的效率有关。

对于热洗炉和采暖炉,其加热介质的量和加热前后的温度是根据油井产量、处理工艺和生产实际需要确定的,调整余地小,它们的节能潜力主要在于如何提高炉效。对于掺水炉,具有较大的节气潜力。

3)集油系统耗电、耗气。

通过计算分析不同掺水出站温度和不同的采出液进转油站温度所对应的不同掺水量对集油系统耗电、耗气产生和影响。通过计算分析得出以下结论:①采出液进转油站温度设定为30℃不变,掺水出站温度分别为70℃、65℃、60℃ 情况下,能耗趋势是吨油耗气略减,吨油耗电略增,总能耗略增。②在掺水出站温度确定为70℃,采出液进站温度分别为30℃、35℃的不同情况下,则吨油耗气、耗电大幅度增加。因此,从上面分析结果可知,集油系统节能潜力在于控制掺水量。

3降低能耗的方法

根据上述分析结论,转油站节能的重点在于节气,而节气与节电相互关联。从目前状况来看,节能应从以下几个方面入手:

1)合理匹配各种耗能设备的台数和能力,以适应转油站变化的需要。由于油井产量的大幅波动,地面设施的型号、能力要满足最高负荷的需要,同时还要兼顾低负荷时合理运行,考虑季节环境温度变化的影响,尽可能减少或避免低负荷时大马拉小车问题。

2)及时调节排量,提高机泵的运行效率。离心泵在工作时的实际效率是随其工况而变化的,只要不在最优工况点工作,泵的效率就会降低,偏离最优工况点越远,效率越低。将每台机泵的特性曲线制成牌并挂在机泵上,使岗位工人都熟知每台泵的特性曲线,并按特性曲线及时进行调节,保证运行机泵在最优工况下工作,提高运行泵的泵效。

3)应用变频调速技术,提高机泵的运行效率,变频调速技术是通过改变电机输入端的电源频率,从而改变电机转速,使与电机相连的泵转速与电机转速相同。在实际应用中根据这个原理,按照液量的多少改变电流频率,从而使电机不出现低负荷运行,通过应用变频调速技术,可以使泵始终保持在高效区工作,大大降低转油站运行成本,在转油站应用变频调速技术时,应采用一拖二或一拖三的设计方案,实现既减少投资,又能全面降低转油站运行成本的目的。

4)加大低温集油和低温处理技术的推广力度,是节能降耗的关键所在。低温集油和低温处理技术降低了集输油终点温度和原油处理温度,由节能潜力分析可知,加大低温集油和低温处理技术的推广力度不仅具有节电作用,而且具有显著的节气效能。实施这一技术,能耗会大幅度降低。

5)适当应用节能设备,以减少设备本身所做的无用功。随着节能型设备的技术进步,用新型、高效节能设备代替现有高耗能设备,或者采用节能技术对高耗能设备进行改造。

6)给二合一掺水炉液面平衡管加伴热管,减少天然气的消耗。为了避免二合一敞口掺水炉冬季生产烧高温的问题,采取在掺水炉液面平衡管旁加伴热管的措施,为解决水套式热洗炉提温缓慢浪费天然气的问题,可以采取将一台热洗炉出口与另一台热洗炉进口相连,实现热洗液的二次加热,保证了热洗得温度,避免了热洗前先提温的问题。

7)优化掺水炉运行,提高掺水炉热负荷,为了解决掺水炉负荷率低的问题,先计算出不同环境温度下全队抽油机井正常生产所需的掺水总量,通过掺水总量,掺水温度计算出掺水总热量,由总热量来决定生产运行掺水炉台数。

8)加强生产运行管理,合理调控不同环境温度下的掺水进站温度,必须计算出抽油机井在不同环境温度下正常生产所需的最低掺水温度,运用热力学中的热油管线沿轴向降温公式和能量平衡方程来计算抽油机在不同环境温度下正常生产所需的最低掺水温度,将计算结果绘制成掺水温度控制曲线。同时再合理调控掺水量。无论是如何先进的技术、工艺、还是设备,都无法代替先进的管理。

参考文献

节能降耗措施范文2

>> 饭店节能降耗措施探讨 MTBE装置节能降耗的措施 聚丙烯装置节能降耗措施 大庆ABS装置节能降耗措施及效果 胺液再生装置节能降耗的探讨 大型扬水泵站节能降耗措施探讨 智能楼宇建筑照明节能降耗措施探讨 探讨扬水泵站的节能降耗措施 油田联合站节能降耗措施探讨 建筑照明节能降耗措施探讨 煤矿供配电系统节能降耗措施探讨 煤矿企业节能降耗措施 论述水厂节能降耗措施 水厂节能降耗问题探讨 水泵节能降耗技术探讨 油田开发节能降耗探讨 乙烯装置裂解炉节能降耗措施分析 芳烃联合装置能耗分析及节能降耗措施 红压深冷装置节能降耗技术措施 线性低密度聚乙烯装置节能降耗的优化措施 常见问题解答 当前所在位置:中国 > 科技 > 苯精制装置节能降耗措施探讨 苯精制装置节能降耗措施探讨 杂志之家、写作服务和杂志订阅支持对公帐户付款!安全又可靠! document.write("作者:未知 如您是作者,请告知我们")

申明:本网站内容仅用于学术交流,如有侵犯您的权益,请及时告知我们,本站将立即删除有关内容。 摘要:文章分析了奔腾化工公司精苯装置原料粗苯质量、氢气用量消耗高等造成生产成本偏高的原因,通过采取有效的改造优化措施,经长时间实践验证,达到了节能降耗的目的,取得了良好的经济效益和社会效益。

关键词:精苯;节能降耗;废气膜法;氢气回收

中图分类号:TE624

文献标识码:A

文章编号:1009-2374(2011)27-0144-02

河南神马奔腾化工公司精苯装置是采用美国莱托法工艺,通过催化加氢,精制粗苯。自1998年8月投料生产以来一度存在原料粗苯三苯质量不稳定、带水量较大、氢气消耗偏高等现象,造成生产成本居高不下。为此,尽快找出并消除影响生产成本高的诸多原因、有效降低生产成本成为公司技术人员期待解决的问题。

一、原因分析及改进措施

针对该装置工艺生产状况、原材料状况、能源回收利用、环保达标等方面进行了认真调研和分析,并针对几个主要影响因素采取相应措施。

(一)降低原材料粗苯采购成本和消耗

加强原材料粗苯质量管理,提高粗苯采购质量,消除粗苯带游离水现象。据统计从2005~2007年期间,精苯装置因粗苯带水较多和粗苯质量不稳定造成装置停车和降负荷几十次。其中2005年7月因为原料粗苯大量带水,装置紧急停车,造成装置莱托系(FE202)高温高压阀门泄露着火,停车检修长达几个月,检修费用和直接损失将近五百万。通过一系列技术改造,实现粗苯车辆卸车在线监测粗苯带水监测系统和增加粗苯罐排水罐,达到排水节能的目的。同时采取原材料粗苯质量专人管理,实现专人取样、专人化验、专人监磅的制度。罐车底部取样一旦发现粗苯夹带游离水,及时排水,粗苯质量和数量出现较大变化,及时分析原因和解决问题,提高粗苯采购质量,降低原材料采购成本。2008年以来,通过以上措施,供精苯装置的粗苯中三苯含量一直维持在89%以上,水分≤900wtppm,总硫≤8400wtppm,噻吩≤3500wtppm,CL≤15wtppm。2008年至今,未出现因为原料质量问题,造成精苯装置停车和降负荷情况。

(二)采取废气膜法回收氢气节能措施,降低外供氢气消耗

精苯装置满负荷生产每小时需补充99.9%氢气1350Nm3,该工艺比低温加氢工艺消耗氢气量大,鉴于精苯装置所需纯氢结算价格较高,占奔腾公司能源费用的70%左右。同时装置外排废气每小时约1100Nm3,废气含70%氢气,造成能源的极大浪费。我公司于2009年3月投资91万元引进氢气膜回收装置后,氢气单耗从过去生产每吨精苯耗365标方氢气,降到每吨耗169.2标方氢气,降低氢气单耗,减少能源消耗成本,节能效果显著。工艺流程图如图1所示:

(三)引入多项氢气气源,降低能源消耗成本

精苯装置原来使用的氢气气源是焦炭制氢,随后引入焦炉煤气制氢和氯碱副产氢气制氢,从而有更多选择质量优、价格低的氢气源。通过这些改造措施,降低精苯装置能源消耗成本。例如2010年我公司使用氢气总量751.6万标方,使用焦炭氢气459.5万标方,使用焦炉煤气氢气292.1万标方,2010年每吨焦炭氢气含税均价2.22元,相比焦炉煤气氢气售价比其便宜0.47元,年节约资金137.3万元。

从以上数据可以看出,通过与相关单位进行技术合作,既能使某些单位的化工废气变废为宝,也能使我公司通过一些技术改造铺设相应的管线和设置控制阀,达到降低能源成本的目的。

(四)精苯装置冷凝液回收利用

精苯装置低压用汽设备F-E404、F-E201、F-E101因系统背压高凝结水(约5t/h)不能回收,中压用汽设备F-E103因高负荷时用汽量较大(约2t/h),原疏水阀选型排量较小,部分就地排放。因此增设气动凝结水回收装置一套、套管式换热器一台,并更换4个疏水阀,实现这部分冷凝液的回收。因为蒸汽冷凝液,温度98℃。闪蒸汽约0.4t/h,回收的冷凝液通过套管式换热器预热常温的原料粗苯,从而降低预热粗苯的低压蒸汽用量,达到节能降耗的目的。

(五)回收预备蒸馏系含苯废气中的苯液

精苯装置原设计预备蒸馏系含苯废气在苯水分离器(D103)中直接排放大气,含苯废水排入废水地沟。白1998年8月投料以来,经常出现喷油现象,因为苯味刺鼻,破坏了现场环境,对巡检人员身体造成严重的危害;D103含油废水因为分离器压力不稳定,带苯液的废水经常进入废水管网,造成环保不达标。经过技术改造把含苯废气全部送入10立方的废苯罐,苯液通过废苯罐隔板溢流苯液侧回收使用,废气进入炉子燃烧,既经济又节能。

二、经济效益分析

上述废气膜法回收氢气节能措施的经济效益分析如下:

(一)节能效益分析

1.一年公用工程消耗22万元,折标准煤63吨。

2.每小时可节约99.9%氢气约620Nm3/h,一年可节约氢气约4464×103 Nm3,折标准煤约1944吨。

3.一年可节省标准煤约1944-63 1881(吨)。

(二)经济效益分析

1.一年可节约氢气约4464×103 Nm3,按单价1.73元计算,一年约772万元;

节能降耗措施范文3

Abstract: The distribution network is the main part of the power consumption of the power system. Achieving the energy saving of 10kV distribution network has a graet meaning. The energy saving of 10kV distribution network include two parts: rerducing consumption of transformer and lines. Saving transformer consumption can be solved by ensuring transformer economic operation, promoting energy saving transformers and reactive power compensation. Reducing line losses can be solved by increasing the line cross-sectional area, shortening the transmission distance and reducing the phase imbalance.

关键词:配电网;节能降耗;措施

Key words: distribution network;energy saving;measures

中图分类号:F423 文献标识码:A文章编号:1006-4311(2010)29-0094-02

0引言

配电网是电力系统中功率消耗的主要部分,实现配电网的节能降耗,对于提高供电企业的经济效益具有举足轻重的作用,对于降低能耗、减少温室气体排放也具有重要意义。作为连接电网与用户的重要桥梁,10kV线路长度在电力网中占到60%的以上,其损失在电力网的总线损中占80%以上,因此10kV配电网的节能降耗对于电力系统的节能具有至关重要的作用。电网的功率损耗主要是变压器损耗和线路损耗,因此节能降耗的主要措施也围绕这两方面展开。此外,10kV配电网涉及城市电网与农村电网,本文先以城市电网作为主要研究目标,最后说明了农村电网的特点极其措施。

1降低变压器损耗的措施

电网中使用变压器的作用是提高输送距离,降低电能传输的总体能量消耗,一般来说,从发电、输电、供配电到用电,需要经过升压、传输、降压至适当的电压等级以便用户使用。10kV配电网所用的变压器为降压变压器,由于其数量多,总容量大,因此总损耗很大。据统计,在10kV配电网的功率损耗中,变压器的损耗占80%以上,线路损耗不足20%,因此,降低损耗的重点应放在降低变压器的损耗上。

变压器的功率损耗包括两部分:一是变压器的固定损耗,即与用电负荷无关的空载损耗;二是变压器的可变损耗,与电流的平方成正比。固定损耗即是在变压器铁心中产生的空载损耗,其损耗=空载损耗×时间;可变损耗即是电流在变压器线圈中产生的损耗,与变压器的负荷大小有关。

1.1 保障变压器的安全经济运行变压器经济运行是指在保证安全可靠运行及满足供电量需求的基础上,通过对变压器进行合理配置,对变压器的运行方式进行优化选择,对变压器负载实施经济调整,从而最大限度的降低变压器的电能损耗。变压器的经济运行以降低变压器的综合功率损耗为目标,即降低变压器运行中有功功率损耗与因无功功率损耗使其增加的有功功率损耗之和。保障变压器经济的基本要求包括:合理的选择变压器组合的容量和台数;优化选择变压器综合功率损耗最低的经济运行方式;合理调整变压器负载,在综合功率损耗最低的经济运行区间运行。

在当前的10kV配电网中,经常出现小马拉大车或大马拉小车的状况,这便会带来功率损耗的增大。

PZ%=f(β)为变压器综合功率损耗与负载率β的函数特性曲线,其中βJZ2代表与额定功率综合功率损耗相同的另一负载率,进而可以得到βJZ,从而将变压器综合功率运行区间的范围划分出:经济运行范围βJZ2≤β≤1,最佳经济运行区1.33βJZ2≤β≤0.75,非经济运行区0≤β≤βJZ2。从图1可以看出,无论是超出额定功率运行,或者在负载率极低的情况下运行,都会导致变压器综合功率损耗的大幅增大。最合理的变压器容量即为使变压器长期运行在最佳经济运行区内。

1.2 大力推广节能变压器节能变压器是指三相高压为10kV、低压为400V,额定容量为30kVA~1600kVA的油浸式和额定容量为30kVA~2500kVA的干式配电变压器。其空载损耗和负载损耗应符合国家标准GB20052-20006《三相配电变压器能效限定值及节能评价值》中节能评价值的规定。节能变压器与普通变压器相比,在综合功率损耗上有极大降低。以非晶合金变压器为例,其空载损耗可比普通S9型硅钢片变压器的降低75%~80%。应当说明,对于非晶合金变压器与普通硅钢变压器在额定电流下的负载损耗大小相等,使用中只要负载情况相同,产生的可变损耗都相同;非晶合金变压器与硅钢变压器节能体现在不变损耗即空载损耗上。虽然推广节能变压器有利于节能降耗,但也应考虑到节能变压器的费用和更换成本,应结合电网改造和原有变压器的状况,综合考虑成本与效益考虑是否更换。超过寿命服役的变压器、国家规定淘汰的老旧变压器,能效或其他性能不符合国家标准的变压器时首先应更换的,同时应对变压器的经济运行做出作何评价,评价为运行不经济、且综合功率较大的变压器应更换。

1.3 开展无功补偿10kV配电网功率损耗的主要原因是功率因数低,其原因是多方面的,如供电线路支接多、线路长、辐射面光,受季节时段影响大等。功率因数的降低意味着同等电压情况下输电电流变大,不但会造成无功消耗,也会使有功功率损耗增大。加装电力电容器进行无功功率补偿是提高功率因数的的有效方法。对于10kV配电网进行无功补偿,主要是对配电变压器进行补偿,配电变压器的空载电流一般为额定电流的10%左右,功率因数仅为0.2,考虑到用户用电情况不稳定,如能将按照变压器容量10%进行补偿,则空载时功率因数提高到0.8上,在节能降耗方面的效果非常明显。此外,无功补偿对于保障电压稳定,提高电能质量都具有重要意义。进行无功补偿时,应尽量进行分散补偿,从维持整个配电网的水平出发,保障足够的无功补偿容量,实行无功功率的分区就地平衡。在当前无功功率普遍不足的情况下,适当的进行无功补偿,是减少功率损耗最直接有效也是最经济的措施之一。

2降低10kV输电线路损耗的措施

10kV配电线路的实际损耗包括技术损耗和管理损耗,其中技术损失时实际损失在传输中的电能,而管理损失是指供电企业在生产、调度以及营销中因人为原因造成的损失。

2.1 合理选择电缆截面积输电线路的能量损失与其阻抗成正比,增大导线截面积可以减少能量消耗,因此在满足载流量并保证电压质量的前提下,应按照经济电流密度选择合适的导线截面。截面积增大会提高单位长度导线的重量和价格,因此应综合考虑,选择适当截面积的导线。

2.2 合理布局和分配负荷过长的线路距离必然导致损耗的增大。对于10kV配电网,应注重合理布局,使线路的实际距离尽量短。在保证负荷由最近的电源点供电的同时,合理的布置电源点,在考虑当前经济性的前提下也考虑到新增负荷,是更为有效的措施。

同时,三相负荷不平衡,也会增加线路、变压器的损耗,最理想的情况是三相的功率完全平衡。。但因为负荷的投切是有用户而非供电企业决定的,所以在实际中时难以做到三相平衡,因此供电企业应根据负荷的性质、重要性、用电量及用电时间,尽量做到在时间和功率上都趋于平衡,从而降低功率损耗。同时,我国对于电流不平衡的度也有相应的规定,如配电变压器出口处的电流不平衡度不大于10%,干线及分支线前端的不平衡度不大于20%,中性线的电流不超过额定电流的25%等。具体措施有:定期测量三相用户的负载,检查负荷是否平衡,以便及时调整。二是单相接线用户,应综合考虑其主要输送距离、用电时间和用电量尽量均匀的分配在A、B、C三相上。三是对功率因数较低的用户,应对其所在线路加装低压电容器。

此外,10kV配电网中往往还存在部分线路老化严重,负荷增长过快导致实际负荷远大于原设计的输送容量等情况,这时可以结合变压器的更新改造及增设变压器并更改用户所属变压器等方式加以解决。改造已有的电源点,可以在提高供电能力的同时减少变压器和线路的综合损失。新增电源点有助于电网的整体合理布局,缩短输电距离进而减少线路损失。

3降低10kV农村电网损耗的措施

农村电网不同于城市电网的特点有:①长期负荷以家庭用户为主,季节性的以农业与小工业负荷为主。②布局经常不合理,出现迂回供电,超长距离供电等情况。③经常出现违章用电或窃电等情况,造成管理损失,单户统计困难。

除以上适用于城市电网的方法外,结合实际工作,适用于农村电网的措施有:做好大用户与村委会的沟通工作,将变压器的进线电量精确记录,并留出一定的损耗额,将费用与村委会或大用户结算,使用户主动参与到节能降耗中来,提高用户的节能积极性。做好与用户的沟通工作,对于家庭困难的群众,予以帮助,兼顾了供电企业的社会职能的同时减少了部分管理损失。

4结语

实现10kV配电网的节能降耗对于电力系统的节能具有重要意义。本文主要介绍了10kV配电网的节能降耗措施,对于变压器降耗可以通过保障变压器经济运行、推广节能变压器和进行无功补偿等方法解决,对于线路损耗可以通过提高线路截面积、缩短传输距离和降低三相不平衡度来解决。同时,本文介绍了农村10kV电网的特点以及实用的解决措施。

参考文献:

[1]GB/T13462-2008电力变压器经济运行.

[2]陈文业.10kV配电网节能降耗的途径[J].电气工程应用2009.

[3]赖斯,张勇军,廖传民等.文昌配电网节能降耗综合治理方案研究[J].南方电网技术.2008.

节能降耗措施范文4

1设计中的节能措施

1.1降低烧焦能耗措施

1.1.1应用低焦炭产率的工艺与设备采用中国石化石油化工科学研究院的降低催化裂化汽油中烯烃含量的MIP-CGP工艺,提升管反应器设计使用环形管进料,平衡喷嘴流量与喷口处压力;使用CS-Ⅱ型喷嘴,优化喷嘴效果,改善原料油的雾化状态,减少喷嘴处结焦;提升管反应器进行优化设计,减少反应生成油气与催化剂的接触时间,减少油气在沉降器的停留时间;出口设置急冷油喷嘴,防止油气过度裂化,抑制二次反应;使用高效汽提挡板,强化汽提效果,减少催化剂表面的可汽提焦;提高提升管出口快速分离器分离效果,减少油气在催化剂表面附着。1.1.2采用低焦炭产率的催化剂采用低焦炭产率催化剂是降低能耗最直接有效的措施[4],中国石化齐鲁催化剂厂根据MIP-CGP工艺生产的MIP-CGP-1型催化剂采用新型高活性分子筛作为活性单元,结合分子筛晶粒高分散性和酸性优化调变技术,显著提高了分子筛裂化中心的利用率,增强了重油大分子高效选择性裂化能力,可有效提高轻质油收率,降低干气和焦炭产率。

1.2降低电耗措施

1.2.1烟机节电措施烟气轮机是催化裂化最重要的能量回收装置,其运行好坏对装置电耗具有决定性作用。本装置采用兰州机械厂研制的YL33000A型烟气轮机,具有适用于大焓降(烟机厂家设计文件提供)两相流的新叶型(动、静叶),通过对转速、直径、叶片高度、动静叶出气角的合理匹配进行优化设计。兼顾减少叶片磨损,提高烟机效率两方面的要求,使特大功率单级烟机效率不低于80%,双级烟机效率不低于84%,有效实现烟气的能量回收,节约电耗。1.2.2机泵和空冷器的节电措施机泵和空冷器在催化裂化装置内数量较多,通过必要的节能手段和措施,可以降低全装置电耗。对于流量或负荷调节频繁的机泵和空冷器,例如原料油泵、塔顶循环油泵、回炼油泵、油浆泵和部分空冷电机,可以增加变频器,通过调节变频器进而调节机泵流量或空冷负荷,达到节约电耗的目的。

1.3多产蒸汽措施

1.3.1余热锅炉优化设计为了最大限度利用烟气热能多产中压蒸汽,设计省煤器和过热器为积木式模块化结构,传热面采用传热效果较好的翅片管结构,翅片管基管材质采用抗弯曲、抗变形性能优良的20G钢,翅片材质采用抗腐蚀性能强、传热效果优良的ST12钢,增大传热面积并避免省煤器露点腐蚀;设计采用蒸汽吹灰+激波吹灰联合吹灰方案,即烟气温度较低、流速较慢和积灰较严重的省煤器段采用蒸汽吹灰器,利用其清除受热面结渣性强的积灰和熔点低的挂渣都有良好作用的特性;烟气温度较高、流速较快和积灰不严重的过热段采用激波吹灰器,利用其冲击波能量大,既适合松散性积灰又适合黏结性积灰的特性。蒸汽吹灰器采用现场人工操作,激波吹灰器采用PLC控制,定期自动吹灰。1.3.2蒸汽工艺流程优化设计本装置设置4个压力等级蒸汽,实现蒸汽热能逐级、高效利用:4.0MPa中压过热蒸汽由余热锅炉单元产生,部分外输至管网,部分供汽轮机使用;1.2MPa饱和蒸汽由4.0MPa中压过热蒸汽经背压式汽轮机产生,部分外输,部分供催化裂化装置自用;1.2MPa过热蒸汽由1.2MPa饱和蒸汽经再生器内过热盘管过热至420℃后供装置防焦、汽提使用;外输1.2MPa蒸汽经公用工程减压后打回气体分离装置使用,冷凝至凝结水罐外送管网。

2操作中的节能措施

2.1降低烧焦能耗措施

正常运行时焦炭产率的多少与原料性质有直接关系[5],随着原料中重质渣油的含量增多,胶质、沥青质和重金属含量也随着增加,导致装置焦炭产率上升,所以要严格控制上游装置原料中胶质和沥青质含量指标,控制原料残炭不大于设计值;根据小型自动加料系统均匀加入新鲜催化剂,严格控制再生催化剂活性在60左右,防止活性过高导致生焦量增大;准确加注金属钝化剂,用预提升蒸汽+预提升干气混合提升技术,干气可部分钝化重金属防止催化剂失活,焦炭产率上升;“低温进料、大剂油比”操作[6],进料温度不大于220℃,剂油比控制在5~7,防止过度裂化反应,降低干气和焦炭产率,提高液体收率;在正常加工负荷时,控制回炼比不大于0.05,停止油浆回炼,减少回炼油和油浆等结焦性能高的组分返回反应器,减少焦炭产率同时增加原料处理量,液体收率增加,同时降低能耗;严格控制雾化蒸汽和汽提蒸汽用量,减少汽提量进而减少烧焦量。

2.2降低电耗措施

根据装置实际运行状况,推算出主风量与三机组电机电流有线性关系,即主风多消耗100m3?m3(标准状态),电机电流增加15A,因此将再生烟气氧含量控制在4%~5%,又可达到完全烧焦也可节约电耗;根据实际加工负荷,推算出再生器压力与三机组电机电流有线性关系,即再生压力每提高0.01MPa,双动滑阀可关小1%(有裕度情况下),电机电流增加15A,因此可控制再生器压力尽量高,有效降低电耗;正常生产时,余热锅炉单元中压给水泵在80%生产负荷时可实现单泵运行,鼓风机在保证反吹效果时以最小负荷运行,节电效果明显;烟气脱硫单元氧化罐关停鼓风机[7],用系统非净化风代替,可实现外排水COD合格,节约电耗75kWh。

2.3多产蒸汽措施

因为4.0MPa中压蒸汽对装置综合能耗具有很大贡献,在运行过程中总结出多种增产中压蒸汽的操作方法:根据实际加工负荷,在保证吸收塔吸收效果的前提下,尽量控制吸收压力低,有利于降低气压机出口压力,可有效降低汽轮机4.0MPa中压蒸汽用量,或者通过提高塔顶循环量或降低塔顶循环温度,减少冷回流量或停止冷回流来提高气压机入口压力,亦可有效降低汽轮机4.0MPa中压蒸汽用量;关小甚至全关余热锅炉出口4.0MPa中压蒸汽至减温减压器阀门,最大限度多产中压蒸汽;装置低负荷生产时,在保证油浆固含量合格的前提下,适当降低油浆外甩量,提高回炼比,可提高再生温度,增产4.0MPa中压蒸汽;高温省煤器出水温度在不高于250℃的情况下控制尽可能高一些,有利于蒸汽发生器多产蒸汽;经过计算,余热锅炉出口4.0MPa中压蒸汽温度每下降5℃,可提高出口减温水用量,同时增产蒸汽3t?h,因此在保证余热锅炉出口4.0MPa中压蒸汽温度高于385℃(汽轮机入口温度)、品质合格的情况下,可以控制略低,达到增产蒸汽的目的;及时控制系统管网中压蒸汽压力不大于余热锅炉出口4.0MPa中压蒸汽压力。

3节能措施的实施效果分析

四川石化2.5Mt?a催化裂化装置于2014年1月一次开工成功,到目前为止,已正常运行12个月,各项实际运行指标单耗与设计单耗对比如表1所示。由表1可知,通过设计和运行中对焦炭产率、电耗和蒸汽产量进行节能优化,催化裂化装置各项指标能耗与设计值相比,均有不同程度的降低,其中烧焦单位能耗由3.4169GJ?t降至3.3361GJ?t,降幅为0.0808GJ?t;电耗单位能耗由0.2629GJ?t降至0.2328GJ?t,降幅为0.0301GJ?t;4.0MPa蒸汽产出单位负能耗由1.7012GJ?t增加至1.7422GJ?t,增幅为0.041GJ?t,在部分参数能耗小幅度增加的情况下,装置综合单位能耗总体下降0.124GJ?t,按照装置实际加工量2.5Mt?a计算,加工成本可降低4750万元?a,节能效果明显,经济效益显著提高。

4结论

节能降耗措施范文5

关键词:天然气 深冷 节能

一、装置概况

红压深冷装置以杏树岗地区四套浅冷装置外输天然气为原料,采用单级膨胀制冷与丙烷辅助制冷工艺,设计处理能力90×104m3/d,操作弹性80%~120%,设计轻烃产量191t~239t/d。

二、装置运行成本及能耗分析

1.运行成本分析

红压深冷装置作为大庆油田设计院自主设计的第一套天然气深冷分离装置,自投产以来,在低温膨胀阀、过滤器及冷箱等物料使用消耗巨大,主要原因为:

1.1低温膨胀降压套筒阀多孔式芯频繁堵塞,年更换费用高装置采用日本引进的多孔式低温膨胀降压套筒阀节流轻烃降压制冷。该阀由600余个φ0.5mm的孔隙构成,阀芯孔隙小,易被杂质、粉尘及水化物堵塞,需频繁更换阀座才能保证塔顶轻烃回流温度(回流温度视为影响轻烃收率的重要指标)。该阀芯年均更换4次,更换费用10.4万元。(见表1)

1.2过滤器滤芯更换费用高

装置脱水单元设计在增压单元前,为防止分子筛粉尘损伤压缩机,避免后续冷冻单元中分体式冷箱和换热器发生堵塞,共设计5台过滤器共105根滤芯,比分公司新投产深冷装置多一倍左右(见表2),该过滤器未设计反吹扫系统,无法再生滤芯,年均更换滤芯4次,共计420根,更换费用195.5万元。

1.3冷冻单元易发生水化物冻堵,导致甲醇消耗量大

装置运行中,冷箱、低温膨胀降压套筒阀等处经常发生水化物冻堵,需喷注甲醇进行化冻,年消耗甲醇量65吨(甲醇消耗量见表3)。原本可用爆破法对冷箱内杂质、粉尘进行吹扫,增加冷箱内天然气流通量,减少甲醇喷注次数,但由于冷箱热流两端没有设计爆破用短接,装置自投产以来一直无法实施冷箱换热器爆破及杂质清理。

2.能耗分析

自投产以来,红压深冷装置膨胀机、循环水和导热油系统的能耗问题比较突出。主要原因为:

2.1膨胀机处理气量小,同轴增压机增压能力不足

装置膨胀机组膨胀端设计处理气量3.8×104m3/h,实际运行中气量达到2.5×104m3/h时,膨胀机转速接近跳车值50100 rpm,为保证膨胀机运行,多余气量只能通过J-T阀旁路进入塔顶,同时加大丙烷支路制冷负荷,维持装置制冷深度。增大了丙烷机耗电量。

2.2装置停运期间,导热油和循环水系统无法停运

装置每年冬季按计划停运3个月,期间为了防冻需要,循环水及导热油系统无法停运,年增加循环水泵耗电量16.5万千瓦时、导热油泵耗电量4.5万千瓦时、燃料气消耗4万立方米。装置无法实现完全封闭,空耗大量能源的同时存在安全隐患。

2.3循环水换热器耗电量高

装置10台换热器全部采用循环水作为冷却介质,运行期间需启动3台循环水泵满足其用水负荷,电量消耗较大。

三、装置节能降耗措施

1.降低运行成本措施

开展降低运行成本技术攻关。一是通过低温膨胀降压套筒阀技术研究,延长阀芯使用周期;二是实施深冷过滤器反吹工艺系统改造,实现过滤器滤芯再生;三是开展冷箱吹扫技术攻关,降低装置甲醇喷注量。

1.1开展低温膨胀降压套筒阀技术研究

针对多孔式低温膨胀降压套筒阀芯频繁堵塞,年更换费用高的问题,对阀芯进行技术攻关。通过工艺分析、模拟,对对膨胀阀13层共520个节流孔阀芯进行激光钻孔,增大阀芯节流孔隙。

改造运行后阀芯节流温差一直保持在9℃以上,与设计温差(11.4~12.3℃)偏离较小。通过流通量等参数对比,确定改造后阀芯流量特性和调节特性能够满足工艺要求,长时间运行依然不堵塞,改造效果良好。装置年更换阀芯次数由4次减少至2次,节约更换费用约5.2万元/年。

1.2实施过滤器反吹工艺系统改造

针对深冷五台过滤器(F-102A/B、F-103和F-104A/B)无反吹系统,年更换滤芯费用高的情况,实施过滤单元改造。通过常压吹扫、带压吹扫及在线吹扫三种方式再生过滤器滤芯,使滤芯使用周期由原3个月延长至4个月,年节约成本33万元。

1.3开展冷箱吹扫技术研究

针对装置冷箱热流两端未设短接,无法实施冷箱爆破工作的情况,开展冷箱吹扫技术研究。在E-111冷箱两端管线上加装爆破用短接,对冷箱爆破吹扫,运行后E-111冷箱热流端压差由原来的103Kpa下降至41Kpa,年甲醇喷注量由35吨减少至15吨,改造效果良好。(见表5)

2.降低能耗措施

开展降低装置能耗技术研究,多项课题经科学论证实施后装置的节能降耗水平有了新提高。

2.1开展膨胀机增压扩能技术科研攻关

对膨胀机进行了结构与性能分析研究。应用分析软件CFD-ACE对膨胀机组气体流通部件模拟计算和内部测绘,研究机组综合性能。改造机组转子部件,重新设计制造了主轴、叶轮、密封盘、轴承等部件。项目实施后,膨胀机处理能力与增压机增压能力均明显提高,进一步降低装置制冷温度的同时降低了丙烷机负荷,年增产轻烃500吨,年节电90.6万千瓦时。

2.2开展循环水系统技术改造

通过对循环水泵扬程、冬季其他单位循环水需求量和换热器及附属管线容积等数据进行详细计算、分析及模拟,确定具体改造措施如下:

在循环水系统入、出口阀门处新增2块8字盲板,实现在冬季停运时装置循环水系统完全封闭;入出口管线新增1条跨线,实现循环水场对其他单位的循环水供给;新增2条排污管线,一条连接氮气,一条进行排污,实现换热器中及管线剩余循环水完全排放。

2.3开展导热油系统收油技术攻关,降低装置电耗及燃料气消耗

针对导热油系统无法停运的问题,开展导热油系统收油技术攻关。通过实施导热油冷冻试验、物料在线回收等技术措施,实现停运期内导热油系统停运,年节电4.5万千瓦时,节气4万立方米,进一步降低了装置的电耗及燃料气消耗。

2.4开展空冷器应用研究

对主压缩机一段、二段天然气出口换热器、丙烷冷凝器实施空冷化。利用东北地区优质自然冷源,为介质换热,降低了循环水泵负荷,年节电8万千瓦时。同时采用在线清洗技术,多次组织员工清洗主压缩机油冷器,保证了油冷却效果,提高主压缩机运行效率。

五、结束语

红压深冷装置节能降耗潜力很大,通过系统优化、深化工艺操作条件并结合新工艺、新设备、新技术的应用等都可以使装置取得良好的节能降耗效果,切实降低能耗,最终提高企业的经济效益。

参考文献

节能降耗措施范文6

关键词:火力发电 节能降耗 现状 措施

1.前言

我国的用电资源向来比较紧张而且发电企业中又以火力发电企业为主力军,由此可见火力发电在我国供电资源中的重要地位。火力发电拥有比较长的历史,发展时间最长并很有成效。然而,火力发电要想起真正作用,就必须要有足够的煤炭资源供应,这就无形中给环境造成很大压力,环境污染问题日益突出,影响了人们的正常生活。近年来,随着科技的不断进步和技术的不断革新,我国加大了对各种新能源、新替代材料的研究,并取得了很大的成果。这就给火力发电企业带来很大的机遇的挑战。火力发电企业必须加快对自身体制的改革步伐,淘汰落后的体制,积极部署和调整新的发展战略,高度重视节能降耗问题并制定相对应的节能减排措施,以便满足市场对其的需求,达到经济效益、社会效益以及生态效益的和谐统一,为企业的后续发展提供强有力的保障,促进企业的快速发展。

2.火力发电企业发展现状

与发达国家相比,我国的电能设备仍然比较落后并且在供电时所需消耗的能源量也很大,造成很严重的能源浪费。近几年我国的经济发展势头良好,综合国力也有了很大的提升,人们的生活水平得到了不断地改善,所以对生活质量提出了更高的要求。日常生活中用电的开支也不断增加,对用电提出了更高的要求,导致供电越来越紧张。而我国发电大多以活力发电为主,为了不断满足人们的需求,就需要消耗越来越多的煤炭能资源,再加上技术处理不当,大量污染物被不合理的排放,造成了日益严重的环境污染,反而进一步降低了居民的生活质量。其排放的大量气体又导致了空气污染,使得全球变暖问题越来越严重,严重威胁着生态平衡和安全,后果不堪设想。因此,提高资源的利用率,积极寻求解决火力发电节能减排的有效措施,具有十分重要的意义,刻不容缓。

3.火力发电企业节能降耗的有效策略

3.1 在输电时尽可能地减少电损耗和铁磁损耗

在输电过程中电损耗以及铁磁损耗的程度直接影响着火力发电企业节能降耗能否起到效果。因此,工作人员要高度重视输电过程中的电损耗和铁磁损耗问题,尽可能的减少电损耗和铁磁损耗,保证在交变磁场中尽量不要使用钢材料以免产生闭合回路造成不良影响。同时应该严把材料关,以便符合设计要求。对于导体金具来说做好选择性能较好的非导磁性材料;对于电抗器以及附近区域一定要把钢结构的使用控制在一定范围内以便符合相关技术要求,同时尽量在其附近区域尽量少用钢材料并保证电抗器和钢结构保持一定的距离,既不能过短,也不能过长以免超出规定的范围;如果是在强交变磁场的情况下,应该尽力满足钢结构设计要求避免出现闭合回路。另外,施工人员使用特高压输送电力这种方法输送电力,着样便可以极大的减少输电过程中的电损耗,达到节能降耗的目的,促进企业的发展。

3.2 提高企业以及相关人员对火力发电节能降耗的认识

火力发电对能源的过度消耗问题一直得不到人们的充分重视,这直接限制和阻碍了火力发电节能减排的工作的有效实施。因此,提高企业及相关人员对火力发电的认识显得十分重要。企业要加强对火力发电节能减排的宣传工作,积极探讨和研究火力发电节能减排的重要性和迫切性,并不断总结以往火力发电的优势和弊端,以便在此基础之上取其精华,去其糟粕,凝练出切合实际的节能减排措施,以便更好地指导工作,达到事半功倍的效果。

3.3 优化火力发电企业的运作方式

火力发电企业只有不断优化其运作方式,积极调整节能减排策略,在机组带稳定负荷的情况下或者是单机运行时应该采取相应的节能减排措施,并不断调整锅炉的燃烧,以便减少不必要的热损失,提高锅炉的使用效率,降低影响空气污染等气体的排放,减缓全球变暖的速度,提高企业的经济效益。

4.结束语

为了促进我国经济从传统的粗放型经济向集约型经济的转变,就必须高度重视节能降耗问题。不仅国家要不福安完善相关法律和法规,从整体上宏观调控以便促进资源的优化配置,而且火力发电企业必须不断优化运作方式,把节能减排作为其重要发展战略,并不断革新并采用性能较好技术先进的输电设备,提高资源的利用率,积极开发和使用节能减排的产品,以便促进其经济效益,社会效益,生态效益的和谐统一。

参考文献:

[1]戴日俊.火力发电企业节能降耗措施[J].内蒙古电力技术,2010,12(3):84-86.

[2]潘志强.火力发电企业低成本营运策略初探[J].能源环境保护,2008,5(z1):44-46.