工程化学课程范例

前言:一篇好的文章需要精心雕琢,小编精选了8篇工程化学课程范例,供您参考,期待您的阅读。

工程化学课程

应用导向的石油工程化学课程改革探索

[摘要]本文以长江大学石油工程专业大二某班为试点,以胶体系统为例针对应用导向的石油工程物理化学课程改革进行了初步探索与实践。笔者通过启发式教学方法引导学生思考、探索和自主学的方式开展了“教师引导,学生主体”的教学模式,努力做到让学生想“动”、会“动”,能“动”,培养学生自主发现规律,自主寻找方法,自主探索思路、自主解决问题的能力。同时基于此次实践存在的问题提出了优化时间安排、优化督促机制和及时更新教学理论等改进方法。

[关键词]胶体化学;物理化学;课程改革;启发式方法;自主学习

社会工业化及信息化的不断发展使对应用型人才的需求不断增加,应用型人才培养模式逐渐成为了大众化高等教育的重点发展方向。工科类高校以解决生产和工程需求为本,以应用和实践为重,承载着为社会主义建设培养和输送应用型工程技术人才的重要职责,在社会发展及经济建设中发挥着关键的作用,是“工程师的摇篮”。人才的培养离不开专业的教育。2020年9月,总书记在科学家座谈会上提到:“要坚持把创新作为引领发展的第一动力,加强创新人才教育培养。要加强数学、物理、化学、生物等基础学科建设……”。物理化学是四大基础化学之一,涉及热力学、电化学、胶体化学和动力学四大方面,主要是以物理学的理论成就为基础、实验技术为手段探索和归纳化学的一般规律及理论并应用于求解复杂工程问题,属于数学、物理和化学相交叉的边缘学科。该课程具有系统理论性强、逻辑变换复杂、抽象严谨、公式繁多等特点,但兼具启发后续课程学和培养化学理论素养两大功能[1],在促进产教融合中发挥着举足轻重的作用。

1物理化学课程定位

工科类专业以工程需求为本,以应用和实践为重。工科物理化学课程的层次介于基础课程和专业课程之间,在多数工科类高校属于专业基础课程,主要起服务专业的作用。物理化学课程具有完整的体系化特点,包含知识源头的基本问题、概念、定律以及实际应用,主要是用数学和物理学的相关方法探究化学中最具有普遍性的一般规律的学科,涉及宏观、微观不同尺度,动、静不同状态,固、液、气不同相态,要求学生具备必要的高等数学、大学物理、普通化学等方面的基础知识。该课程的教学目标主要是让学生建立完整系统的物理化学基本理论和方法的框架,使其掌握热力学、动力学、电化学及胶体化学中涉及的实验及普遍规律,并养成求真、求实的优良品德,培养工程意识、科学思维和创新能力,为从事与化学有关的工作打下坚实的理论基础[2]。对于此类“绿叶型”课程,教学重点应放在基础知识学和基础技能培养等方面。实际课程内容的取舍不应以是否新颖前沿为依据作取舍,当以在工程实践中是否实际可用为标准进行优化和筛选。工科类物理化学课程教学现状主要呈现出以下几个问题:(1)教学模式单一:教学以基础知识灌输为主,多采用教师为主体、学科知识为导向、灌输式的程序化教学模式。讲课ppt以文字居多,以理论居上,课堂氛围过于死板,师生互动少;(2)学生重视程度不够:由于缺乏理论与生活化物理化学案例的结合,无法有效体现物理化学的重要性和实用价值,吸引力不够,易给学生造成“用处不大、多学无益”的错觉;(3)授课周期短:授课周期受限,课程连贯性变差,课上思考、消化时间严重受限,学难度增大;(4)考核方式有待创新:学生自我约束力不够,教师对学生又缺乏监督,课后作业存在明显抄袭、雷同和“作业帮”现象,不能做到举一反三,导致了“课后都会,考试都不会”的巨大落差。美国能源情报署(EIA))最新报告显示,2015年至2040年,石油和天然气等化石能源继续主导的全球能源消费预计将持续增长28%。石油工程是根据油气和储层特性建立适宜的流动通道并优选举升方法,经济有效地将深埋于地下油气从油气藏中开采到地面所实施的一系列工程和工艺技术的总称,其直接目标是以最小代价最大限度地开采地下油气资源,服务于国民经济。我国是油气进口第一大国,2020年对外依存度分别为73%和43%,而且一些关键核心技术和装备仍存在“卡脖子”的风险。国内高校石油工程专业的开设主要是为了培养能适应石油战略快速发展需要,专业理论基础扎实,实践能力强,能在石油工程领域从事工程设计、生产施工、技术创新与应用研究等方面的高级应用型技术人才。油气采收率是衡量油气开采技术高低的重要指标,提高采收率技术的发展与创新也是石油与天然气领域永不褪色的话题。以长江大学石油工程专业为例,作为该校的老牌专业,物理化学课程的开设主要是为了服务于等油田化学原理、提高采收率原理等专业核心课程,不仅为体系和技术的创新提供了重要的基础理论支持,也为油田化学用剂的研发和优化指明了方向。然而受传统教学模式及教学方法的限制,使物理化学这类“绿叶型”课程的教学目的无法很好达成,其服务性的作用无法得到充分体现,因此推行物理化学教学改革具有现实必要性。本文结合长江大学石油工程专业的专业目标、学生素质和教师水平,以胶体化学部分为例,“因地制宜”、“因材施教”地开展了物理化学改革探索与实践,取得了一定的效果也发现了一些问题。

2教学设计(90分钟)

2.1基本概念引入

阅读全文

应用导向的石油工程化学课程改革

[摘要]本文以长江大学石油工程专业大二某班为试点,以胶体系统为例针对应用导向的石油工程物理化学课程改革进行了初步探索与实践。笔者通过启发式教学方法引导学生思考、探索和自主学习的方式开展了“教师引导,学生主体”的教学模式,努力做到让学生想“动”、会“动”,能“动”,培养学生自主发现规律,自主寻找方法,自主探索思路、自主解决问题的能力。同时基于此次实践存在的问题提出了优化时间安排、优化督促机制和及时更新教学理论等改进方法。

[关键词]胶体化学;物理化学;课程改革;启发式方法;自主学习

社会工业化及信息化的不断发展使对应用型人才的需求不断增加,应用型人才培养模式逐渐成为了大众化高等教育的重点发展方向。工科类高校以解决生产和工程需求为本,以应用和实践为重,承载着为社会主义建设培养和输送应用型工程技术人才的重要职责,在社会发展及经济建设中发挥着关键的作用,是“工程师的摇篮”。人才的培养离不开专业的教育。2020年9月,习总书记在科学家座谈会上提到:“要坚持把创新作为引领发展的第一动力,加强创新人才教育培养。要加强数学、物理、化学、生物等基础学科建设……”。物理化学是四大基础化学之一,涉及热力学、电化学、胶体化学和动力学四大方面,主要是以物理学的理论成就为基础、实验技术为手段探索和归纳化学的一般规律及理论并应用于求解复杂工程问题,属于数学、物理和化学相交叉的边缘学科。该课程具有系统理论性强、逻辑变换复杂、抽象严谨、公式繁多等特点,但兼具启发后续课程学习和培养化学理论素养两大功能[1],在促进产教融合中发挥着举足轻重的作用。

1物理化学课程定位

工科类专业以工程需求为本,以应用和实践为重。工科物理化学课程的层次介于基础课程和专业课程之间,在多数工科类高校属于专业基础课程,主要起服务专业的作用。物理化学课程具有完整的体系化特点,包含知识源头的基本问题、概念、定律以及实际应用,主要是用数学和物理学的相关方法探究化学中最具有普遍性的一般规律的学科,涉及宏观、微观不同尺度,动、静不同状态,固、液、气不同相态,要求学生具备必要的高等数学、大学物理、普通化学等方面的基础知识。该课程的教学目标主要是让学生建立完整系统的物理化学基本理论和方法的框架,使其掌握热力学、动力学、电化学及胶体化学中涉及的实验及普遍规律,并养成求真、求实的优良品德,培养工程意识、科学思维和创新能力,为从事与化学有关的工作打下坚实的理论基础[2]。对于此类“绿叶型”课程,教学重点应放在基础知识学习和基础技能培养等方面。实际课程内容的取舍不应以是否新颖前沿为依据作取舍,当以在工程实践中是否实际可用为标准进行优化和筛选。工科类物理化学课程教学现状主要呈现出以下几个问题:(1)教学模式单一:教学以基础知识灌输为主,多采用教师为主体、学科知识为导向、灌输式的程序化教学模式。讲课ppt以文字居多,以理论居上,课堂氛围过于死板,师生互动少;(2)学生重视程度不够:由于缺乏理论与生活化物理化学案例的结合,无法有效体现物理化学的重要性和实用价值,吸引力不够,易给学生造成“用处不大、多学无益”的错觉;(3)授课周期短:授课周期受限,课程连贯性变差,课上思考、消化时间严重受限,学习难度增大;(4)考核方式有待创新:学生自我约束力不够,教师对学生又缺乏监督,课后作业存在明显抄袭、雷同和“作业帮”现象,不能做到举一反三,导致了“课后都会,考试都不会”的巨大落差。美国能源情报署(EIA))最新报告显示,2015年至2040年,石油和天然气等化石能源继续主导的全球能源消费预计将持续增长28%。石油工程是根据油气和储层特性建立适宜的流动通道并优选举升方法,经济有效地将深埋于地下油气从油气藏中开采到地面所实施的一系列工程和工艺技术的总称,其直接目标是以最小代价最大限度地开采地下油气资源,服务于国民经济。我国是油气进口第一大国,2020年对外依存度分别为73%和43%,而且一些关键核心技术和装备仍存在“卡脖子”的风险。国内高校石油工程专业的开设主要是为了培养能适应石油战略快速发展需要,专业理论基础扎实,实践能力强,能在石油工程领域从事工程设计、生产施工、技术创新与应用研究等方面的高级应用型技术人才。油气采收率是衡量油气开采技术高低的重要指标,提高采收率技术的发展与创新也是石油与天然气领域永不褪色的话题。以长江大学石油工程专业为例,作为该校的老牌专业,物理化学课程的开设主要是为了服务于等油田化学原理、提高采收率原理等专业核心课程,不仅为体系和技术的创新提供了重要的基础理论支持,也为油田化学用剂的研发和优化指明了方向。然而受传统教学模式及教学方法的限制,使物理化学这类“绿叶型”课程的教学目的无法很好达成,其服务性的作用无法得到充分体现,因此推行物理化学教学改革具有现实必要性。本文结合长江大学石油工程专业的专业目标、学生素质和教师水平,以胶体化学部分为例,“因地制宜”、“因材施教”地开展了物理化学改革探索与实践,取得了一定的效果也发现了一些问题。

2教学设计(90分钟)

2.1基本概念引入

阅读全文

土木工程教学模式研究(9篇)

第一篇:高校土木工程生产实习教学模式研究

摘要:

在高校土木工程专业生产实习教学中,注重培养学生的实践能力,提高学生的创新意识。但是就目前来说,我国的大部分高校中,土木工程专业生产实习上还存在着一系列的问题,这样也就影响了土木工程专业的教学效果。因为为了转变这一现象,就必须要采取有效的教学方法,增强管理的效果,提高管理的质量。基于此本文针对高校土木工程专业生产实习教学模式进行了简要研究,并提出几点个人看法,仅供参考。

关键词:

高校;土木工程;生产实习;教学模式;研究分析

前言:

对于高校土木工程专业生产实习来说,是一项操作性较强的实践教学方式,其主要是帮助学生巩固好课堂上的知识,以此来丰富学生的实践操作技能,加深对于理论知识的理解,通过以培养学生动手能力为出发点,提高学生的工作能力,增强学生对问题的分析能力。且在土木工程专业教学中,主要体现出了专业的针对性与实践性。在素质教育背景的影响下,实现这一教学目标有着极为重要的意义。

阅读全文

大学化学课改及实行阐述

作者:宋文生 李平 单位:河南科技大学化工与制药学院

学校在1999年将“大学化学”课程列为校级教改项目,并随着2002年院校合并、专业调整,在2004年又将“大学化学”课程列入省级教改项目进行研究.通过几年的教改实践,在广泛调研和吸收国外先进教学经验基础上,对“大学化学”课程从教学内容和教学方法上进行了多方位改革尝试,以期探索新形势下“大学化学”课程的教学新模式.1课程名称的历史沿革大学化学,曾又名普通化学,与“GeneralChemistry”中文译法有关[2].1997年以前,与国内多数院校一样,河南科技大学将非化学化工专业化学课程称为“普通化学”.随着教育教学改革的深入,普遍认为“普通化学”译名掩盖了课程的真实教学目的、教育任务和教学内容.1997年,全国开展面向21世纪课程体系和教学内容的改革,河南科技大学借此对本科教学计划进行大调整,把“普通化学”更名为“工程化学”,并把“工程化学”列为各工科专业的必修课.但在实际教学中又发现“工程化学”的含义太窄,不能全面反映人们生产、生活、环境等各方面与化学的联系.表现在化学已经渗透到医学、生物学、物理学、农业科学、地质科学、计算机科学等诸多学科领域,并影响着人类的衣食住行、生老病死等社会生活的多个方面,化学社会化已成为当今社会的显著特点之一.因此,21世纪的高等化学教育势必面向全体大学生,化学课程应与大学物理、高等数学同等重要,属于非化学化工专业学生的素质教育课.为此,1999年将“工程化学”更名为“大学化学”.

课程教学目标

21世纪对工程技术人才的培养提出了更高的要求,更加注重培养学生的综合素质和创新能力.未来人才质量的差别,不仅在于专业知识和技能,更在于人才的基本素质,其中文化素质和创新能力居于重要地位.化学是研究物质的组成、结构、性质及其变化规律的一门基础自然学科,由于自然科学发展的日益微观化和交叉化,化学科学研究所涉及的内容日益广泛、深入和复杂,化学同其它学科相互渗透的关系日益密切.非化工类专业学生学习化学,不仅是学习化学知识,更重要的是学习化学思想以及分析问题、解决问题的方法[3].据调查,大部分报考工科院校的中学生实际在高中二年级后就不再学化学.而这些虽选考化学的中学生,大都考取的是非化学化工类专业,在大学里大都只有一门化学课.因此,大一化学课程的教学内容和培养要求就决定了非化学化工类学生今后所具备的化学素养,学生通过大一化学课程的学习在化学素质方面应比中学生有质的提高[4].考虑到目前中学化学课程的基本要求、中学生的实际水平以及大学中其他专业、课程的设置情况诸因素,将“大学化学”课程的教学目标确定为:通过本课程的学习,使学生熟悉化学的基础理论知识,掌握必要的基本实验技能,能以化学观点分析、解决专业和生活中出现的化学现象和问题,具备基本的化学素养.

课程内容优化与课程体系重组

依据“大学化学”课程的性质和教学目标,该课程的教学内容应注重理论联系实际,突出化学知识的科普性和应用性.简述化学反应的基本原理、物质的结构基础等基本理论知识,体现化学与多门学科间的交叉渗透及相互作用,反映化学在现代社会生活和工程技术中的应用新成就.为此,在课程教学内容方面进行了优化,重组了课程体系.教材是向学生传授知识、技能和思想的重要媒介,是提升教学水平和保证教学质量的前提,因此教材建设是全面实施“高等学校教学质量与教学改革工程”的重要一环.1998年以前,河南科技大学非化学化工类专业一直沿用浙江大学化学教研组编写的《普通化学》,1998-1999年,曾试用浙大陈林根教授编的《工程化学基础》,两种教材在内容编排方面虽各具特色,但随着高校的扩招、专业结构的调整,课程内容有待优化组合.为此,针对非化学化工专业特点,汇集多年的教学经验,结合该课程教学学时少,涉及专业面广的具体情况,吸取兄弟院校的经验,借鉴同类教材的成功之处,在广泛调查研究的基础上于自编了《大学化学》教材,在教学内容及组织编排上均作了较大调整.

1精简理论,强化实用随着化学学科的发展及其应用领域的扩大,化学理论知识也在丰富和加深,需要向学生传授的内容会越来越多.因此,针对非化工类专业学生多数仅需熟悉和了解化学知识的角度出发,大幅度精减了原《普通化学》中化学原理、物质结构、化学品制备、计算和检测等方面的内容,适当保留了必要的化学基本理论,充实了应用型实例和科普性化学知识,尤其是精选了常见的和具前沿性的应用实例,补充了与化学学科相关的材料、环境、能源和生命等学科的内容.

阅读全文

工程教育专业认证高分子专业核心课程

[摘要]工程教育的专业认证是为了推进我们国家工程教育改革,增强人才培养对国内产业发展的适应性,为国内工程专业学生走向世界提供国际互认质量标准的“通行证”。以工程素质和工程能力为导向的高分子课程教学改革势在必行。将高分子化学、高分子物理、聚合合成工艺学、聚合加工原理与工艺从整体考虑,以课程群建设为目标,对教学内容进行整合和优化,充分发挥课程群结构整体功能效益。

[关键词]高分子专业;核心课程群;工程教育

当今社会发展需要研究型、工程技术型、职业型的高分子材料与工程专业人才。高分子专业以专业认证为背景,培养出具备高分子科学与工程基础知识、专业知识,具备国际视野,并在高分子材料领域中从事科学研究、技术开发等全面发展的高级工程人才。[1-2]因此,设置合理的课程是高分子材料与工程专业实现人才培养的目标基础,专业核心课程是课程体系的关键和基础,对专业人才培养具有主导作用。强化高分子化学、高分子物理、高分子合成工艺、聚合反应工程、聚合物加工工艺学等专业核心课程的整合与关联,目的在于使学生通过高分子核心主干课程的学习,指导科研和生产实践活动,达到适应国内工业发展,接轨世界专业技术人才的能力。[3-5]目前已有基于工程教育专业认证下的高分子课程的改革,但很少有以核心课程群的方式进行建设。我校高分子材料与工程专业的师资力量雄厚、业绩突出、具有良好的教风和学风,且近几年的毕业生一次就业率均在95%以上,因此我们专业开始启动工程教育认证工作。将工程教育专业认证“以学生为中心、以产出为导向、质量持续改进”的基本理念应用到高分子材料专业核心课程改革建设中,以工程素质和工程能力为导向的高分子课程教学改革势在必行。将高分子化学、高分子物理、聚合合成工艺学、聚合物加工原理与工艺从整体考虑,以课程群建设为目标,对教学内容进行整合和优化,充分发挥课程群结构整体功能效益。因此,基于工程教育专业认证的高分子专业核心课程群的建设从以下几点内容进行介绍。

1优化整合核心课程体系

当今,不同学科之间相互交叉、渗透,将课程与课程的内容进行紧密的联系,确保其中逻辑性较强并属于同一培养能力范围内的整体才是课程群。以高分子化学为核心的课程群建设既要保证其基本理论知识,也要顾及该专业其他课程知识点的全面发展与交叉应用,促使学生们能够系统地掌握高分子专业的科学理论并给予实际运用。以高分子化学课程作为核心课程群的基础,那么其他专业课程定为其子课程,各课程间相互联系并层层递进,课程群形成一个系统化的知识体系。在该体系中,每门课程的教学重点、学时进行重新分配,课程之间的重叠的教学内容可以在某一个课程中适度增删、合并。对于容易混淆的知识,学生理解掌握困难,可将其作为一个知识模块,合理地调整优化、精心组织和选择教学内容,讲授内容条理清晰,丰富课程群的内涵。课程群的建立既要各部分内容独立、又要互相渗透,在课堂教学时数不变的前提下,整合教学内容,删减陈旧落后的内容,增加前沿科学研究。引导学生将相对独立的课程融通和衔接,将高分子化学、高分子物理基础理论与工程实践紧密联系的聚合合成工艺学、聚合加工原理与工艺结合在一起,能够更好的提升我校高分子材料专业毕业生的总体实力和国际竞争力。

2建立效果良好的教学方法

计算机技术的飞速发展为“互联网+”基础上的在线开放课程提供了强有力的支持,既能拓宽教学时空,又能扩大优质教育的受益面,在教学内容、课程体系改革等方面具有举足轻重的促进作用。它给高等教育教学改革发展带来了新的机遇和挑战。《高分子化学》课程是高分子学科,如高分子材料与工程、复合材料以及包装印刷这些专业的专业基础课。它主要研究了高分子的合成与反应,是高分子材料的设计合成与加工应用的基础。高分子化学本身比较抽象,概念碎而多并且比较相似,所以在学习过程中学生容易混淆,理解难度增加。工程教育认证与互联网教学不仅具有融合的外在需要,而且具有融合的内在可能。鉴于互联网教学已逐渐被各高校作为教学改革的重要手段,为保证学生培养质量,应该积极主动地将其纳入工程教育认证的轨道。如何基于“互联网+”建设好高分子化学课程,丰富以高分子化学为核心的课程群的教学资源,促进优质教育资源开发与共享,深化教育教学与人才培养模式改革,提升教育教学质量,目前,高分子化学教学团队已经对高分子化学课程中的知识点的PPT和教学视频制作完成,并上传到超星泛雅平台建立《高分子化学》的网络课程,在学银在线平台上线,供校内外的学生学习。另外,利用互联网技术实现教学环境“工程化”,比如让企业导师报告制作成视频,形成“微课”或“慕课”,可在课堂上根据教学内容随时插入,也可让学生在课余时间反复观看。线上学习与线下引导有机结合,互联网教学的线下引导,师生互动机会更多,程度更深,更容易对学生产生影响。

阅读全文

提升材料化学教学成效

作者:刘志明 单位:东北林业大学材料科学与工程学院

绪论是引导学生快速进入材料化学主体内容比较关键的部分,在绪论这章应该让学生尽快对材料化学这门课程的一些基本概念、材料化学的主体内容范围及其地位和作用以及一些学习方法,包括思维方式的转化和训练方面有一些了解,同时由于是双语教学,不断渗透英语教学内容仍是主体,所以在绪论内容设计上,逐步导入英文教材内容,用英语表述一些概念,对概念的理解上,采取中英文表述,主要是照顾英文理解较差的学生,同时给学生一个适应的过程。在“以学生为本”的教学理念下,对材料化学绪论内容进行设计和实践,以下是教学实践中的尝试和总结,以其今后更好地进行材料化学课程双语教学,教学方法上“重视学”,“以学生为本”,提高教学质量,实施以培养能力为中心的素质教育。

材料概念的导入

1材料的定义有关材料的定义有以下几种:材料是具有结构、光、磁、电的用途的物质(Matterisamaterialwhenthatformofmatterhasstructural,optical,magnetic,orelectricuse)。材料是能为人类社会经济地制造有用器材(或物品)的物质(Matterisamaterialwhenthatformofmattercanbemanufacturedintousefulobjectseconomicallyforthehumansociety)[13]。材料是人类用来制作物件,如用具、工具、元器件、设备设施、系统等的物质。《辞海》给材料下的定义是:经过人类劳动所取得的劳动对象称为原料,而经过工业加工的原料如钢材、水泥等则称为材料[14]。这是以往对材料的定义,随着时代的发展,材料基本含义没有太大变化,内容上丰富许多。与时俱进,现在采用英文教材的最新定义,是需要学生理解和掌握的。英文教材的定义为:材料可广泛定义为可用于解决当前或未来社会需要的任何固态组件和设备(Thetermmaterialmaybebroadlydefinedasanysolid-statecomponentordevicethatmaybeusedtoaddressacurrentorfuturesocietalneed)[15-16]。例如,钉子、木材、涂料等解决我们住房需求的简单建筑材料(Forinstance,simplebuildingmaterialssuchasnails,wood,coatings,etc.addressourneedofshelter)。

2材料的分类材料分类有很多种,现代材料一般分为金属(metals)材料,高分子(polymer)材料如塑料、橡胶、纤维等,无机材料如陶瓷(ceramics)、玻璃、水泥、砖瓦等和复合(composites)材料四大类[17]。英文教材将材料分为天然的(natural)和合成的(synthetic)两大类材料。天然的材料分为无机(inorganic)和有机(organic)材料。无机天然材料包括矿物(minerals)、黏土(clays)、砂(sand)、骨(bone)和牙(teeth)。有机天然材料包括木材(wood)、皮革(leather)、糖(sugars)和蛋白质(proteins)。合成的材料包括大块(bulk)、微米(microscale)、纳米(nanoscale)材料。大块(bulk)材料包括非晶态(amorphous)和结晶(crystalline)材料[15-16],这种材料分类更贴近材料化学的定位。

3复合材料复合材料广义上是指由两个或多个物理相(以微观或宏观的形式)所组成的固体材料。狭义上是指用高性能玻璃纤维、碳纤维、陶瓷纤维、晶须、芳香族聚酰胺纤维等增强的塑料,金属和陶瓷材料等。国际标准化组织把复合材料定义为由两种以上物理和化学上不同的物质组合起来而得到的一种多相固体材料[18-19]。

4新材料与功能材料为适应国民经济、科学技术与国防建设的发展,满足生产力发展与社会进步的要求新近出现或研发出来的、或正在发展中、具有传统材料无法比拟或更为优异的性能之各种新型材料,均称为新材料。新材料一般具备表征性、先导性、依托性、时间性、优能性和新颖性6个特征[14]。材料通常可分为结构材料与功能材料两大类。结构材料是以强度、刚度、韧性、塑性、耐磨性、硬度等力学性能为其基本特征,用于制造以承受重力或传递应力为主要服役方式之结构构件的材料。功能材料则是具有特殊物理性能、化学性能或生物学性能等,主要用于制造各种功能元、器件的材料[14,20-21]。1965年,美国贝尔实验室Morton博士提出功能材料的概念,20世纪70年代日本材料科技界完善确立,20世纪80年代在我国逐渐被人们接受。功能材料的定义,国内外尚无统一定论,国内比较一致的定义,功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理学、化学、生物学效应,能完成功能相互转化、并被用于非结构用途的高技术材料。这些材料在元件、器件、整机或系统中,可实现对信息与能源的感知、采集、计测、传输、屏蔽、绝缘、吸收、贮存、记忆、处理、控制发射和转换等目的[14]。

阅读全文

大学基础化学教育教学探析

摘要:大学基础化学是高校化学专业必修课程,它是面向非化工类专业的一门基础课程。院校要根据化学专业的特点,突出基础化学的重点、难点、热点,加强实验教学,培养学生的思维和动手实验的能力,以满足社会、企业的需求。

关键词:大学基础化学;教学;重点;难点;实验

大学化学是面向非化工专业(如材料、冶金以及环境等专业)的一门基础课程,其主要目的是培养社会需求的全能人才。一般情况下,大学一年级便有大学基础化学课程,大一新生已经接受过四年的化学学习。教师如何转化学生基础的化学学习,升华成高等教育基础化学成都为当下教师要解决的问题。

1抓住要点提升大学基础化学教育

化学是一门古化但又有发展潜力的学科,教学资源多而杂。化学学科本身就具有研究性。随着学科的发展演变,化学也与物理、生物等联系到一起,形成交叉性学科,为现代科研做了尝试的努力。大学化学教育是在中学化学内容上的提升,大学基础化学先从内容浅的热力学开始,然后是定容热效应、定压热效应、热力学三大定律。在中学阶段,学生已经接触学习了阿伦尼乌斯电离理论的酸碱定义,大学阶段的课本引入布朗斯特和路易斯酸碱理论、酸碱电离平衡反应、缓冲溶液以及配离子的解离平衡反应。大学基础化学还引入了中学阶段的溶解度概念,从深层知识剖析电解质的多相离子平衡反应。大学化学重点介绍氧化还原反应的应用,化学能转化为电能的过程,电极反应、电极电热、原电池的热力学等知识。大学化学的电子云和周期表被归纳到物质结构部分,课本中也做了大量的说明和解释,学生可以阅读此类知识,学生要了解采用波函数和四个量子数来描述原子轨道等。大学基础化学知识是层递关系,学生要由浅入深的学习,从微观到宏观的学习。

2激发学生学习基础化学的兴趣

对于非化学化工类专业学生来说,激发学生的学习兴趣是关键。教师要授课时要紧密结合化学专业的特点,带领学生融于化学知识的海洋。例如,环境专业的学生,要让学生明白环境保护的原因,环境保护已经成为国际性关注的严重问题,它能直接威胁到人类的生存。教师要向学生深入剖析水污染的危害,大气污染和全球气候变暖的原因等热点问题。如何采用有效措施去遏制这个危害。对于大学化学专业的学生来说,教师首要的任务是在向学生讲解化学难度大的知识点时,要转化授课方式,降低学生的学习困难的心理素质,引导学生探索神奇的化学知识。这种攻克难关的教学方式,会使学生由被动变为主动学习。教师也能改变单板的授课格局,讲解、思考、讨论、结论逐一进行。在课堂上,学生要勇于发表自己的观点,教师要对症下药。例如,教师在向学生讲授元素周期表时,结合国际性科技、科研成果,让学生接触到最新的化学科学研究,激起他们的求知欲望,同时也让学生跨领域学习专业知识。学校可以定期聘请国内外优秀的化学领域学者、专家来校做演讲,指导学生学习化学。通过一些化学科研成果,向学生展示化学能够解决人类的哪些问题,这样更能促进学生的学习热情。

阅读全文

物理化学课堂教学改革探讨

[摘要]本文结合物理化学的课程特点和近几年教学经验,从多方面探讨了物理化学的课堂教学改革。实践证明:学生对课程的重视和兴趣,多种教学手段并用,师生课堂互动和理论联系实际应用可明显提高物理化学的课堂教学效果。

[关键词]物理化学;课堂教学改革;教学手段

物理化学是在物理和化学两大学科基础上发展起来的。它以丰富的化学现象和体系为研究对象,大量采纳物理学的理论成就与实验技术,探索、归纳和研究化学的基本规律和理论,构成化学科学的理论基础,也是本科教学中四大基础化学之一[1]。物理化学的形成与进步得力于数学、物理学两大基础科学的基本理论与技术,同时反过来也推动了它们的发展,丰富了它们的内涵。物理化学的水平在相当大程度上反映了化学发展的深度。对于非化学相关专业本科生,例如:建筑工程、环境专业,物理化学也是这些专业的必修课程之一,并且我校安排的授课学时为48学时,授课时间为一学期。目前各化学基础课的学时在缩减,而对学生创新能力和素质的要求则在提高,这就要求对基础课教学内容大胆改革,与时俱进,不断地进行整合与更新。由于该课程是一门概念性、理论性、系统性和逻辑性都很强的学科,涉及的公式多,应用条件严格,且比较抽象,因而对于本科初学者感觉《物理化学》难学难懂,就连教师也感觉难教难讲。在这种情况下,如何使得教师讲好此门课程,充分带动学生的主观能动性,提高教学质量?通过《物理化学》课程的学习,培养学生新的思考问题,解决问题的能力,培养学生独立工作能力,培养学生更多、更好地掌握新的理论、新技术的能力。因此,主要在以下几个方面做了些有益的尝试。

1强调学习物理化学的重要性

对于非化学化工专业的学生来说,物理化学不属于本专业的基础课程,所以学生会有只要考试考及格就可以的想法。面对这种局面,教师在上课的时候就要首先强调物理化学课程的重要性以及与学生专业的相关性,以期改变学生的这种想法,这对以后的上课是非常有益的。目前对化学分为“无机化学、有机化学、分析化学、物理化学”四个分支,有人比喻说:无机化学、有机化学是化学的躯体,分析化学是化学的眼睛,物理化学是化学的灵魂,可见物理化学的地位有多重要。这些学生虽然没有接受化学专业学生系统的各种化学基础课的学习,但是大部分学生都学习过无机化学或者工程化学基础,这些课程里面已经包含了简单的物理化学基本知识,特别是热力学的一些基本知识[2]。物理化学的任务是把化学领域中各种现象联系起来,对其中的一般规律予以更深刻、更本质的探讨,所以学生学习起来会有种看不见、摸不着、抽象难理解的感觉。所以,教师的第一堂课是非常重要的[3],根据学生手中的课本,简单介绍各章节内容之间的联系,使学生对整个课程安排有个基本的了解。同时,由于物理化学概念多公式多,学生按照以往死记硬背的学习方法达不到较高的学习效率。所以,第一堂课中教师要帮助学生建立正确的学习方法,使学生尽快地进入物理化学的学习状态。

2多种教学手段并用

随着近年来多媒体教学在课堂教学中的普及,从小学到大学,多数教师上课时会使用多媒体教学[4]。多媒体教学的关键是课件制作。每个教师都有自己独特的教学风格,因此教师自己编制课件也会体现自己的教学风格,使课件具有自己的特色。这在教师备课的过程中尤为重要,通过自己制作课件,可以有意识地突出课程的重点、难点,并将各种知识按照自己的习惯连贯起来,这样在讲课的时候才会得心应手。目前,各门课程在网上的课件都有很多,很多教师会直接下载网上的课件或拷贝其他教师的课件,这对于课程整体的把握没有帮助,因此教师自己制作课件也是对课程系统性和连贯性的把握。任何新生事物有利也有弊,多媒体教学也不例外。经过大量的教学实践,多媒体教学的弊端也显现了出来。例如,信息量过大,导致学生对文字、公式的印象不深;课件讲解太快,不利于学生理解和简化晦涩难懂的数学公式,缩短了学生的思考时间。同时,这门课程的内容又较多较难,48学时仅仅够教师按照课件快速讲解。如果多些板书或者讲解再深入些、和学生互动多些,那么这些学时就完全不够了。为了尽量避免这些弊端,作者在授课时会采用多媒体和板书相结合的方式,特别是一些难点、重点,边讲边板书可以放慢讲解速度,使学生有足够的时间思考,有助于学生对各知识点间的逻辑关系有清楚的理解。按照学校的教学大纲要求,在教学时所有知识点都要涉及,但是可以选择性的将一些重点、难点课上详细讲解,而一些易懂易学的内容留待学生自己学习,教师讲课时可以尽快的一带而过,这也锻炼了学生自学的能力。

阅读全文