控制变量范例6篇

控制变量

控制变量范文1

关键词: 集散控制  变风量

压力无关型控制算法 定静压控制算法

1.概述

变风量空调技术是跨暖通专业和控制专业的新领域,如果没有好的控制策略和在工程中简单可行的实施方法,变风量空调系统达不到预期节能效果的。在此背景下,探讨变风量空调系统的控制,有着重要的现实意义。

1.1 变风量空调控制组成

变风量空调系统由变风量末端、变风量空调机组两部分组成,两者通过风道连接。系统的组成如图所示。

变风量空调系统的组成

变风量末端有风机动力性和风压型两种。

变风量空调机组有双风机型和单风机型两种。

2 变风量空调控制

2.1 变风量末端的控制

2.1.1 变风量末端

变风量末端一般均由进风短管、消声腔、调节阀等基本部分构成。其核心是调节风阀,利用其调节进入房间的风量。

2.1.2 控制目标

变风量末端控制目标是:

根据空调空间要求的温度(设定温度),调节风阀的开度,从而调节进入空调空间(房间)的风量,进一步将空调空间的实际温度控制到设定值上。并希望被调空间的温度尽量平稳,少受其他因素的影响。

2.1.3 控制算法

压力无关型算法是为了解决压力相关型算法房间温度易受风量变化的影响,平稳性差的缺点而引入,其基本思想是在温度闭环控制的基础上,引入风量反馈来提早抑制风量的变化对房间温度的影响,改善温度的平稳性。

由于风量反馈的引入,可提早抑制风压的扰动对温度的影响,较压力相关型算法,温度的平稳性可得到很好的改善。该控制算法的优点是房间温度的平稳性好。

2.2 变风量空调机组的控制

2.2.1 变风量空调机组

变风量空调系统,是通过随负荷的变化调节送风量,达到调节房间温度的。在整个运行过程中,送风温度保持不变。

如何调节送风量呢?通过调节送风风机的运行频率,即可调节送风量。所以,变风量空调机组,是通过调节送风机所配的变频器的运行频率实现变风量的。

变风量空调机组是由新风段、回风段、表冷/加热段、送风段、加湿段等组成,

2.2.2 控制目标

变风量空调机组控制主要的目标是:

(1)新风量控制:控制进入空调机组的新风量,满足室内空气的卫生指标。

(2)送风温度的控制:控制送给变风量末端装置的空气温度,使其能够满足对房间温度调节的要求。

(3)送风湿度的控制:控制送给变风量末端装置的空气湿度,将送风湿度控制在设定值上。

(4)送风量的控制:这是变风量空调系统控制的难点和关键,要随末端负荷的变化调节送风量。

2.2.3 新风量的控制

足够的新风量对于提供良好的室内空气品质(IAQ),保证室内人员的舒适感和身体健康有着直接意义。但是,过大的新风量,会造成能耗增大。

所以新风量控制的目标是:保证空气品质的情况下,新风量最小。

对变风量系统,若仍采用定风量系统所采用的最小新风比时,当室内负荷减小引起总风量减少时,新、回风也按同样比例减少,因而新风绝对量也在减少。在负荷很低的情况下,就有可能出现新风量严重不足的现象,因而必须对空调系统的新风量实施有效的控制。

目前新风量的控制方式主要有风速法,CO2浓度控制法和混合段中静压控制法三种。

(1)风速法

风速法实现最小新风量控制的思路是:在新风入口处设置风速传感器,通过控制器调节新风阀,维持恒定的风速。此时可控制回风阀保持全开,风量由变频风机调节。当采用这种控制时,最小新风量设定值可在控制器里随时调整,过渡季节则控制新风阀完全开启,回风阀完全闭合,因此回风阀可采用开关控制即可,这样过渡季节可以最大限度地利用室外新风的冷量。

(2)二氧化碳浓度控制法

这种控制方法是在回风管中设置CO2检测仪,检测CO2浓度。通过CO2变送器转换成电信号传送给控制器,调节新风阀开度,以保持系统所需的最小新风量。

这种控制方法虽然简单易行,但是不足之处是当人员在室率很低时,不能控制非人为因素产生的其它有害物质所需的最小新风量。空气的质量包含许多综合因素,因此,从人居健康的角度出发, CO2浓度控制法在空调业的发展中有一定的局限性,有待进一步研制开发出空气综合质量传感器,通过此信号来调节新风量以满足要求。

(3)机组混合段中静压控制法

因为通过风阀的风量与风阀前后压差的平方根成正比,所以只要保持压差不变,风量就能保持恒定。据此,在变风量系统中,不论送风量为多少,如果新风阀开度不变,通过设在混风箱中的压力传感器调节回风阀开度,保证机组混合段中负压不变,理论上就能保证最小新风量,但实际上混风箱中气流相当混乱,很难找到一个合适的静压点,因此该方法的效果关键在于混风箱内静压点的选择合理与否。

2.2.4 送风温度的控制

送风温度的控制,在冬夏季和过渡季采用不同的控制策略。

冬夏季模式:

检测送风温度,并与设定温度值进行PID运算,根据运算结果调节冷/热水量,达到控制温度的目的。

过渡季模式:

过渡季关闭冷热水阀,根据室内外的温差调节新回风比来满足室内温度的要求,以充分节约能源。

送风温度的再设定

当系统风量减小至最小风量(或达到最大风量)时,此时末端仍按要求减小送风量(或增大送量),则对变风量空调机组的送风温度进行再设定。

2.2.5 送风湿度的控制

送风温度的控制,在冬季和夏季采用不同的控制策略。因为在西安地区,冬季需要加湿,夏季无需控制。

冬季的加湿控制

根据送风湿度的测量值和送风湿度的设定值作PID调节运算,调节加湿阀,使送风湿度达到设定值。

2.2.6 送风量的控制

送风量的控制方法有三种:①定静压法;②变静压法;③总风量控制算法。

(1)定静压法:

在送风管道的合适位置设置静压传感器,测量静压并与设定值比较,对差值进行PID调节运算,利用运算结果调整风机的频率,达到根据末端负荷调整风量的目的。

(2)变静压法

变静压法的思想是:尽量使变风量末端风阀片地全开状态(85%~95%),把系统的静压降到最低。

其控制策略是定期巡检变风量末端的风阀开度,当末端只要有一个风阀未处于全开状态,即降低风机的频率。当末端有一个风阀处于全开状态,而房间温度失控,则调高风机的频率。即确保至少有一个末端风阀处于全开状态,并房间温度可控。

(3)总风量控制法

控制变量范文2

例如:研究电流跟电阻和电压的关系:首先保持电阻不变,只探究电流和电压的关系。具体的做法如下:

连接电路,其中定值电阻,滑动变阻器,闭合开关S后,调节滑动变阻器的滑片,使尺两端电压成整数倍的变化(如2V、4V、6V等),根据电压表和电流表的示数即可测出每次加在尺上的电压值和电流值。分析比较这些数值,就可得出结论:在电阻一定的情况下,导体中的电流跟导体两端的电压成正比。

其次保持电压不变,只探究电流跟电阻的关系,具体做法如下:

仍利用电路,换用不同的定值电阻,使电阻成整数倍变化,调整变阻器的滑片,保持定值电阻的两端的电压不变,这样就可测出对应于不同阻值的电流值。分析比较这些数值,就可得出结论:在电压不变的情况下,导体中的电流跟导体的电阻成反比。

综合上述就得下面的结论:

导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比(I=U/R)。

这个结论是德国物理学家欧姆(G.S.Ohm,1787-1854),在19世纪初期,经过大量实验得出的,叫做欧姆定律。

在学习物理课中,有很多应用控制变量法的实验,除上述“研究电流跟电压和电阻的关系的实验”外,还有:“研究液体压强的实验”、“研究影响蒸发快慢的因素的实验”、“研究压力的作用效果的实验”、“研究影响动能(势能)大小的因素的实验”、“研究影响电阻大小的因素的实验”、“研究焦耳定律的实验”、“研究电磁铁的实验”等等。

在中考试题中也有涉及用“控制变量法”思想的题目,解这类问题的一般方法如下:

1,认真审题,明确题目中所研究的“问题”指的是什么,找出与该问题相关的“因素”。

2,如果所研究的问题仅与两个因素有关,则控制其中某个因素不变(即数值相等),分析另一个变化的因素对所提出问题的影响,从而得出结论。

3,如果所研究的问题与三个因素有关,则控制其中的两个因素不变,分析另一个因素的变化对所研究的问题的影响,从而得出结论。

4,如果所研究的问题与三个以上的因素有关,依次类推。即只改变其中的某一个因素(不包括所研究的问题),其他因素均不变。分析变化的这一个因素与所研究问题的关系,从而得出结论。

例:(2004年山东济南)在学习吉他演奏的过程中,小华发现琴弦发出声音的音调高低是受多种因素影响的,他决定对此进行研究。经过和同学们讨论,提出了以下猜想:

猜想1:琴弦发出声音的音调高低,可能与琴弦的横截面积有关:

猜想2:琴弦发出声音的音调高低,可能与琴弦的长短有关:

猜想3:琴弦发出声音的音调高低,可能与琴弦的材料有关。

为了验证上述猜想是否正确,他们找到了下表所列9种规格的琴弦。因为音调的高低取决于声源振动的频率,于是他们借来了一个能够测量振动频率的仪器进行实验。

(2)随着实验的进行,小华又觉得琴弦音调高低,可能还与琴弦的松紧程度有关,为了验证这一猜想,必须进行的操作是:______________________________

(3)课本中所涉及的探究实验中,有些实验的研究方法与上述方法类似,例如:______________________________

[分析]本题所研究的“问题”是“音调高低”,所涉及的因素有材料、长度、横截面积。所研究的问题与三个因素有关,所以应控制其中两个因素不变。

(1)猜想1是研究音调高低(即“问题”)与横截面积的关系,所以横截面积这个因素要改变(即数值不同),而另外两个因素――长度和材料均不变,即材料一样,长度数值相等。兼顾这i个要求,只能选用编号A 、 B 、 C。

猜想2是研究音调高低与长度的关系,所以长度要改变,而材料和横截面积必须保持不变,只能选编号A 、 D 、 F。

猜想3是研究音调高低与材料的关系,所以应控制长度与横截面积不变,而改变材料,观察表l可知:不同的材料分别是铜、钢、尼龙。值得注意的是:表中的“钢”只给了一组数值(80,1.02)。我们要控制长度和横截面积不变,就是指保持铜、钢、尼龙三者的长度相同,横截面积相等,即铜和尼龙的长度和横截面积应该与钢的长度和横截面积等,即(80,1.02)。所以表中所缺的数据为:______________________________ 。

控制变量范文3

关键词:镁电解槽 槽壳制作 焊接 制作工艺

中图分类号:TF35 文献标识码:A

一、概述

2010年2月七冶安装工程有限责任公司承揽了攀枝花钛业有限公司的15台镁电解槽的制作安装任务,此电解槽由中铝国际贵阳院引进乌克兰镁电解的技术,在国内应该属于首创,设计的电解槽槽壳技术要求高,对槽壳壁板的长侧和短侧以及底板的平面度每米不得超过0.5mm,整个表面的平整度不得超过6mm;焊接变型极其不好控制。由于槽底板长度6620mm,宽度为4580mm,而板厚仅为12mm,平面度每米不超过0.5mm,为保证槽底板的平整度,本方案槽底板的拼接考虑将槽底板按设计尺寸分成2块进行组装拼接。槽底板是由钢板拼焊而成,它采用2块钢板拼接,如(图1)。对于镁电解槽槽壳的长侧和短侧的宽度3058mm,长度分别为4264mm、5380mm,由多块钢板和型钢焊接而成的构件,对于大量的焊接变型将是难避免的。从整个工程的开始我们预见性的根据焊接变型的特点,以及我们长期从事类似工程的经验,制定了防范措施,确保镁电解槽的制作质量,保证本工程质量合格。

二、施工中存在的问题

1造成焊接变型的原因及其解决方法

1.1制定焊接顺序

(1)采用分中对称焊接法

(2)对称位置采用相同的电流电压

(3)焊接速度保持一致

1.2在焊接前对焊工进行培训

(1)焊接过程中掌握焊接顺序

(2)焊接前,要按焊接工艺文件的有关规定,调整好焊接参数。

1.3制定下料方案

(1)采用双火焰下料法

(2)采用数控下料切割

1.4合理使用胎具

(1)在胎具上制作好反变形措施

(2)在胎具上的夹具和夹具合理使用控制变形

(3)胎具上使用千斤顶控制焊接变形

1.5优化图纸节点

因图纸设计节点处于对接处与外延筋板处于同一个平面,可根据节点优化提高槽壳的平面度。

三、实施过程控制

1电解槽槽壳制作工艺

1.1底板加工

(1)由于槽底板长度6.620mm,宽度为4580mm,而板厚仅为12mm,平面度每米不超过0.5mm,为保证槽底板的平整度,本方案槽底板的拼接考虑将槽底板按设计尺寸分成2块进行组装拼接。槽底板是由钢板拼焊而成,它采用2块钢板拼接。在拼接底板前,用30×3000mm三辊床对钢板进行预先较平,不平度不大于0.5/1000mm,最终不得大于1mm。底板下料的焊接收缩预留余量为(1/1000~1.5/1000)L,其中L为底板的长度。采用埋弧自动焊时,收缩预留余量取1.5/1000L;采用CO2气体保护焊时,收缩余量取1/1000L。校平图见(图2)

(2)将组装好的底板用翻转胎放平,如不平可用垫板调正找平。

(3)底板预组装及焊接引弧板:首先将底板按图纸要求在底板翻转胎上预组装,并且在背面焊缝处加装防止焊接反变形装置,对预组装好的钢板,焊缝间隙不得超过2mm,可先用点焊固定,然后将100×150×12的引(灭)弧板,焊于对缝的两端。待全部对焊工作结束后再除去。

(4)正面焊接:采用埋弧自动焊,焊机MZ—1—1000。

(5)板背部焊接:底板背部的焊接顺序与正面相同。焊接表面尽量与底板面平(便于内衬砌筑),底板焊完后检查底板变形情况,如有变形,用火焰进行校正。要求不平度≤0.5/1000L(L为底板长度)。

(6)去除焊接用引(灭)弧板,然后用砂轮修整端部。

(7)底板涂漆:底板先刷一遍耐高温沥青漆,应涂在底板的下面。

(8)底板的施工工艺难点分析及控制方法:对于底板的施工难点在于底板的焊接变形导致底板的平面度达不到设计图纸要求。采取的控制方法为:a焊接反变形(预留拱度)控制,预留反变形余量可根据我们长期以来的经验值来控制反变形,或者根据该施焊工艺进行试验,找出反变形控制值;b强制性控制焊接变形,采用胎具模板把底板强制控制在上面,利用16个千斤顶压制,焊接完毕后拆除。

1.2短侧板加工

(1)下料:下料时应考虑焊接收缩量,焊接收缩量按设计图纸展开长度的1.5%考虑,给予予留。卷制时R300的圆弧回弹量按R的1.5%考虑。

(2)切边:焊接坡口用刨边机开制,亦可用火焰切割。短侧板的过渡边用SAC—B碰轮气割机切割。其最小长度可按下式计算取得:

(3)组装焊接:短侧板是由多块钢板和型钢焊接而成的构件,它的组装焊接应在组装胎具上进行。焊前将短侧板紧固在焊接胎具上。焊后1~24小时内短侧板处于夹紧状态,冷却后拆卸。在短侧板上标出组装中心线。

a.短侧制作的组装专用胎具如下图所示:

组装时,在胎具上定出基准中心线将短侧板吊上胎具,对好基准中心线,两侧板上用楔子楔紧,分别将预先在平台上组装好的筋板、围板吊至短侧板上,用楔铁调整尺寸然后点焊固定,零部件电焊完毕、确认所有的构件都安装完毕后,进行焊接。

1.3长侧加工

(1)电解槽长侧板主要由①侧面壁板、②角钢型材支撑、③钢板立筋板和横板组成。单片侧面壁板由2块钢板拼接而成,拼接焊缝应错开窗口处,由板1980*5380和620*5380两块钢板拼接而成;所用材料定尺订货(钢板的定尺尺寸为2000*5400mm)。

(2)侧面壁板采用自动切割下料,刨边机开坡口(坡口在侧面壁板两端与端头壁板焊接)为防止吊装时产生变形,采用专用吊具在进行侧面壁板吊装时,不允许用钢丝绳直接捆绑起吊,为了防止因吊装造成变形,在进行侧面壁板吊装时采用专用吊装工具与竖吊夹配合进行吊装,这样才能保证侧面壁板在吊装中不会产生变形。

(3)斜侧壁板平板采用30×3000三辊滚床滚平。经平整后板面凹凸不平度不得大于0.5mm/m。

(4)焊接:长侧板中侧面壁板的拼接采用半自动保护焊焊接,内壁采用碳弧气刨清根然后焊接,并打磨平整光滑,长侧板与槽外部的钢板筋板角钢型材焊接采用气体保护焊焊接。

(5)半成品检查:长侧板组装焊接后要自检,自检合格后用专用吊具将两长侧板吊至堆场堆放,在堆放的过程中要防止变形,自检不合格者需修整合格后才能使用。

(6)长侧板焊完后,用洋冲打出组装中心线。

效果检查

实施后,小组在施工的每个阶段按照对策要求,分析每个要因效果进行核查落实,对焊接变形进行了统计,验证对策的正确性及可行性将最终结果进行记录。 通过小组活动使用本次制作质量达到目标要求,变形控制在图纸要求的范围之内,实现了本次活动的质量目标。

参考文献

控制变量范文4

(华北电力大学动力工程系,河北 保定 071003)

【摘 要】本文介绍了变风量空调系统的基本原理,采用PLC控制技术对变风量空调系统的室内温度进行了PID控制方法的研究,以某一车间为控制区域,运用该方法进行控制,测量了室内温度和送风阀门开度的实时曲线,结果表明,该方法可行有效,控制效果良好。

关键词 变风量;总风量;PLC;PID控制

0 引言

智能建筑业随着城市化进程的推进而快速发展,在智能建筑中普遍采用中央空调系统,由于空调系统耗电量大,因此节能在智能建筑中就显得格外必要。中央空调系统分为定风量和变风量空调系统。变风量空调系统是根据空调区域负荷的变化来改变送风量,实现对空调区域的温度进行调节和控制[1]。与定风量空调系统相比,具有良好的舒适性及自平衡特性;风机功率能接近建筑物空调负荷的实际需要,节省了能耗。同时在过渡季节也可以尽量利用室外新风冷量;系统的灵活性较好,易于改、扩建,维护非常方便,运行费用低,尤其适用于格局多变的建筑。在节能效果上变风量空调系统远远优于定风量空调系统。变风量空调系统一般适用于多房间且负荷有一定变化的建筑。由于变风量空调系统的控制系统相对较为复杂,如果控制系统设计不合理,不能很好地起到节能效果,很难达到理想状态[2]。

综上所述,变风量空调系统是一种节能、舒适和安全的空调系统,大力发展变风量空调系统符合我国可持续发展的战略。发展变风量空调技术,提高变风量空调系统的应用性,将会对我国智能建筑业的能源节约起到至关重要的作用。

1 变风量空调系统的组成及其原理

变风量空调系统是以节能为目的发展起来的一种空调系统形式,它是利用改变室内的送风量来实现对室内温度调节,同时变频调节送风机和回风机来维持系统的有效、稳定运行,并动态调整新风量保证室内空气品质及有效利用新风能源的一种高效的全空气系统。

变风量空调系统由空气处理机组、送风系统(新风/排风/送风/回风管道)、自控系统、变风量末端装置(VAVBOX)、房间温控系统等组成,其中变风量末端装置是变风量空调系统的重要部分。

空调系统检测装置分别对送风温度、回风温度,湿度,空气质量,管道压力等参数进行检测,末端自控装置可以接受室温调节器的指令,根据房间温度的控制要求调节送风量,维持室内温度不变,同时向系统控制器传送自己的工作状况,根据系统总的送风量的不断变化,适时地调节空气处理机组的风机变频器工作参数,改变风机转速,节约送风动力。新风量的调节方法是空调控制性能好坏的关键,为了达到良好的空调温度和湿度控制要求,提高空调系统的舒适度和节能效果,需要良好的控制策略,以满足人们的需要。典型的变风量空调系统结构图如图1 所示。

图1中房间内设置的温度传感器 T 根据房间温度与设定温度的比较,将反馈信号传送给VAV BOX 的电动风阀执行机构,调节末端送风量,当送风管道内由于末端电动阀的开启度的变化,静压值也随之变化,压力传感器P将信号反馈到系统控制器,空调机组的变频器根据系统控制器的指令,改变机组风机转速,使机组送风量适应末端的要求,从而实现节能运行。

实际应用中,VAV BOX通常也设置一个风机系统,将一次送风和房间内回风混合后经风机加压(或者一次风不经风机加压而与加压的室内回风并联)送入房间,从而确保室内的换气次数不变。

一般而言,变风量空调系统采用定静压控制、变静压控制、总风量控制三种风量控制方式[3]。定静压控制方式较为常用,然而,如果为了确保系统风道中的压力,风机的功耗便会增大,且变风量末端风阀会产生较大的噪声。变静压控制方式能够极大减小风机功耗,然而,采用变静压控制方式复杂度高、调试难度大,尤其是需要多次换季调试;总风量控制方式空调系统的设计中,确保空调系统各末端所需风量的总和空调系统当前总风量相匹配,在对风机动力型的变风量末端控制中较为常用。

2 基于PLC的变风量空调系统控制

变风量空调系统是多变量,大滞后、非线性线性和不确定性的系统,PID控制具有结构简单、参数易于调整,适用于难以建立精确数学模型的非线性被控对象,因此在工业过程控制中得到了广泛的应用[4]。变风量空调系统的控制具有被控设备分散、控制变量之间相互关联性强等特点,要求采用的控制设备能够相互通讯。

采用PLC的控制系统具有可靠性高、易于控制、系统设计灵活、变成使用简单、抗干扰能力强、有良好的适用性和可扩展能力等特点,从而得到越来越广泛的应用。PLC的通讯功能也很强,可实现PLC与计算机、PLC与PLC、PLC与其他智能控制设备之间的通讯联网。PLC与计算机联网,PLC作为下位机用于现场设备的直接控制,执行可靠有效的分散控制。计算机作为上位机可以提供良好的人机界面,进行系统的监控和管理。

本文的研究对象为某一大型制药公司的10个生产车间,虑到各个生产车间的电气室在地理位置上分布较散,为便于布线及维护,要求每个生产车间均用一套独立的PLC控制系统;负责对现象各种信号的采集与处理,同时据设定的各种工作参数对现场的执行机构(如电机、阀门、泵等)进行输出控制,以达到指定的控制效果;10个系统均可设定控制温度、湿度,每个生产车间的运行参数及实时数据要在本地及中央控制室中设定与读取;为实现可在本地设定及读取数据,每台PLC主机挂载一个触摸屏,两者之间用RS-232相联进行通讯;考虑到各车间相对距离较远,为节省成本,PLC主机可用RS-485的连接方式与之相近的PLC主机相联接组成RS-485子网,再与位于中央监控室的计算机(上位机)进行通讯,达到从远程对各个控制系统进行监控的目的。风机、泵的驱动执行机构采用变频器;变频器的开关可用PLC进行控制,而变频器的频率可通过PLC的模拟量输出信号或用PLC与变频器通讯的方式进行控制。

本系统的变风量空调系统的温度通过PLC的PID模块进行控制。

温度控制回路:风道内和室内设置的温度传感器用于测定温度,为控制器的调节提供依据。根据所测室内温度与设定值的偏差,通过PID控制调节送风阀门的开度,改变送风量的大小来实现温度控制。室内温度控制回路如图3所示。

风量控制:通过房间送风阀后的差压传感器来测量房间内的送风量,并根据送风量的大小来来调节VAVBOX的变频器的频率,改变风机的转速来调整回风量。

以某面积为100m2的车间为例,室内温度30℃。设定的目标是用该控制系统把室内温度稳定在25℃。通过PLC控制系统对测试车间内变风量空调系统的室内温度进行PID控制,得到了实测的室内温度的变化趋势如图4所示。

从实测的送风温度的变化趋势图中可以看到:当系统开始运行后,由于温度差,送风阀门全开,风量最大;室内温度相对变化缓慢,这是因为车间空间较大,室内温度变化有延迟;室内温度的曲线经过一段平缓区后开始下降,随着室内温度的下降,风量逐渐减小,最后室内温度稳定在25℃附近,送风阀门开度保持不变,保证送风量一定。实验结果表明,基于PLC的变风量空调系统的温度PID控制,能够很好地调节和控制变风量空调系统的送风量,保证室内温度维持在设定值,控制效果良好。

3 结语

随着社会的进步和科技的发展,人们对生活和办公环境的舒适性要求越来越高,节能的意识越来越强,变风量空调系统能够同时满足人们对舒适性和节能的要求。PLC是综合了计算机技术、自动控制技术和通信技术发展起来的一种通用的工业自动控制装置。PID控制由于其控制器结构简单且能满足大量工业过程的要求,而在工业过程控制中得到了广泛应用。笔者研究了基于PLC的变风量空调系统温度PID控制方法,实验结果表明,通过PID控制能够很好地调节和控制变风量空调系统的送风温度,控制方法可行有效,控制效果良好。

参考文献

[1]郭维钧,贺智修,施鉴诺.建筑智能化技术基础[M].北京:中国计量出版社,2001.

[2]曹振华.变风量空调系统的特点和发展前景[J].洁净与空调技术,2011,2:74-75.

[3]蒋虹.基于分布式控制系统(DCS)的变风量空调系统的设计[J].建筑节能,2011,39(8):7-10.

控制变量范文5

关键词:控制变量法;中学物理;教学

中图分类号:G633.7 文献标识码:A 文章编号:1671-0568(2012)36-0124-02

新一轮课程改革的核心是基础教育改革,在改革课程教学内容的同时,科学研究方法教学也是重要的改革内容之一。新课标指出物理课程的基本理念要注重科学探究,提倡学习方式多样化,应改变过分强调知识传承的倾向,让学生经历科学探究过程,学习科学研究方法,培养学生的探索精神、实践能力以及创新意识。[1]可见科学方法教育已提上重要日程,在理科课程改革的进程中,“国内外一些具有远见卓识的学者和科学家,建议在适当更新教学内容的同时,加强科学方法的教育”。[2]按照现代科学观和科学教育观,科学教育不应该只是科学知识的教育,它还应该包含科学知识、科学方法。

物理科学方法就是研究物理现象、描述物理现象、实施物理实验、总结物理规律、检验物理规律时所应用的各种手段与方法。在严格的科学条件下,通过严密的观察实验和严格的逻辑推理,找到事物内各部分之间及事物与外部环境的相互关系和相互作用,确定相互作用产生的结构、运动变化的因果关系,以形成规律性知识。[3]

物理学的发展离不开科学的方法,同样,学习物理也离不开科学方法,在平时的教学及学习中常用到的物理科学方法主要有:观察法、实验法、科学抽象法、逻辑推理法、控制变量法、类比法及想象法,等等,只有在教学和学习中综合应用各种科学方法才能使教学和学习的效果达到最佳。本文主要从控制变量法入手,概要阐述控制变量法在中学物理教学中的重要作用。

所谓控制变量法,就是就是把一个多因素影响某一物理量的问题,通过控制某几个因素不变,只让其中一个因素改变,从而转化为多个单一因素影响某一物理量的问题的研究方法。这种方法在实验数据的表格上反映为:某两次试验只有一个条件不相同,若两次试验结果不同,则与该条件有关,否则无关。反过来,若要研究的问题是物理量与某一因素是否有关,则应只使该因素不同,而其他因素均应相同。

控制变量法是中学物理中最常用的方法,在中学物理课本中以下知识的教学和学习都涉及了控制变量法:

从此表格可以看出控制变量法在物理学中的涉及面很广,几乎贯穿于物理学的方方面面。而物理规律是物理知识的主体部分,物理实验又在验证物理规律时起着不可忽视的作用,在教师教学物理规律时常用到控制变量法进行对照讲解,所以控制变量对于物理教学有着重要的意义。

一、控制变量法在物理概念教学中的应用

物理学是一门研究物质结构及其物体运动规律的自然学科,其内容结构由理论和实验组成,在学习中学物理时不仅要认真学好理论知识,还要从实验中体会原理、定理和定律的建立过程,学会用实验的手段验证教材中的理论,进而培养学生对科学的探索精神。由此可见,中学物理概念在物理课中占有重要的地位,在教学某些物理概念时由于概念本身比较抽象,学生很少能全面理解概念的含义,在课堂引入时往往会使用到演示实验,而在演示实验中,很多实验都运用到了控制变量法。例如,在八年级物理教材第二章运动的世界第三节快与慢中引入速度概念时,为了让学生能够有速度的概念,运用了控制变量法分别控制路程相等和时间相等。在路程相等的前提下比较时间;在时间相等的前提下比较路程。通过这样控制变量之后进行比较,学生就很容易辨别哪个物体运动速度快,哪个物体运动速度慢,由此速度的概念自然而然就引出来。在中学物理教材中这样的例子很多,压强的引入也是一个典型的应用控制变量法的实例。

二、控制变量法在探究物理规律中的体现

在中学物理教材中大量的知识以物理规律的形式呈现,所以物理规律的教学就显得尤为重要,教师在得出物理规律的过程中常常会用到控制变量法。例如,在教学欧姆定律时就用到控制变量法,学生在学习欧姆定律之前已经学过电流、电压及电阻,那么如何使三个物理量联系在一起,教材中用到了探究实验,通过控制变量来探究电流与电压、电流与电阻的关系。

保持电阻R不变,通过改变导体两端电压U,探究电流I与电压U之间的关系。采用定值电阻,即可保证定值电阻R不变。改变导体两端的电压,可以通过改变电源两端的电压,来改变电阻两端的电压。用这种方法,可以较为简单地运用控制变量的方法研究电流与电压的关系,易于学生理解和掌握。此外,常在教学中采用的方法是通过调节滑动变阻器来改变电阻两端的电压。

控制导体两端的电压U不变,改变电阻R,探究电流与电阻的关系。在使用中换用不同的定值电阻即可实现改变电阻。改变电阻的同时要保证导体两端的电压不变,在实验中通常使用同一个电源,即可保证导体两端的电压不变,更换不同的电阻,可直接得出电流与电阻的关系,降低了探究的难度。但如果实验中使用的是干电池,电池有内阻,外接电阻R变化时,电阻R两端的电压也会随之有所变化,给实验带来误差。

经过以上两个实验探究,学生得出“导体中的电流与导体两端的电压和导体的电阻的关系”。在整个实验探究过程中,紧紧围绕着控制变量进行操作,充分体现了控制变量法的精髓,也体现了控制变量法在物理规律教学中的重要作用。除了“欧姆定律”外,“影响电阻大小的因素”、“焦耳定律”、“电磁铁磁性的强弱与什么因素有关”等探究过程使用了“控制变量法”。教学中应充分利用这些机会,使学生对“控制变量法”不断加深理解,并逐步达到有意识地应用“控制变量”的研究方法去探究物理规律。

总之,新课程的核心理念是以学生发展为本,课程改革要培养学生的信息收集和整理的能力、发现问题和思考问题的能力、分析问题和解决问题的能力、终生学习和创新的能力以及生存和发展的能力。控制变量法的教学恰恰就锻炼了学生信息收集和整理的能力,培养了学生分析问题、解决问题的能力和创新的能力,掌握这种方法,学生还可以终生使用,终生受益。所以说,控制变量法的教学充分体现了新课程的教育理念。因此,物理教师在传授知识的时,不仅要使学生掌握物理知识,而且要培养学生科学探究的能力,特别是利用控制变量法探究物理规律的能力。这将为学生形成科研能力、探究能力、解决实际问题的能力打下坚实的基础,也将对他们的学业和今后的人生之路产生积极而深远的影响和促进。教学中,我们应该充分发挥控制变量法的优点,让其更好地为师生服务,为教学服务。

参考文献:

控制变量范文6

世界是普遍联系的,自然界发生的各种现象往往是错综复杂的,并且被探究的对象往往不是孤立的,总是处在与其他事物和现象的相互联系之中,因此影响探究对象的因素在许多情况下并不是单一的,而是多种因素相互交错、共同起作用的。譬如说电磁铁的磁性的强弱,不仅仅与线圈中电流的强弱有关,还跟线圈的匝数以及是否插入铁芯有关系。要想准确地把握探究对象的各种特性,弄清事物变化的原因和规律,单靠自然条件下整体观察探究对象是远远不够的,还必须对探究对象施加人为的影响,排除干扰,造成特定的便于观察的条件,这就是控制变量法。

一、控制变量法能有序地分解和呈现物理探究问题

当影响某一物理量变化的因素较多时,要研究这些因素的变化对该物理量是否有影响,这时就需要使用控制变量法去研究,将多变量的物理问题转化为单变量的问题。通过对相关测量数据的研究、分析、判断、总结、归纳,最后找出这个因素跟我们想要研究的物理量是什么关系。

例如:在探究液体蒸发快慢时,我们猜想:液体蒸发的快慢可能与液体温度的高低、液体表面积的大小、液体表面空气流动快慢等因素有关,要得出液体蒸发的快慢与液体温度之间具体关系的方法是:控制液体表面积、液体表面空气流动速度不变,只改变液体温度,判断液体蒸发的快慢的变化,从而得出规律;再采用类似的步骤分析得出液体蒸发的快慢与液体表面积、与液体表面气流速度之间的规律。在这种探究过程中,控制变量法,有序地分解和呈现了物理问题,帮助学生对影响物理量的多个因素逐一进行研究。这种探究,思路非常清晰,能帮助学生快速、准确地设计和完成探究。

在初中物理教学中还有许多概念或规律在探索和推导的实验过程中,都运用了控制变量法。如在引导学生探究导体中电流大小与导体两端电压大小和导体电阻之间的定性关系,最终得出“欧姆定律”;探究力的作用效果与力的哪些因素有关,最终得出“力的三要素”等实验过程中都用到了这一科学方法。因此要使学生对控制变量法不断加深理解,并逐步达到有意识地去应用的目的.

二、引导学生用控制变量法探究物理规律

课堂上,在引导学生用控制变量法探究物理规律的时候,可采用以下步骤进行:提出问题、 进行猜想、讨论猜想、 控制变量进行探究、 总结规律。

例如:探究影响导体电阻大小的因素。

提出问题:影响导体电阻大小的因素有哪些?

进行猜想:引导学生观察分析课本常见的导体的电阻的数据进行猜想,学生能比较容易地猜想到影响导体电阻大小的因素有:导体的材料、长度、横截面积等。

对学生提出的猜想进行讨论。

控制变量进行探究:

(1)控制导体的材料、横截面积不变,探究电阻与导体长度的关系。

(2)控制导体的材料、长度不变,探究电阻与导体横截面积的关系。

(3)控制导体的长度、横截面积不变,探究电阻与导体材料的关系。

总结规律:

(1)导体的电阻与导体的长度有关,长度越长,电阻越大。

(2)导体的电阻与导体的横截面积有关,横截面积越长,电阻越小。

(3)导体的电阻与导体的横截材料有关。

在用控制变量法探究物理规律的过程中,应使学生认识到,具体的科学问题常常都是由多个因素共同造成的结果,帮助学生在科学探究中体会变量的概念、建立控制变量的初步意识。同时也使学生对控制变量法有了较系统的认识,对于以后用这种方法去探究其它类似的物理规律时也起到较好的示范的作用。

初中物理教学中,探究的实验比较多,在做大部分的探究实验时,都使用了控制变量法,只有掌握这种方法,同学们在做实验时才不会漫无目的,才能得出正确的实验结论,真正理解和掌握物理概念和规律,从而有利于学生研究性学习和创新能力的发展。