隧道施工总结范例6篇

隧道施工总结

隧道施工总结范文1

实习单位:铁城监理公司

实习地点:

实习者:

一、公司简介

监理有限责任公司的前身是成立于1996年1月的中国铁道建筑总公司建设监理分公司,1998年11月完成股份制改革。9月进一步完善法人治理结构,设立了董事会和监事会。公司机关驻北京市区40号。新建高速铁路-4:dk174+800--dk291+427路基长24660米;桥梁46座20795延米;隧道39座73416米,其中控制工程逻皓隧道长7426米,那国隧道3895米,坡录元隧道长11925米;南昆线六塘站改造;包括百色、阳圩2个车站,设田阳梁场。

二、实习目的通过实习,对高速铁路隧道工程建筑整个施工过程有较深刻的了解;

2、理论联系实际,巩固和深入理解已学的理论知识(如测量、建筑材料、建筑学、建筑结构、建筑施工等);

3、通过亲身参加施工实践,培养分析问题和解决问题的独立工作能力,为独立参加工作打下基础;

4、通过工作和劳动,了解隧道工程施工的基本生产工艺过程(土石方、钢筋混凝土、等)中的生产技术技能;

5、了解目前我国施工技术与施工组织管理的实际水平,联系专业培养目标,树立献身社会主义现代化建设、提高我国建筑施工水平的远大志向;

6、与工人和基层生产人员密切接触,学习他们的优秀品质和先进事迹。

三、实习要求认真按时完成实习指导人员和指导教师布置的实习和调研工作;

2、每天写好实习日记,记录施工情况、心得体会、革新建议等;

3、对组织的专业参观、专业报告都要详细记录并加以整理;

4、实习结束前写好实习报告,对政治思想和业务收获进行全面总结;

5、对实习指导人员和指导教师布置的“专题作业”要及时完成并写出报告;

6、利用业余时间,结合本工地或本地区自选专题进行社会调查,写出报告。

隧道施工总结范文2

关键词:灰岩白云岩地质 隧道 光面爆破 施工技术

中图分类号:U455.6 文献标识码:A 文章编号:1672-3791(2013)01(b)-0068-02

1 工程概况

团寨隧道位于贵州省都匀市西郊,全长2013.93 m,最大埋深约300 m。设计为客专双线隧道,设计时速250 km/h。隧道开挖断面约140 m2,净宽约12.8 m,净高约8.7 m。全隧穿越的围岩以较完整的灰岩、白云岩为主,其中有III级围岩1039 m。下面就灰岩白云岩地质隧道的光面爆破施工技术做如下总结。

2 超欠挖影响

严重的超欠挖会浪费资源、增加成本、加大施工难度,主要表现在以下几点。

(1)增加弃渣量,浪费机械和增加耗时。

(2)超挖部分回填,增加混凝土用量和加大工程量。

(3)欠挖直接影响衬砌结构厚度,处理费工、费时、耗材。

(4)超欠挖形成的褶皱面,既影响外观质量,又不利混凝土喷射、防水板铺挂,致使工序难以正常衔接,不利于施工组织。

(5)局部严重的超欠挖会产生应力集中,影响围岩的稳定能力,岩体易崩落、掉块,给施工造成安全隐患。

要尽量减小由于超欠挖带来的不利影响,必须针对不同的围岩地质,选取适宜的爆破参数。

3 光面爆破参数选择

团寨隧道设计要求III级围岩采用上下台阶法施工,III级围岩段隧道主要以较完整的灰岩白云岩地质为主。在实际施工中,上台阶高度为7.63 m。

光面爆破的主要参数有:不耦合系数(k)、最小抵抗线(W)、周边眼间距(E)、周边眼密集系数(μ)、和装药集中度(γ)。

3.1 不耦合系数(k)

3.2 最小抵抗线(W)

最小抵抗线即光面层厚度,光爆效果的好坏,除受周边眼间距的周边装药结构参数的影响外,更主要受到最小抵抗线的影响,光面层厚度不仅影响周边眼裂纹的形成,而且还影响着光面层的破碎和开挖后隧道围岩的稳定,因此确定合理的光面层厚度对提高光面爆破效果有积极的作用。

3.3 周边眼间距(E)

周边眼原则上应布置于设计轮廓线上,施工中因受凿岩机机型的限制,同时为方便施工,需向外偏斜3°~5°,使眼底落在轮廓线外10 cm处。

确定周边眼间距E值,根据试验,光爆周边孔间距一般为E=(8~18)d(d为炮眼直径)。团寨隧道炮眼直径d=42 mm,根据软岩和层理节理发育的岩层眼间距应小而最小抵抗线应大、坚硬稳定的岩层眼间距应大而最小抵抗线应小的原则,验算确定E的取值范围为10~13 d,再经现场爆破试验最终确定周边眼间距E取值为50 cm时,能有效控制爆破轮廓,减少超欠挖。

3.4 周边眼密集系数(μ)

周边眼密集系数是指孔距E与最小抵抗线W之比值,即μ=E/W。μ值的大小,对光面爆破效果影响最大,下面从三种不同情况进行说明。

(1)当μ=E/W≈2时,孔间距值E偏大,而W值偏小,爆破后形成两个单独的爆破漏斗。

(2)当μ=E/W≈1时,如果两炮眼同时起爆,压缩波到达自由面前,即可完成孔间裂隙的贯通,形成光面。如不同时起爆,另一炮眼起临空面作用,也可达到光面爆破效果。

(3)当μ=E/W≈0.5时,不管是否同时起爆,压缩波到达自由面时,首先到达相邻炮孔,不仅产生裂缝,并使该孔岩石深度破坏,对岩体扰动大,也极易造成超挖,达不到光面爆破的效果。

实践表明,当μ=0.7~1.0时,爆破后的光面效果较好,硬岩中取大值,软岩中取小值。在团寨隧道施工的III级围岩开挖时,μ取1.0时光爆效果最好。

3.5 装药集中度(γ)

装药集中度是指单位长度炮眼中装药量的多少(g/m)。为了控制裂隙的发育,保持新壁面的完整稳固,在保证沿炮眼连心线破裂的前提下,尽可能少装药。软岩中一般可用70~120 g/m,中硬岩中为120~300 g/m,硬岩中为300~350 g/m。

4 炮眼数量及装药量参数设计

4.1 炮眼数量

4.2 每循环装药量

5 掏槽眼形式

由于开挖面积较大,施工中采用楔形掏槽。炮眼与开挖面间的夹角α、上下两对炮眼的间距a、同一平面上一对掏槽眼眼底间距b,是影响掏槽效果的重要因素,施工中夹角α取75°,a值取50 cm,b值取65 cm。

结合上述方法,亦可计算出下台阶爆破参数。总结III级围岩每一循环爆破参数见(表1)。

6 起爆网络设计

爆破振动与同段起爆的炸药量密切相关,采用非电毫秒雷管微差起爆技术,不但控制单段雷管的起爆药量,又能有效地控制每段雷管间的起爆时间,使爆破振动波不叠加。这样既能保证岩石破碎达到理想爆破效果,又能消除爆破振动的有害效应。隧道采用孔内同段、孔外微差的起爆网络,在掏槽眼、辅助眼、底板眼及周边眼中,起爆药量较大段别雷管间隔时差不小于20 ms,起爆雷管采用国产系列非电毫秒雷管,这样可以使爆破振动速度降低30%。使用非电毫秒延时雷管段别1、3、5、7、9、11、13、15,起爆顺序为:掏槽眼—辅助眼—周边眼—底板眼。

7 起爆效果

8 主要施工机械设备及人员配置

(1)YT-28气腿式凿岩机15台,人员16人。

(2)电动空压机20 m3的4台。

(3)开挖台架一个。

(4)火工品:乳化炸药、毫秒雷管。

(5)ZL50装载机2台。

(6)15T自卸汽车4辆。

(7)卡特220型挖掘机。

9 施工注意事项

(1)测量人员严格按钻爆设计图进行测量放样,准确定出炮眼(尤其是周边眼)的位置。

(2)辅助眼及周边眼孔底要尽可能保持在同一平面上,以获得爆破后较平整的掌子面,方便下一循环施工。

(3)为了减少振动、飞石及噪声,保证洞内初期支护及作业安全,炮孔加强堵塞,避免飞石溢出,降低噪声,减弱振动,并让机械、人员撤出安全距离。

隧道施工总结范文3

关键词:地铁;隧道;施上:监控量测

0引言

现行《地铁设计规范》规定[1],两条平行隧道的净距不宜小于隧道外轮廓直径,在设计阶段,小间距隧道方案应尽量避免。但是,由于线路周围的既有建筑物基础、既有构筑物、既有隧道和其他条件约束,有时不可避免地采用小间距隧道方案。随着城市建设的发展和地铁线路的增多,小(超小)间距隧道工程不断出现[2-4]。

超小间距隧道施工,现行《地下铁道工程施工及验收规范》没有涉及,更无成熟的“工法”参照。因此,研究地铁小间距隧道的施工技术成为急迫的任务。广州市轨道交通三号线岗石区间隧道,两洞之间净距为0-195 mm,属浅埋超小间距隧道工程。本文根据广州地铁三号线岗石区间超小间距隧道工程实践[[5],分析了小间距隧道围岩力学特征,以及地铁小间距隧道的技术难点和对策,总结了地铁小间距隧道的施工方法、施工工艺和技术措施。

1小间距隧道围岩力学特征

岗石区间超小间距隧道左右线均采用上下台阶法施工,左线隧道先掘。施工过程中的监测结果表明,右线隧道开挖引起先掘的左线隧道围岩应力剧烈变化,隧道偏压显著。

1. 1围岩应力状态复杂,施工中变化剧烈

监测表明[2],右线隧道开挖引起先掘的左线隧道围岩应力剧烈变化。左线隧道ZDKS+823断面,由于右线上台阶开挖,两隧道间土体从较大的拉应力状态快速增大为很大的拉应力状态,再快速下降成为较小的拉应力,直至压应力。

右线隧道开挖引起两隧道间围岩内存在拉应力状态。土体和风化岩体的抗拉强度极低,拉应力状态的存在使隧道围岩处于极为不利的应力状态。因此,施工中保证支护与围岩密实接触是十分重要的。

格栅钢筋应力和地表下沉等量测结果也与上述收敛、围岩应力量测结果相互印证。

2偏压显著

超小间距隧道施工过程中隧道偏压显著,左线隧道ZDKS+823断面,在右线隧道开挖后,靠右线拱腰围岩应力远小于另一侧拱腰,见图1、图2e靠右线帮脚和底板存在较大的拉应力,而另一侧应力很小,见图2。

左线隧道ZDKS十810断面,在右线隧道开挖后,靠右线拱腰围岩应力远小于另一侧拱腰。靠右线帮脚处围岩应力持续增加,远大于另一侧帮脚,形成显著偏压。随着隧道开挖过程进行,格栅钢筋应力和围岩应力变化明显,分布复杂;特别是两隧道之间的T型土体和相邻的两侧初期支护应力变化剧烈,状态复杂。

2岗石区间超小间距隧道施工

2. 1施工难点

根据广州地铁三号线岗石区间超小间距隧道工程和其他小间距隧道工程实践[2-5],地铁小间距隧道施工必须妥善解决以下技术难点:

(1)先掘隧道对后掘隧道的偏压影响;

(2)后掘隧道对先掘隧道的扰动影响;

(3)两隧道中间T型土体在两次开挖扰动情况下的稳定;

(4)两条隧道先后开挖引起的地面沉降等围岩变形控制;

(5)软弱岩土体问题:地铁隧道一般处于上体或风化岩体内,强度低,性质软弱,易受水的影响;

(6)浅埋问题:地铁隧道一般埋深较浅,属浅埋隧道。两条隧道先后开挖,容易引起地面沉降量过大等问题。

2. 2施工方法与技术措施

根据上述地铁小间距隧道的围岩变形特点和技术难点,设计、施工中必须尽可能减少对围岩的扰动,特别是对中间土(岩)体的扰动。同时,支护强度和刚度要大,支护结构的整体性要强,以限制围岩变形,保持围岩自身强度和承载力,促使围岩一支护系统及时达到长期稳定。而且,要减少和控制先掘和后掘隧道开挖时的相互影响。总体目标是,合理利用围岩自承能力,保证围岩与支护结构共同作用。

因此,地铁小间距隧道施工中,采用单一的、单方面的或局部的方法、措施难以达到上述目标和要求。而应在施工方法、施工工艺、支护形式与参数、特殊施工方法的应用等方面采用综合性技术、措施,其要点如下:

(1)施工方法主要采用台阶法、单侧壁导坑法或两者组合,并控制循环进尺;

(2)控制和减小开挖对围岩的扰动;

(3)左、右线隧道开挖面错开一定距离;

(4)提高支护的强度、刚度和整体性,控制围岩变形;

(5)两隧道前方土体和两隧道间T型土体预加固;

(6)加强先掘隧道支护,及时施做先掘隧道的二次衬砌,促使围岩一支护系统及时达到长期稳定;

(7)及时施做仰拱,形成封闭支护结构;

(8)监控量测,信息化施工。

2.3岗石区间超小间距隧道施工[5-7]

广州地铁三号线岗石区间超小间距隧道工程,一次支护为喷锚网与格栅钢架,二次衬砌为钢筋混凝土,支护参数见表1。

施工中,采用了综合性技术、措施,顺利完成该隧道工程。综合性技术、措施除表外,左右线均采用上、下台阶法,开挖进尺0.5 m,人工和静力破碎剂开挖;及时施做仰拱,形成封闭支护结构;左、右线隧道支护多道相互连接,强化支护结构的整体性和左右线隧道支护结构之间的联系:左、右线两隧道开挖面距离不小于25 m。

3结语

根据岗石区间和其他小间距隧道工程经验,采用综合性技术、措施,通过提高隧道支护结构的强度、刚度和整体性,减少和控制左、右线隧道开挖时的相互影响,合理地利用围岩自承能力,保证围岩与支护结构共同作用,可以安全、顺利地完成小间距隧道工程。

地铁小间距隧道是一类新的隧道工程问题,还经常与浅埋、软弱岩土体等问题交织在一起,施工难度大;处在城市环境中,对变形、沉降的要求又高。因此,通过具体工程的监控量测和分析研究,深化对小间距隧道围岩变形和应力分布的认识,制定小间距隧道施工技术细则,这方面还有大量的工作要做。

参考文献

[1]北京城建设计研究总院.地铁设计规范[M].北京:中国计划出版社,,2003.

[2]姚永勤,王明年.深圳地铁单洞双层隧道施工力学分析[J].工程力学,2003,(增刊):279-282

[3]王启耀.近距离双线盾构隧道施工相互影响的监测与分析[J].地下空间,2003,23(1):49-51.

[4]广州市地下铁道总公司,广州市地下铁道设计研究院.广州地铁二号线设计总结[M].北京:科学出版社, 2005.

[5]广州市地下铁道总公司,中铁十九局集团公司,同济大学.岗石区间超小间距隧道施工技术研究中间报告[R].广州,2005.

隧道施工总结范文4

关键词:城市交通隧道 网格盾构 土压盾构 双圆盾构 泥水盾构 沪崇苏越江工程

1 前言

上海城市人口1450万,流动人口300万,面积6340km2,目前已经成为中国的经济、贸易、金融、航运中心城市。城市的经济发展促进城市建设尤其是交通建设的发展,城市地下轨道交通具有快捷、安全的特点。上海城市轨道交通线网规划17条线路,总长780km,其中地铁11条线,长度385km。已建3条线,其中地铁2条线;在建4条线,其中地铁2条线。地铁区间隧道总长度达700km(双线),采用盾构法施工,已建约100km。

黄浦江从东北至西南流经上海城区,把上海分为浦东、浦西2部分,江面宽500m~700m,主航道水深14m~16m。近10年来,浦东的迅速发展促进了越江交通工程建设,采用大直径盾构建造江底交通隧道已得到广泛的应用。已建隧道5条,在建隧道4条拟建隧道6条。

上海地层为第四纪沉积层,其中0~40m深度内均为软弱地层,主要为粘土、粉质粘土、淤泥质粘土、淤泥质粉质粘土、粉砂土等,这类土颗粒微细、固结度低,具有高容水性、高压缩性、易塑流等特性。WWW.133229.COm在该类地层中进行盾构隧道掘进施工,开挖面稳定和控制周围地层的变形沉降十分困难。

上海地区盾构隧道技术的应用,始于1965年,近40年来,尤其是近10年来,盾构隧道技术广泛用于地铁隧道、越江公路隧道和其它市政公用隧道。本文就上海城市交通隧道盾构施工技术的发展和现状,作一个回顾和综述。

2 网络挤压盾构掘进技术的开发和隧道工程应用

2.1 φ5.18m网格挤压盾构及上海地铁试验工程

1964年,上海市决定进行地铁扩大试验工程,线路位于衡山路北侧,建2条长600m的区间隧道,隧道复土10m,隧道外径5.6m,内径5m。隧道掘进施工采用2台自行设计制造的φ5.8m网格挤压盾构,辅以气压稳定开挖面土体,于1966年底完成1200m地铁区间掘进施工,地面沉降达10cm。

2.2 打浦路隧道φ10.2m网格挤压盾构掘进施工

1965年,上海第一条穿越黄浦江底的车行隧道――打浦路隧道,全长2761m,主隧道1324m采用φ10.2m网格挤压盾构掘进施工,黄浦江约600m,水深16m,见图1所示。

φ10.2m网格挤压盾构掘进机是中国第一台最大直径的盾构,盾构总推力达7.84×104kn,为稳定开挖面土体,采用气压辅助施工方法。盾构穿越的地层为淤泥质粘土和粉砂层,在岸边采用降水辅助工法和气压辅助工法,在江中段采用全气压局部挤压出土法施工。盾构见图2所示。

圆隧道外径10m,由8块钢筋混凝土管片拼装而成。管片环宽90cm,厚60cm。管片环向接头采用双排钢螺栓联接。衬砌接缝防水采用环氧树脂。打浦路隧道于1970年底建成通车,至今已运营33年。

2.3 延安东路隧道北线φ11.3m网格挤压水力出土盾构施工

1983年,位于上海 外滩的延安东路隧道北线工程开工建设,隧道全长2261m,为穿越黄江底的2车道隧道,其中1310m为圆形主隧道,采用盾构法施工,隧道外径11m,隧道衬砌由8块高精度钢筋混凝土管片拼装而成,管片环宽100cm,厚55cm,接缝防水采用氯丁橡胶防水条。

隧道北线圆形主隧道采用了上海隧道工程公司自行设计研制的φ11.3m网格型水力出土盾构,见图3所示。在密封舱内采用高压水枪冲切开挖面,挤压进网络的土体,搅拌成泥浆后通过泥浆泵接力输送,实现了掘进、出土运输自动化。网格上布有30扇液压闸门,具有调控进土部位、面积和进土量的作用,可辅助盾构纠偏和地面沉降控制。网格板上还布设了20只钢弦式土压计,可随时监测开挖面各部位的土压值变化,实现了信息化施工。盾构最大推力可达1.08×105kn。盾构顺利穿越江中段浅复土层和浦西500m建筑密集区,保护了沿线的主要建筑物和地下管线。

3 土压平衡盾构在城市交通隧道工程的应用和发展

3.1 土压平衡盾构的引进和开发应用

近年来,我国的城市地铁隧道、市政隧道、水电隧道、公路交通隧道已经越来越多地采用全断面隧道掘进机施工,其中用得最多的是土压平衡盾构掘进机。上海、广州、深圳、南京、北京的地铁区间隧道已经采用了31台直径6.14m~6.34m的土压平衡盾构,掘进区间隧道总长度达400km。土压盾构具有机械化程度高、开挖面稳定、掘进速度快、作业安全等优点,在隧道工程中有广泛的发展前景。

土压平衡盾构适用于各种粘性地层、砂性地层、砂砾土层。对于风化岩地层、软土与软岩的混合地层,可采用复合型的土压平衡盾构。在砂性、砂砾、软岩地层采用土压盾构掘进施工,应在土舱、螺旋输送机内以及刀盘上注入润滑泥浆或泡沫,以改良土砂的塑流性能。

3.2 φ6.34m土压盾构在上海地铁工程中的应用

1990年,上海地铁1号线开工建设,双线区间隧道选用土压平衡盾构掘进,经国际招标,7台φ6.34m土压盾构由法国fcb公司、上海市隧道工程公司、上海市隧道工程设计院、上海沪东造船厂联合体中标,利用法国混合贷款1.32亿法郎。第1台φ6.34m土压盾构于1991年6月始发推进,7台盾构掘进总长度17.37km,1993年2月全线贯通,掘进施工期仅20个月,每台盾构的月掘进长度达200~250m。掘进施工穿越市区建筑群、道路、地下管线等,地面沉降控制达+1cm~-3cm。φ6.34m土压平衡盾构见图4所示,其主要技术性能见表1。

1995年上海地铁二号线24.12km区间隧道开始掘进施工,地铁一号线工程所用的7台φ6.34m土压盾构经维修以后,继续用于二号线区间隧道掘进,同时又从法国fmt公司和上海的联合体购置2台土压盾构,上海隧道工程股份有限公司制造1台土压盾构,共计10台土压盾构用于隧道施工。

于2000年开工兴建的上海地铁明4号工程区间隧道仍将使用这10台φ6.34m土压平衡盾构施工。2001年,向日本三菱重工购置4台φ6.34m土压平衡盾构,共计14台盾构正在掘进施工。

上海地铁隧道外径6.2m,衬砌环由6块钢筋混凝土管片拼装而成,通缝拼装,环宽100cm,管片厚35cm。见图5所示,地铁4号线部分区间隧道管片采用错缝拼装,环宽120cm。

上海地铁2号与1号线垂直相交,盾构从1号线区间隧道下1m穿越,掘进施工中采用地层注浆加固、跟踪注浆、信息化施工等技术措施,确保1号线地铁安全运营,沉降控制在2cm以内。地铁4号线与2号线区间隧道相交,4号线盾构从2号线隧道下1m穿越。φ6.34m土压盾构在城市建筑群下穿越,其沉降一般也在4cm以内。盾构平均月推进长度约250m,最快达400m/月。

3.3 双圆形盾构掘进机的引进和应用

2002年,上海地铁8号线黄兴路至开鲁路站三个区间隧道,长度2,688m,采用dot双圆盾构隧道工法,并从日本引进2台φ6300m×w10900mm的双圆形土压盾构掘进机。双圆盾构见图所示,其主要技术参数见表2。

双圆隧道衬砌采用预制钢筋混凝土管片,错缝拼装;每环管片由11块管片拼装而成,其中2块为海鸥形,1块为柱形。管片厚度30cm,环宽120cm,见图7所示。

3.4 φ7.64m土压盾构掘进外滩观光隧道

3.4.1 工程概况

上海外滩观光隧道是我国第一条行人过江专用隧道,是一条连接南京路外滩和陆家嘴东方明珠塔的江底隧道,全长646m,隧道内径6.76m。隧道内通行一来一往2条观光车轨道。

外滩观光隧道于1998年初开工,1999年底建成运营,土建工程包括黄浦江两岸的2座出入口竖井和一条过江隧道,见图8所示。隧道位于延安东路隧道北侧,并与上海地铁二号线2条过江区间隧道在江底交叉。隧道穿越的主要地层为粘土、粉质粘土、淤泥质粘土和砂质粉土。

隧道衬砌环由6块钢筋混凝土管片拼装而成,管片设计强度c50,抗渗等级s8,环宽120cm,厚35cm。管片接缝防水采用epdm多孔橡胶止水带,管片背面涂防水层。

3.4.2 φ7.65m土压平衡盾构掘进施工

隧道掘进采用φ7.65m土压平衡盾构,见图9所示。盾构大刀盘切削土体,为幅条式结构。盾构长8.935m,中间有较接装置,易于纠偏施工。盾构最大推力5.2×104kn。盾构密闭舱内充满切削土砂,通过直径900mm的螺双输送机排土,通过推进速度、螺旋机转速、排土量来控制密闭舱土压,使之与开挖面水压力平衡。盾构掘进速度为0~4cm/min。

盾构于1998年11月始发推进,隧道纵坡达4.8%,;平曲线最小半径为400m,均为国内越江盾构隧道之最。盾构初推段100m内进行了土体变形、土应力、孔隙水压的监测,反馈盾构施工,调整盾构施工参数,控制施工轴线和地表沉降。盾构掘进的平均速度达8m/d,646m隧道共花费3个月的时间完成,工程质量优良。

3.5  3.8m×3.8m矩形土压盾构掘进地铁过街人行地道

常用的盾构隧道掘进机为圆形,主要是圆形结构受力合理,圆形掘进机施工摩阻力小,即使机头旋转也影响小。但是圆形隧道往往断面空间利用率低,尤其在人行地道和在行隧道工程中,矩形、椭圆型、马蹄形、双圆形和多圆形断面更为合理。日本80年代开发应用了矩形隧道,在90年代开发应用了任意截面盾构和多圆盾构,并完成了多项人行隧道、公路隧道、铁路隧道、地铁隧道、排水隧道、市政共同沟隧道等,使异形盾构技术日益成熟,异形断面隧道工程日益增多。

我国于1995年开始研究矩形隧道技术,1996年研制1台2.5m×2.5m可变网格矩形顶管掘进机,顶进矩形隧道60m,解决了推进轴线控制、纠偏技术、深降控制、隧道结构等技术难题。1999年5月,上海地铁二号线陆家嘴路站62m过街人行地道采用矩形顶管掘进机施工,研制1台3.8m×3.8m组合刀盘矩形顶管掘进机,具有全断面切削和土压平衡功能,螺旋输送机出土,掘进机的主要工作参数见表3,矩形顶管掘进机见图10。

4 大直径泥水加压盾构掘进越江公路隧道施工

4.1 延安东路隧道南线φ11.22m泥水加压盾构掘进施工

1995年,为发展浦东建设需要,上海延安东路隧道南线开工建设,为缩短工期和保护隧道沿线建筑物的需求,引进日本三菱重工制造的φ11.22m泥水加压盾构。盾构本体示意见图11。

隧道南线1300m圆形主隧道采用日本三菱重工制造的φ11.22m泥水加压盾构掘进施工,盾构本体示意见图5。盾构采用刀盘切削,总推力达1.12×105kn,刀盘扭矩4635kn·m,最大掘进速度46mm/min。盾构密封舱充满压力泥浆与开挖面水土压保持平衡,并在开挖面形成泥膜,起到稳定的作用。盾构设有掘进管理、泥水输送、泥水分离和盾尾同步双液注浆系统。掘进管理和姿态自动计测系统能及时反映盾构掘进施工的几十项参数,便于准确设定和调整各类参数。

4.2 大连路隧道φ11.22m泥水加压盾构掘进施工

上海大连路隧道全长2565m,为2来2去的两条双车道隧道,工程总投资16.55亿元。工程于2001年5月25日开工,合同工期28个月。隧道平、剖面见图12所示。

圆形主长1263m,采用2台φ11.22m泥水加压盾构同时掘进施工。隧道衬砌结构在延安东路隧道工程的基础上进行了优化改良,拼装形式由通缝改为错缝,管片厚度从55cm改为48cm,环宽由100cm增大为150cm,管片分块由8块增为9块,管片连接螺栓由直螺栓改为弯螺栓,螺栓手孔改小,管片形式由箱形改为平板型。隧道衬砌结构见图13。

泥水加压盾构的泥水输送和泥水处理是盾构施工的重要组成部分,公司自选研究设计制造了适应上海软土地层的泥水分离系统,见图14所示。

盾构进出洞土体加固全部采用冻结法。

西线隧道于2002年3月28日始发推进,至9月20日隧道贯通,工期6个月。东线隧道于6月18日 发推进,至12月底隧道贯通。盾构掘进速度平均为8m/d,最快为15m/d。两条隧道最小间距为6m。

大连路隧道于2003年9月建成通车,总工期仅28个月,是上海越江公路隧道建设周期最短的。

4.3 上海越江交通工程的发展

2001年底,复兴东路隧道工程开工建设,为2条3车道隧道,隧道外径11m,分为上下两层,是我国第一条双层隧道,全长2785m。2条1215m主隧道于2003年2月和5月先后始发推进,于11月隧道贯通。

2003年6月,翔殷路隧道工程开工建设,为2条2车道隧道,隧道全长2597m,隧道外径11.36m,内径10.2m,是目前车道最宽的盾构隧道,设计车速可达80km/h。

正在设计中的越江隧道有军工路隧道和上中路隧道(中环线配套工程),正在规划中的越江隧道有长江西路、新建路、人民路、耀华路等4处。

长江口越江通道工程是连接上海-崇明-江苏北部的重要交通工程,位于长江口,从上海浦东-横沙岛-崇明岛-南通,采用桥隧结合的工程方案,全长68km,为3来3去6车道,设计车速100km/h。其中浦东5号沟至横沙岛穿越长江南港,采用盾构隧道施工,全长约8.5km,隧道外径15.2m。横沙岛至崇明岛越江北港,采用桥梁施工,全长9.54km。见图15所示。直径φ15.2m的盾构隧道,目前是世界上最大直径的盾构隧道,隧道断面见图16。

5 结语

上海城市交通隧道工程的发展提高了盾构隧道技术的水平。从最初的网格挤压盾构,发展到目前的土压平衡盾构和泥水加压盾构,盾构机向机械化、自动化、信息化发展,掘进速度快,盾构开挖面稳定,地面沉降控制好,环境影响小。盾构衬砌不断改进和优化。盾构与隧道技术正在向大深度、大直径、长距离掘进发展。双圆隧道、矩形隧道技术也得到应用。随着上海城市交通隧道工程建设的不断发展,盾构隧道技术水平将进一步的发展和提高。

参考文献

1、 傅德明、杨国祥. 《上海地区越江交通盾构施工技术综述》. “国际隧道研讨会暨公路建设技术交流大会论文集”. 人民交通出版社. 2002.10

隧道施工总结范文5

Abstract: This paper introduces an existing highway tunnel level and firm face adjacent to the tunnel excavation, tunnel monitoring and protection method of reinforcement. Based on the existing tunnel pre reinforcement and blasting vibration velocity monitoring, as well as the optimization of overlapping, closely spaced tunnel group construction plan, to ensure both the safety tunnel and construction

关键词 交叠 小近距 隧道 施工控制 监测

Key words :overlap closely spaced tunnel construction monitoring and control

中图分类号 : U45文献标识码: A 文章编号:

1工程概况

大坪山隧道为泉厦高速公路扩建(双向四扩八)工程位于泉州市区的一座分离式隧道,左线起止桩号为ZK393+744.70~ZK394+833.00,全长1088.30m。右线起止桩号为:YYK393+734.00~YYK394+816.50,全长1082.50m。隧道洞内为单面坡,0.5%和0.58%两种坡度。隧道进出口为全~强风化花岗岩,洞身为弱~微风化花岗岩。隧道围岩主要为Ⅱ、Ⅲ、级围岩,部分为Ⅳ、Ⅴ级围岩。山顶建有较为密集的别墅群。

新建两条隧道:在原左右两洞之间新建一条两车道隧道,在既有右洞的右侧新建一条两车道隧道,并与大坪山隧道下方的城市一级主干道隧道(三条)斜交角度约为51.7度,拱顶距大坪山隧道净距仅为5.1m。这样形成七洞小净距、交叠隧道群,详见图1-1大坪山隧道原洞以及新建隧道关系图、图1-2大坪山隧道原洞以及新建隧道立体交叉示意图。

泉厦高速公路扩建工程大坪山隧道爆破施工难度位居国内前列,国内基本无可类比的工程,设计及施工经验极少,难度极高。

2小净距隧道国内施工现状

在我国,小净距隧道是继分离式隧道、连拱隧道后出现的一种适应性较强的新型隧道形式,尚为新型隧道结构型式,出现的历史不久。用这种结构形式较早、己建成的小净距铁路隧道如内昆线青山隧道湘黔铁路娄底至怀化段复线新坪渠隧道、宝成复线须家河隧道,内昆铁路杨柳湾隧道等。

3既有隧道的监测与监控

施工前,对既有隧道及下方城市隧道进行了缺陷检测,检测结果表明:五条既有隧道均存不同程度的质量缺陷,隧道总体质量未达到公路工程质量评定标准(JTG F80/1--2004))的行车安全,更加大了施工的难度。

3.1监测内容

(1)隧道衬砌厚度及缺陷监测:采用地质雷达检测;检测结果详见表3-1大坪山既有隧道衬砌厚度检测汇总表。对于较严重缺陷点在现场进行标识,便于施工中进行监控。

(2)隧道衬砌背后空洞状况监测:采用地

图1-1大坪山隧道原洞以及新建隧道关系图

图1-2大坪山隧道原洞以及新建隧道立体交叉示意图

3-1大坪山既有隧道衬砌厚度检测汇总表

表3-2 大坪山隧道右线裂缝调查汇总表

表3-3 大坪山隧道左线裂缝调查汇总表

表3-4 大坪山隧道超声回弹检测混凝土强度推定

质雷达检测,检测结果表明除了仰拱未发现缺陷外,在边墙、拱腰、拱顶均有不同程度的回填不密实、防水布上部脱空等现象。

(3)衬砌裂缝及渗漏水调查:采用裂缝测宽仪与超声波仪辅以人工调查,检测结果详见表3-2 大坪山隧道右线裂缝调查汇总表、表3-3 大坪山隧道左线裂缝调查汇总表。这些裂缝在现场用红、蓝不同颜色铅笔进行标注,以便观测施工中观测其发展情况。

(4)隧道衬砌轮廓检测:采用激光断面仪检测。根据各隧道检测断面的衬砌轮廓线与原

设计的衬砌轮廓线对比左线:ZK394+380、ZK394+780、 ZK394+980、ZK395+080右线:

YK394+350、YK394+400、YK394+550、YK394+650、YK394+800这些断面的拱顶及边

墙有较小内侵外,其他的衬砌轮廓线断面与原设计差异较小,局部有少量的点内侵。

(5)隧道衬砌混凝土强度检测:采用回弹仪及超声回弹仪检测,见表3-4 大坪山隧道超声回弹检测混凝土强度推定。

3.2检测结果与评价

通过对隧道衬砌厚度与缺陷、断面轮廓以及二衬强度、二衬裂缝进行检测,检测结果表明,隧道总体质量未达到公路工程质量评定标准(JTG F80/1--2004),隧道工程质量不合格。因此在扩建施工中,对既有洞的缺陷进行密切观察,确保施工的安全。

4既有隧道的加固

对于既有隧道裂缝有发展之势,且衬砌渗透漏水严重的位置,首先对既有隧道采取打入砂浆锚杆、注浆等加固措施,固结松散岩体及边墙衬砌 混凝土、改善既有衬砌受力状况,增加既有隧道衬砌稳定性。

(1)清除即将剥落的混凝土块并测量隧道轮廓线。

(2)在靠新线一侧边墙打入¢22锚杆、锚杆长2.5m,间距1.5m,梅花形布置,并依次布置压浆孔,钻眼,打入压浆花管,压双液浆。

在对既有隧道进行防护加固后,对原裂缝发展能得到较有效的控制。

5爆破振动监测

为全面考虑隧道与围岩的相互作用,复杂的地质变化和爆破动荷载重复作用下的累积损伤,分析临近隧道爆破开挖对既有隧道结构、中夹岩柱体的复杂变形特征,用测振仪器对既有隧道进行监测。

5.1测试仪器

CD-1型磁电式速度传感器,DSVM-2型振动测试仪,微机。

5.2洞口明挖处试验炮

(1)测点布置

共布置3个测点:1#测点在既有隧道的进口处,竖直粘在水沟旁的水泥地上,离爆区最近距离38m,与爆区中心的高差约7.0m,所测的速度为垂直振动速度;2#测点粘在靠近新隧道一侧的既有隧道边墙衬砌上,高1.2m,离爆区最近距离8m,与爆区中心的高差为6.3m,所测的振动速度为水平振动速度;3#测点粘在既有隧道进口水泥地上,离爆区最近距离为43m,与爆区中心的高差约7m,所测振动速度为水平振动速度。

(2)炮孔布置

按照《爆破安全规程》规定,既有隧道允许的振动速度为小于12cm/s。该既有隧道抗震能力较差,爆破振动速度宜控制在6cm./s以下。通过试验炮发现;最近距离在8m左右,单孔装药量控制在1.2kg以下,爆破振动速度较小,既有隧道是安全的。

孔网参数a×b=1m×1.2m。深度过2.5-3.0m,垂直钻孔。

(3)测试结果及分析见表5-1爆破振动速度测试结果。

6 山顶房屋的监控

根据泉州市公路部门的要求,我们对山顶的房屋也进行了详细的检查记录,共记15栋房屋存在不同的裂纹。并在山顶布置了测点。

表5-1爆破振动速度测试结果

7新隧道施工

7.1施工方案

7.1.1 ZK393+744.70~ZK393+866段

该段采用微振动爆破,台阶法开挖,喷锚施工支护,先墙后拱法衬砌。

7.1.2 ZK393+866~ZK393+907段

新建隧道离既有线较近,该段开挖采用右侧壁导坑引入,施工外侧边墙,再分部分层开挖其余部分,尽量减少对既有隧道的扰动(见图7-1开挖顺序图)。

(1)①部采用微振动爆破,开挖侧壁导坑,并及时喷混凝土,作好施工支护。

(2)②部采用微振动爆破,开挖部分拱部,并及时喷混凝土,打锚杆,作好施工支护。

(3)V部灌筑一侧边墙混凝土。

(4)③部采用微振动爆破,开挖拱部,并及时喷混凝土,打锚杆,锚杆间距1.0m。

(5)④部采用微振动爆破,开挖边墙,并及时喷混凝土,打锚杆,锚杆间距1.0m,并与由既有隧道打入的锚杆相互咬合。

(6)VI部灌筑边墙混凝土。

(7)VII部灌筑拱混凝土。

(8)VIII部施作隧底工程。

7.2隧道开挖及监测

7.2.1ZK393+744.70~ZK393+866段开挖

炮眼布置及爆破振动监测情况见表7-1炮眼布置及爆破振动监测。

7.2.2距离出口50m(ZK394+783)处开挖。炮眼布置同上,最近距离为4.5m,实测最

大振速;上半断面为5.62cm/s,4.26cm/s;下半

断面为5.24cm/s,6.21cm/s。由于距离出口比较近,二座隧道相距也较近,爆破开挖产生的速度较大,对隧道衬砌 有一定影响,观测标有明显变化特征,因此在以后的开挖过程中,将上下半断面分别分成二部分开挖,先开挖远离既有隧道的一侧,再开挖另一侧;同时减小钻孔深度,减少单孔装药量。

表7-1炮眼布置及爆破振动监测

注:爆区里程指新隧道开挖位置的里程;最近距离指测点离爆区边缘的距离,即爆破位置处新旧二隧道相临

衬砌之间的距离。

7.2.3距离出口49m(ZK394+784)处开挖。

炮孔布置及爆破振动监测情况见表7-1炮眼布置及爆破振动监测。

爆破振动速度得到控制,以后的上半断面开挖依据此方案进行。

7.2.4出口ZK394+830处下半断面开挖

炮眼布置同上,最近距离为4m,减振眼改为20个,并适当减少单孔装药量,实测左侧最大振速为3.18cm/s,4.85cm/s,既有隧道处于安全状态。

在隧道的开挖过程中,对一些特殊部位开挖进和了监测,尤其是对距离出口约40m至出口处,进行了多次监测,并对开挖方案随时作调整,严格将爆破振速控制6cm/s以下,确保了既有隧道的安全。

隧道施工总结范文6

关键词:BIM技术技术;特长隧道;工程;质量管理

1前言

在我国城市化发展的背景下在我国城市化发展的背景下,特长隧道施工可以充分满足交通行业的发展需求足交通行业的发展需求。但是,在特长隧道工程中,存在着安全因素较多以及工程质量管理不合理的现象全因素较多以及工程质量管理不合理的现象,这些问题的出现不仅会增加特长隧道的施工难度现不仅会增加特长隧道的施工难度,而且影响工程施工的安全性全性,无法满足行业的可持续发展。对于BIM技术技术,将其运用在特长隧道工程中在特长隧道工程中,可以满足工程质量管理的可视化、自动化的处理需求的处理需求,引导施工人员结合工程项目的特点,确定特长隧道施工的重难点道施工的重难点,有效解决特长隧道施工中的质量管理问题,提高各项信息交互处理的效率提高各项信息交互处理的效率,满足隧道工程施工的质量需求求,为行业的发展提供支持。

2BIM技术及特点

2.1BIM技术

所谓BIM技术技术,主要指通过先进三维数字设计技术的运用用,通过数字化模型的建立,解决建筑工程中的重难点问题。其中的三维模型是BIM技术的主体技术的主体,将BIM技术与地铁隧道工程融合工程融合,可以实现工程项目的数字化、可视化处理,施工人员按照这一优势员按照这一优势,可以结合特长隧道施工的特点,确定施工周期以及施工质量方案管理期以及施工质量方案管理,实现工程全周期信息的共享处理[[1]。

2.2BIM技术特点

在特长隧道施工特点在特长隧道施工特点,BIM技术特点如下技术特点如下:第一,可视化。在特长隧道施工中在特长隧道施工中,通过BIM技术的使用技术的使用,会根据隧道的主体结构结构、附属设施以及周围环境等建立数字模式,施工人员按照各个工程的重难点各个工程的重难点,通过可视化模型以及工程内容的选择,确定具体的施工质量方案定具体的施工质量方案,保证特长隧道各项施工工序的稳步进行进行。第二,信息化。在BIM技术使用中技术使用中,系统会结合特长隧道的工程特点道的工程特点,通过几何尺寸、空间关系以及材料性能等,建立动态化立动态化、全周期的信息化处理方案。第三,协调性。BIM技术系统通过数字模型的构建术系统通过数字模型的构建,不仅可以实现各项数据的信息传输传输、碰撞检测,而且也可以通过各项数据的协同处理,解决特长隧道施工的重难点问题特长隧道施工的重难点问题,以提高BIM技术在特长隧道中质量安全管理的价值质量安全管理的价值。

3工程概况

研究中选择某地区特长隧道施工方案研究中选择某地区特长隧道施工方案,该工程总长度为4040.35km,设计单向分离式三车隧道设计单向分离式三车隧道,由于隧道地质情况复杂,施工中存在着一定的危险性施工中存在着一定的危险性,而且,隧道施工中经常遇到一些不可控因素不可控因素,为了保证施工的按期性,设计了特长隧道施工中的BIM模型模型,并按照系统状况确定质量管理方案[[2]。

4特长隧道工程中BIM技术质量管理方案

4.1明确质量安全评估标识

通过特长隧道工程施工状况的分析通过特长隧道工程施工状况的分析,在质量安全问题评估中估中,相关管理者在BIM技术使用中技术使用中,会根据工程项目的特点以及施工管理状况以及施工管理状况,形成集中化的质量进度管理体系,施工人员按照隧道施工的实际状况员按照隧道施工的实际状况,通过隧道施工前、施工中以及施工后的工程质量工后的工程质量,确定检查方案,及时设定安全性的BIM评价系统系统,展现安全评估标识的设定价值。而且,对于施工安全管理人员理人员,可以结合特长隧道的质量管理状况,建立BIM三维视图图,进行各项施工工序质量的审核,施工人员按照三维视图的数据数据、图片以及文字等,仔细描述质量安全问题,保证各项数据处理的精确性据处理的精确性。特长隧道施工中,BIM技术的质量安全评估标识可以按照特长隧道工区标识可以按照特长隧道工区、资料等,建立层级化的质量资料管理方案管理方案,系统也会根据质量控制标准,对施工质量问题进行评判评判,保证特长隧道工序的稳步进行。

4.2质量安全的进度控制

在特长隧道工程质量管理中在特长隧道工程质量管理中,通过BIM技术的使用技术的使用,应该将质量安全进度控制作为核心将质量安全进度控制作为核心,BIM系统结合各项工程的特点点,会按照工程动态化的质量评价体系,形成集成性的33D模型型,保证各项活动工序在动态化的条件下安全进行。一般情况下况下,特长隧道工程的质量安全进度控制中应该做到:第一,BIM系统通过各项数据的统计系统通过各项数据的统计、分析以及处理,会判断某一时间内的施工组织情况间内的施工组织情况,而且会合理选择质量检查内容,提高施工质量检查以及系统识别的整体价值工质量检查以及系统识别的整体价值。第二,在施工中,BIM技术会按照特长隧道的特点技术会按照特长隧道的特点,合理确定施工工序,施工人员可以按照动态化的模型以按照动态化的模型,进行质量检测方案以及质量检测进度的选择的选择,保证各项施工工程的安全性。例如,在特长隧道施工中中,通过质量安全管理工作的构建,BIM系统会按照材料设备的内容的内容,通过材料名称、材料规格以及材料量的累计,分析施工材料的使用状况工材料的使用状况,并根据材料的使用量设置材料预警阈值,当材料使用状况达到报警状态时当材料使用状况达到报警状态时,BIM系统会向管理者提供指示示,保证材料的及时供给,满足特长隧道施工质量的安全管理需求需求。第三,在特长隧道施工的质量管理中,通过各项活动的构建构建,可以模拟特长隧道施工过程,增强施工人员对安全施工工作的认识工作的认识。

4.3质量内容的协同管理

结合特长隧道工程的特点结合特长隧道工程的特点,在BIM技术使用中技术使用中,施工人员可以按照工程的进度可以按照工程的进度、工程施工的节点,进行质量管理人员的任务分配任务分配,保证各项质量安全管理工作的稳步进行,为信息的协同管理提供参考协同管理提供参考。应该注意的是,在特长隧道质量内容协同管理中应该做到同管理中应该做到:第一,明确派工流程。在特长隧道工程中中,通过BIM技术的使用技术的使用,可以结合工程的状况,设定动态化以及自动化的质量安全管理工作以及自动化的质量安全管理工作,相关的责任人员会按照具体的工作项目体的工作项目,进行材料、机械以及工程的质量管理,满足安全管理工作的协同化处理需求全管理工作的协同化处理需求。第二,特长隧道施工中的BIM技术质量管理中技术质量管理中,系统会结合工程的特点,设定自动化的材料使用清单使用清单,相关质量管理者按照具体的流程进行工作的整合,保证特长隧道施工工序的安全保证特长隧道施工工序的安全、稳步进行,提高隧道工程施工安全管理的整体质量安全管理的整体质量。第三,结合BIM信息集成化的特点信息集成化的特点,系统会结合工程的质量管理工作统会结合工程的质量管理工作,进行安全信息的协同管理,实现各项工作的安全运行现各项工作的安全运行,质量管理者会按照责任、材料使用以及技术交底等内容及技术交底等内容,确定安全施工管理方案,展现特长隧道施工管理的整体价值工管理的整体价值。

4.4质量安全内容的信息

将BIM技术运用在特长隧道工程的质量管理中技术运用在特长隧道工程的质量管理中,可以实现质量安全内容的实时现质量安全内容的实时,有效提高信息管理以及信息的效率布的效率,满足特长隧道工程质量管理工作的稳步进行。因此此,在特长隧道工程中,BIM技术使用中技术使用中,应该明确质量管理内容容,通过质量安全信息的及时,保证安全工作的稳步进行行。第一,BIM移动端在信息处理中移动端在信息处理中,可以根据动态化的数据流程流程,对特长隧道施工现场进行分析,按照特长隧道的实际特点点,确定质量控制方案,而且,系统也会很根据实际施工状况,将安全工作推送给责任人员将安全工作推送给责任人员,保证各项安全管理工作的稳步进行进行。第二,在BIM技术使用中技术使用中,特长隧道的安全管理系统可以设定网页终端服务项目以设定网页终端服务项目,系统按照实际质量问题,进行各项安全工作的审查安全工作的审查、处理以及操作,提高质量安全管理工作的执行效率行效率,避免特长隧道施工中安全隐患的出现。第三,在BIM模型使用中模型使用中,特长隧道的质量管理人员,可以通过系统跨平台台、多媒体等优势系统的运用,对各项数据进行安全处理,提高质量安全管理的效率高质量安全管理的效率,并为质量管理信息的准确定位、实时传送提供支持传送提供支持,使特长隧道的质量管理工作按照协调处理的原则进行传递原则进行传递,满足特长隧道工程的施工需求。