装配工艺范例6篇

装配工艺

装配工艺范文1

关键词:机床;装配;工艺

【分类号】TG659

一、概述

我国的机床制造业,不论在数量和品种上都挤身于世界水平的前列,但在量与质上,和国外机床制造业相比有着较大的差距。

据统计,国外机床无故障时间为3000h,我国仅有500h。国内机床普遍存在的问题就是故障率大多发生在最初使用的2~3个月内,有的在半年之上,称之早期缺陷。反映比较突出的是装配质量问题。许多军工、重要工业甚至于有的机床厂在需要高精加工设备时,也多倾向于采购国外机床。

机床质量的优劣,取决设计、材料、加工、装配制造等一系列的过程,各个环节相扣,缺一不可。

二、装配工艺设计前的准备

装配工艺设计首先要收集相关的资料,包含企业的制造能力、设计和工艺标准、设计文件、技术协议等。企业的制造能力包含场地、设备、人员、技术、检测等方面的能力。还有天车的起重能力、场地的承载能力、运输的能力、零件的制造流程、理化检验手段、装配操作人员的水平、计量检测的能力等。设计和工艺标准是技术人员必须掌握的,标准的使用可以使产品的制造更加迅捷。技术协议昌机床制造厂和用户签定的,一份包含有关机床的性能、规格、验收、特殊要求等一系列内容的技术文件。技术协议是产品设计和制造必须遵守的重要文件。产品的设计文件包含图纸、使用说明书和鉴定大纲等。鉴定大纲就是对新产品鉴定其功能、性能、是否达到设计意图的技术文件。工艺人员需要将鉴定的项目纳入到装配工艺规程中,并且对这些操作具体化。只有对以上这些资料充分了解,才能完成好后面的装配工艺设计工作。作为一名优秀的装配工艺设计人员,也要在前期的准备工作中及早的发现问题、提出问题、解决问题。然后进行分配装配部件工作和装配工艺方案设计与评审,为后期的工作制定路线方向和为关键工序确定方法。分配装配部件就是净产品按产品的结构特性、操作装配习惯划分部分,分块进行装配工艺设计工作。这种划分部件,一般是在按产品的部件目录的基础上划分,同时按着产品的特点进行组合或分解。

三、机床产品的总装工艺设计

部装和总装工艺的要求和编制方法基本相同。下面主要针对总装工艺的设计进行简要阐述。总装阶段是机床产品出厂前的最后一道工序,必须作到整机装配的完整性、检验项目的齐全性.才能控制出厂产品的质量。工艺的操作顺序、装配要求、调试数据也必须保证正确无误。小型机床机构简单,零部件尺寸小,总装工艺并不复杂。大型、重型机床的零、部件尺寸规格大、重量大,运输、翻转、装配都十分困难。并且零、部件受力装况复杂,精度调整不容易精确。这类零部件的装配,必须保证装调时涉及的工艺数据的准确。下面对机床产品的总装工艺按四个阶段分别说明:

基础部件连接调整水平。首先进行装配前的准备和组件装配,然后是调整安装水平和连接,再继续是安装移动用的齿条类零件和光栅尺以及辅助件。如果是用户安装。则调整安装水平变成精调水平和精调水平两次进行,两工序之间是设备灌浆和养生。

各部件连接安装。要注意各部件的安装顺序以及各部件的调整内容。同时.牵扯精度项目的也要随时检测。导轨防护等妨碍其它部件调整、调试的部件可以不装配。

机械、电气、液压装配与联调。零散的电气、液压进化论年实际上在部件时就已经装配上了。这里只是大块电气、液压部件的安装与连接。联调前,各油池要注油。机械、电气、液压的动作联调,要逐项分步进行。

总检、试车、解体和涂装。这些工序内容如下:a.电气检验(含机床规格检验);b.预检机床几何精度;c.空运转实验(同时检验噪音、温升);d.负荷实验(最大承重下机床的运转情况);e.重载切削(检验最大切削力与最大扭距);f.总检机床几何精度;g.数字位置精度检验;h.工作精度检验;i.放油、解体;j.涂装、整理外观、包装。

以上的内容是按机床设计文件要求进行的。如果设计文件没有规定,可以执行各类机床的通用检验标准和技术条件标准等行业标准文件或国家标准文件。

四、加工验证

在机床的装配过程中,按照工艺要求,把以上各处预紧列为重点工序,严格控制预紧力或预紧量的大小,对该型数控机床实施装配,并与原来没进行预紧力控制的同型机床进行了比较,我们可以看出,严格控制装配过程中预紧操作,在一定程度上可以改善机床相关零部件的联接精度和受力状态,并提高了设备的静态精度、动态精度以及加工精度,从而使数控机床的整体水平和档次得到较大提升,为企业参与市场竞争提供了坚实的技术保障。

应用先进的基础元件是机床发展的方向,如直线导轨、内装式电机、力矩电机、光栅、直线电机,高精度主轴轴承等,装配需要有更多更高的知识,真诚希望传统的、正确的装配技能能得到发扬,新颖的装配方法在积累一定经验的基础上,得到交流。

参考文献

[1]陈循介.产品质量和服务质量是制造业的生命[J].精密制造与自动化,2010(1):1-4.

[2]陈龙法.关于轧辊辊形误差评定方法的探讨[J].精密制造与自动化,2007(1):56-58.

[3]陈循介.目前世界先进机床水平概述[J].精密制造与自动化,2007(2):7-8.

[4]陈龙法.钢丝和显微镜测量的应用[J].精密制造与自动化,2007(4):51-53.

[5]现代实用机床设计手册编委会.现代实用机床设计手册:上册[M].北京:机械工业出版社,2006.

装配工艺范文2

关键词:装配式建筑;施工工艺;施工技术

近些年我国的建筑设计水平有了明显的提升,广大群众对于住宅的品质要求也逐渐提高,传统施工工艺的建筑已经不能满足人们的需求,于是装配式建筑应运而生。装配式建筑是指将建筑的各个部分在专门的工厂中进行生产,随后运输到施工现场进行组合装配。装配式建筑施工技术可以将建筑规模化、工厂化,大大提升了建筑的建造效率,降低了环境污染。但是在目前的实际施工中,装配式建筑的施工中还存在一些不足,阻碍了装配式建筑的进一步推广,还需要施工单位深入研究加以改进。

1装配式建筑施工的主要概念

装配式建筑是对传统建筑的升级,具体是指将整体建筑所需的各种部件进行提前加工,随后将部件吊装至施工现场,通过装配、连接以及灌浆等方式组成建筑。装配式建筑施工的主要技术体系可以分为部分预制和全预制,部分预制又可以分为楼梯、护墙、隔墙等构件预制,竖向承重构件全现浇或者部分承重构件预制。全预制是楼板、楼梯、梁、柱等选择预制部件,各部件的连接节点采用现浇的方式组合而成。按照建筑整体结构形式划分,可以将装配式建筑分为剪力墙、框架、剪力墙-框架以及核心筒-框架等形式,前几种的实际运用较多,具体的特点和应用举例如表

2装配式建筑的施工技术研究

2.1装配式建筑的前期准备工作

在装配式建筑施工之前需要做好一系列的准备工作,要掌握施工现场的关键信息和资料,对后续工程的施工步骤进行合理的规划以及部署,以保障施工的合理性。首先,施工单位要掌握施工现场地质情况以及规划需求,对建筑物的面积和抗震等级进行深入的研究,以确定后续施工材料和技术。其次,还要根据建筑的设计图纸对预制部件的安装节点进行确认,掌握建筑的每一个细节设计。最后,施工单位要制定科学完备的施工方案,根据建设项目的需求合理分配相关资源,管理整个工作流程,确保充分发挥装配式建筑的优势[1]。

2.2部件预制技术

装配式建筑施工技术中最重要的技术便是部件预制技术,部件预制的质量如何将直接决定后续装配式建筑的整体质量。首先要对模板的尺寸进行严格的把关,确保预制部件的大小符合设计方案的要求。其次,要严格把关施工原料,使得预制部件的强度和质量达到规定的建筑标准。最后,在对部件进行浇筑时,要严格把控浇筑的速率,防止对模板产生的冲击力过大,而且在进行混凝土振捣时,要保证混凝土与钢材不接触,避免预制部件受到侵蚀。

2.3运输与安装技术

装配式建筑的部件运输和安装也是十分重要的环节,运输环节极易出现部件的损坏,部件一旦出现损坏,不仅影响工程的质量,还会造成不必要的损失。运输和安装过程中需要注意的事情主要有以下几点:一是严格按照施工和运输标准进行运输。运输人员要选择可以固定预制部件进行运输的车辆,并且要布置相应的安全防护措施,比如可以采取支垫或者包角的方式防止运输期间出现碰撞和滑落等问题。二是在进行部件安装时,注意控制吊装设备的速度。尤其在建设高层装配式建筑时,吊装过程中部件极易晃动,具有很大的安全隐患,容易引发施工事故。所以施工人员要选择稳定的设备进行吊装,在施工期间要注意设备的速度,防止因为速度过快出现部件损毁的问题[2]。

3装配式建筑施工工艺研究

3.1预制部件的生产工艺

预制部件作为整体建筑的重要组成部分,其生产制作工艺有着严格的流程和要求。大致工艺流程如下:首先,要将预制部件所用的模板进行彻底的清洗,去除灰尘、木屑等杂物。其次,要按照预制部件的设计尺寸对模板进行定位。再其次要将准备好的钢筋依次放入模板中,将需要预埋的部件进行安装定位。最后,进行混凝土的浇筑和振捣密实环节,需要注意的是在振捣时,不要碰到预埋件。在振捣结束后,要营造蒸汽养护的环境,便于预制部件更好地成型。当混凝土的强度达到70%时,对预制部件进行脱模处理。需要注意的是,墙板部分的预制还要进行保温层的铺设。

3.2预制部件的装配施工工艺

在进行预制部件的吊装前,要确保部件之间连接面的干净整洁,并将需要用到的灌浆工具、调整斜撑以及螺栓等准备妥当。首先详细介绍柱的装配工艺,主要流程如图1所示,当预制部件距离安装层面20厘米左右停止,施工人员仔细查看连接套筒和层面预留位置是否对准,对准之后继续下降。随后安装斜撑调整柱子的垂直角度,当垂直度符合标准后,在柱子和层面的连接处注入砂浆进行密封。墙板预制部件的体积较大,在吊装过程中要保持较低的速度运输,当墙板距离安装层面60厘米左右时,工人要辅助预制部件缓慢下降。通过预制部件预留的钢筋和套筒进行定位,随后缓慢下降墙板,预留20厘米的空间进行后期的接缝灌浆。最后安装斜撑调整墙板的垂直角度,调整完毕之后灌入不收缩的砂浆。

3.3接缝灌浆工艺

以上各种预制部件的装配工艺中均运用到了接缝灌浆工艺,这也是装配式建筑工艺中必不可少的工艺流程,其施工质量将会直接影响到整体建筑的使用性能。具体工艺流程如下:在灌浆前,要对灌浆部位进行彻底的清洁,而且要封堵接缝处,防止砂浆渗漏。随后配备灌浆料,要选用优质的料粉以保证料浆可以均匀混合,采用压力灌浆方式,快速完成灌浆操作。最后,要对灌浆的饱和程度进行检查,及时清理溢出的浆料,然后留有充分的时间等待浆料稳固,期间要保持预制部件处于平稳的状态。

4装配式建筑施工技术和施工工艺的应用策略

4.1做好预制部件的质量和存放管理工作

预制部件是装配式建筑最重要的部分,因此需要做好存放和质量管理工作。虽然在施工现场不需要“湿作业”,但是对于钢筋、水泥等原材料的质量管理不容忽视。在原材料进厂时,施工单位要请质检人员对其进行全面的检查,合格后方可继续施工。原材料的质量达标,才能使得预制部件的强度和质量符合建设要求,进而可以为后续的装配奠定良好的基础。此外,预制部件制作完成之后,要分类存放,做好存放和取用的记录,并且保障存放地的通风和排水工作,防止因为存放不当而导致预制部件的性能发生改变,影响整体建筑的质量。

4.2采用BIM技术提升装配环节的精准度

采用BIM技术可以有效地提升装配环节的精准度,以提升装配式建筑的质量效果,提高建筑的施工效率。首先,BIM技术可以在系统中全方位地展示施工现场,项目的设计和施工人员可以详细地掌握项目建设情况,降低了项目各环节工作人员之间的沟通成本。其次,BIM技术在生成模型时,可以及时发现设计图纸中存在的问题,比如构件尺寸标注不清、详图与平面图不符等,以便设计人员及时进行调整,防止出现构件尺寸不符的问题。最后,有助于施工现场质量和安全信息管理,施工现场的管理人员发现质量问题后,可以通过客户端将问题上传到云端,系统自动将问题发生的位置、时间和整体施工模型相关联,方便施工人员查询存在问题的施工节点。

5结语

综上所述,装配式建筑施工的价值在现代化社会的发展中逐渐显现,也受到了广泛的认可。但是因为装配式建筑涉及到许多方面的建设规范,所以相应的施工工艺和施工技术要不断提升,否则将影响到装配式建筑的进一步推广。基于以上情况,施工方要严格把控施工期间的各个环节,及时应用先进的技术,提高装配式建筑的质量,促进我国建筑行业的高质量发展。

参考文献

[1]贾敬峰.装配式建筑施工技术在建筑工程中运用[J].中国建筑金属结构,2022(1):44-45.

装配工艺范文3

关键词:数控加工中心;机械本体;装配工艺

中图分类号:TG659 文献标识码:A 文章编号:1671-2064(2017)03-0091-01

1 数控加工中心机械本体装配工艺的知识建模

当前数控加工中心机械本体的装配工艺知识建模过程中,主要是以本体为基础,构建多种抽象模型,将模型中涉及的诸多知识加以表达和应用。通常本体是对概念模型的说明和解释,利用其来构建知识概念模型,可以实现本体的概念化和理论化。基于本体的装配工艺知识模型构建过程中,多是围绕四个基本关系,即atrtibute一of、instnaec一of、kind一of、part一of,由于用户对知识模型对象具有不同的要求,除了这四种关系之外,用户可以结合自身需求自定义其他所需关系,这样知识关系则会变得更为多样化及复杂化。

2 导轨副和丝杠的装配及精度测量分析

2.1 导轨方面

2.1.1 导轨装配

数控加工中心多是以日本THK线轨作为导轨副,而在线轨安装之前,需要将相关的地脚螺钉进行合理调节,这样可以保证底座的水平;同时需要以抬高为主,每一次转动的幅度尽量低于100,有效避免反向间隙差问题的出现。值得注意的是,在刮去底座承靠面的油漆之后,需要适当进行消刺处理,利用油石来回托滑加工面,并清洗干净铸件线轨的固定孔[3]。采用同样的方法去除线轨毛刺之后,可以在底座承靠面轻放线轨,并在固定孔中锁好锁线轨螺丝,退半圈后挤压线轨,使其接触到承靠面,利用800N・cm的扭力值来拧紧螺丝,确保两边的对称锁紧。

2.1.2 丝轨安装的精度测量

线轨精度涉及左右和上下的平行度,是数控机床精度的前提,一般精度需满足的条件为:①双上下和左后的最大平行误差分别是0.025mm与0.015mm;②单轨上下和左右的最大直线误差分别是0.02mm与0.01mm。双基准测量法是测量线轨精度的常用方法,主要以某一轨道为基准,对另一轨道的相对偏差进行测量。测量线轨的左右平行度时,可以在底座中间方式标准量块,并在左端线轨的滑块上支撑好千分表,保证量块与左轨的左右平行;然后在右轨滑块上固定好千分表,有效测量左右平行度偏差。另外,对线轨上下水平度进行测量时,应该在左端线轨滑块上支撑好千分表,将量块和左轨调节为上下平行的状态,然后在右轨滑块上固定好千分表,对上下平行偏差加以测量。

2.2 丝杠方面

2.2.1 传动座和尾端座的装配

安装传动座时可选用双推的方式,先在传动座内侧安装好轴承压板,然后使用3100N・cm的扭力锁紧螺丝,并用铜棒铝棒轻敲轴承外沿,确保其完全装入到内孔中。擦干净丝杆后,将其按照由上至下的顺序装入到传动座内后锁紧螺帽,并在油封中装入防尘封盖,用橡胶锤轻敲油封,使其与防尘封盖贴紧[4]。另外,对于尾端座来说,其多是承受径向力,在油封中装入尾端座内孔,并以“X”型的方式有机组合主轴承和尾端座方向,用铜棒轻敲轴承外沿后,将其放置于内孔;然后适当加垫M6×20的螺丝,锁紧好防尘封盖,将其压于轴承上。同时旋入丝杠的另一端时,可以选用R32的自锁螺帽,使接触面朝向孔外、隔环凹槽朝向孔内,并将隔环压于自锁螺帽。

2.2.2 丝杠精度测量

①测量丝杠偏摆度。在丝杠传动座的最边端打好千分表,然后慢慢旋转丝杠,如果表头指针的变化范围不超过5μm,则表示其在精度控制范围内;如果超过范围,往往需要在变化值最大时反向敲击螺帽来调整偏差,使其在规定范围内。②测量左右平行度。在线轨滑块上支撑好表分,对丝杠的左右偏差进行测量,然后读出相应的读数,要想保证丝杠的左右精度,则左右偏差必须要保持在10μm的范围内,否则需要对尾端座的左右偏移进行适当调整。③测量上下平行度。对传动座端和尾端座凸牙最高点进行测量,可以用千分表来读取数值,并对丝杠两侧的最高点进行比较,该数值差则是垫片需磨厚度;如果两端的偏差超过10μm,则需要重新拆除尾端,并对垫片进行重新打磨。

3 结语

总而言之,数控机床加工的前提与基础就是机械本体装配加工,后续的系统参数补偿以及机床精装等都是以此为基础加以完成,只有对机械本体的装配工艺建立模型,才能有效提高数控机床的生产效率和产品精度。由于数控机床加工过程较为复杂,涉及诸多加工步骤,而这些步骤会影响到产品的精度,因此操作者的在实际装配中需要认真学习先进的加工方法,增强知识储备,对每一模块的加工都加以高度重视,从而在整体上把握加工的精度,确保机械加工的高效性。

参考文献

[1]潘建峰,徐金泉.V40数控加工中心机械本体装配工艺研究[J].机床与液压,2013,02:53-55+50.

[2]于忠良,李振.数控加工中心机械本体装配工艺研究[J].经营管理者,2014,08:384.

装配工艺范文4

随着CAD/CAM/CAE以及计算机信息和网络技术的发展,欧美各航空制造大国均已全面采用三维数字化设计和制造技术,全面采用三维数字化产品定义和仿真技术,从根本上改变了传统的飞机设计与制造方式,大幅度地提高了飞机设计制造技术水平。波音公司在波音777飞机的研制过程中,由于全面采用了该项新技术,使研制周期缩短50%,出错返工率减少75%,成本降低25%,其研制过程是数字化设计制造技术在飞机研制中应用的重大突破。近几年在美国波音787、F-35、欧洲A400M及A350的研制中,数字化设计及装配技术有了更为深入的应用[1]。近几年,国家加强了对航空业的扶持力度,我国的航空制造业迎来了高速发展时期。当前一些新型号的研制已全面采用了基于MBD的全三维产品设计,飞机产品设计已全面实现三维无纸化设计,取得了产品从二维模拟量到全三维数字量的革命性突破,也为进一步实施数字化制造打好了坚实的基础。目前零件制造部门使用MBD数据已较为顺利,大大减少了因工人对图纸理解偏差导致的质量问题;然而装配工艺设计部门依然按照传统方式进行装配工艺的规划和设计,导致三维数字化的产品数据在装配工艺设计阶段出现断层,使得三维数字化的产品设计数据无法准确顺利地往下一级流动,需要大量的人员手工参与,数据的准确性、连续性被破坏,装配指令(即AO)的编制完全采用文字或者插入少量图片的方式进行表达,工人现场使用时还需参照大量设计技术文件以及各类工艺性文件,可读性和操作性极差,一线操作者意见很大,普遍存在师傅干什么徒弟干什么的情况,无法起到指导现场操作的作用。因此装配工艺设计部门需要适应全三维数字化设计的新形势,采用基于MBD的三维数字化装配工艺设计系统进行装配工艺的设计和规划,利用设计部门在VPM协同设计系统中设计并发放的产品三维数模,通过数据接口将产品数据导入装配工艺设计系统中,并将产品三维数模的路径关联到每个零件上,在三维可视环境下进行产品的装配工艺规划及工艺设计,直观地反映装配状态,最后生成现场使用的三维可视化装配指令指导现场生产。

2基于MBD的三维数字化装配工艺的设计过程

基于MBD的三维数字化装配工艺设计不仅仅是指编制三维装配指令,而是贯穿飞机设计的整个过程,在整个过程中不同阶段有不同的侧重点。这个过程主要包含以下三个阶段:第一阶段:工艺系统接收产品初步设计数据,分析产品结构特点,与设计人员协商初步确定工艺分离面并制定初步的装配方案,然后在三维仿真软件内进行装配方案可行性的初步分析,制定总体装配方案,分析可能的装配难点和重点。第二阶段:工艺系统接收产品较高成熟度的MBD设计数据,在三维仿真软件内对重点部位(必要时对全部)结构件、管路、自动化装配设备等进行装配过程和人机功效的详细仿真分析,发现并解决产品、工装以及工艺方面的问题并给出解决方案,如图1~图3所示;这个阶段的工艺工作主要包括:装配顺序的创建和优化;装配路径设计和优化;装配工艺过程仿真模拟、人机功效模拟、自动化定位及制孔设备等的工作仿真。利用三维数字化仿真软件对产品的组件或部件进行装配过程规划,确定组件或部件内零组件的装配顺序;按照工厂现有装配条件和装配单元工作内容,进行装配路径的仿真和优化;最后在数字化装配仿真系统中进行零组件或自动化设备的装配过程及人机功效的仿真模拟,分析装配工艺过程的可操作性和合理性,发现并解决数字化产品模型装配过程中所遇到的产品、工装以及工艺设计中的各类问题,同时也可以进行工具等的选型工作[2]。第三阶段:接收设计部门的最终三维MBD设计数据,创建顶层MBOM以及PBOM等工艺数据,在数字化工艺设计系统中进行装配工艺的详细规划和细节设计以及资源库的创建,在三维可视化的环境下进行零组件以及标准件的划分,在全三维的环境下对装配指令进行工步级的细节编辑,最终生成现场使用的三维可视化工艺指令。

3三维数字化装配工艺设计系统的架构和工作模式

3.1三维数字化装配工艺设计系统的架构

本文所述的装配工艺设计系统是基于达索公司的DELMIA软件平台进行开发的三维数字化装配工艺设计系统,DELMIA软件平台分DPE和DPM两个工作环境,DPE侧重数据管理和工艺规划,DPM则提供一个三维可视化的环境便于产品数据的划分和装配仿真等工作。由于DELMIA只是提供了一个平台且目前MBD设计标准不统一,故需要在原有基础上进行客户化定制和开发,本系开发了多种辅助工艺设计工具以便工艺设计人员只需极少的文字输入即可完成工艺设计,所有关键数据均直接继承自产品MBD数模,保证了工艺信息的完整和准确;此系统中最为复杂难度最大是MBD数模中标准件的处理和划分,由于大型飞机标准件数量都在数十万甚至上百万件以上,采用实体建模将会产生天量的数据,因此目前飞机标准件设计大都采用点线等元素进行简化表达,无法使用DELMIA中标准功能进行标准件的工艺规划,因此系统开发了一套专门处理标准件模型的工具,本系统也是国内目前唯一实现了对以点线表达的标准件识别和划分的系统,如图9所示。本系统依托VPM协同设计平台提供MBD产品数据,在DELMIA中完成PBOM的创建、顶层MBOM的划分、三维装配指令的设计并向协同平台提供底层MBOM以及三维装配指令等数据,由系统平台进行管理和发放。三维数字化装配工艺设计系统的流程及架构如图4所示,整个三维数字化装配工艺设计系统始终保持设计数据的一致性,保证数据的准确性及完整性,同时本系统可给生产管控系统(MES)以及ERP系统设置数据接口[3]。

3.2三维数字化装配工艺设计系统的工作流程

三维数字化装配工艺设计系统主要由需要工艺管理部门和各车间工艺设计部门使用和管理,工艺管理部门和各车间工艺设计部门必须紧密协同才能顺利开展三维数字化装配工艺设计,同时工艺管理部门需要给予车间一级足够的权限,毕竟车间一级工艺人员对产品设计特点有更深入的了解。工艺管理部门主要负责三维装配设计系统数据的顶层设计,其利用DELMIA中的DPE环境下的数据接口进行EBOM导入,通过对EBOM的重组增加工艺组件和路线定义等形成PBOM;在PBOM的基础上构建顶层MBOM;根据各厂际分工要求进行大部件级的顶层工艺组件的划分,如图5所示。各车间工艺技术主管接收工艺管理部门下发的数据,进行各车间内部工艺面的进一步划分并将之分派给具体每个工艺员;工艺员接收工艺主管分发的具体某个装配单元的数据,进行本装配单元装配工艺的层次划分以及具体工步的分解,在DPM三维可视化的环境中中进行零组件及标准件的划分,然后在DPE环境下进一步进行装配可视化修饰等细节编辑,但对于装配工艺所需飞机装配技术条件、材料、工艺规范文件等全部采用专门开发的工艺设计工具进行创建以保证编制数据的准确和完整。最后直接在DPE中输出结构化和标准化的三维装配指令并提交审批,经过审批的装配指令发送到协同平台进行统一进行发放及管理,以上过程见下图6~图14所示。三维装配指令审批发送到系统平台后由工艺管理部门统一管理,不属于装配工艺设计的范畴,本文不再赘述。

4基于MBD的三维数字化装配工艺设计的优势及要求

4.1基于MBD的三维数字化装配工艺设计的优势

1)采用基于MBD的三维数字化装配工艺设计,彻底解决了制约装配工艺设计过程中涉及的数据准确性、完整性的问题,整个装配工艺的设计完全基于设计的MBD数模,保证了与设计数据的一致性;2)工艺人员在三维可视化的环境下进行装配工艺的规划、仿真和设计,使得装配工艺设计更加直观更有操作性,通过装配路径仿真、人机功效仿真以及自动化设备工作仿真等可提前发现存在的设计、工装及工艺规划包含的问题并提前予以解决,大幅减少现场实际生产时的各类问题,提高生产效率并大幅降低生产成本;三维可视化装配指令设计系统使工艺人员完全从枯燥的文字编辑以及事后数据校对中解放出来,工艺人员只需关注装配工艺的可行性和合理性,无需花大量精力进行数据准确性和完整性的检查;3)在三维数字化装配工艺设计系统中输出的三维装配指令彻底颠覆了传统文字化的装配指令,工人只需在系统输出的三维可视化装配指令中进行简单操作即可,无需查找大量的图纸、设计技术文件以及其他工艺性文件,做到了可见即所得、所得即所需的效果,同时工人还可在装配指令的三维视图中对轻量化的设计数模进行各类尺寸的直观测量,便于工人现场操作的进一步了解;4)三维数字化装配工艺设计系统可输出装配部门准确完整的底层MBOM,有利于ERP以及MES系统的实施和管理;5)三维数字化装配工艺设计系统可以与装配知识库系统紧密集成,使得公司积累的知识在装配工艺设计时顺利地的共享和调用;6)工艺管理部门可利用DELMIA软件平台中DPE模块对整个装配数据进行有效的管理,保证下游数据的完整性和准确性,利于工艺设计部门编制完整准确的装配指令。

4.2基于MBD的三维数字化装配工艺设计的要求

1)基于MBD的三维数字化装配工艺设计要求有准确、完整及规范的且严格执行的MBD数模,产品设计数据是所有下游数据的源头,设计数据是否准确、完整及规范是决定三维装配工艺设计系统是否顺畅和准确最关键的要素。因此产品设计部门必须要有科学合理的与制造部门协商过的MBD设计标准和规范且必须严格执行,否则必定会导致整个下游其他系统的数据的混乱和实施困难[4]。2)工程制造部门也须有严格的与设计部门MBD设计标准和规范相协调的各类工艺规范且必须严格执行,用以支撑三维数字化装配工艺设计。本文所述的装配工艺设计系统在开发过程中发现产品设计标准很大程度上体现的是传统二维设计模式的思想,不能很好的适应当前基于MBD的三维数字化设计要求,而且设计人员没有严格执行现有标准化要求,特别是以点线表达的标准件模型存在大量的格式错误等不规范设计,导致系统开发比较缓慢,仅为了解决标准件数模处理和划分就占了近三分之一的时间。因此产品设计应开发专用的标准化设计工具和数据库用以支撑基于MBD的产品设计,同时需要借助专业化的软件工具对MBD产品数据进行标准化等项目的批量检查,最大限度地减少因人为因素导致的产品数据错误。3)工艺设计人员必须具备相当的工程经验,熟练理解并掌握三维数字化装配工艺设计系统所涉及的理念和软件使用要求,三维数字化装配工艺设计系统对工程技术人员来说只是工具,它本身无法识别工艺设计和规划的合理性和可行性,这些都必须由工艺设计人员依靠经验和知识确定。

5结束语

装配工艺范文5

【关键词】船体装配工艺;理实一体化;探索;实践

船舶建造与维修专业开设的《船体装配工艺学》课程是本专业的主干课程,目的是培养学生获得船体装配工种基础理论和实际操作技能,树立一定的专业意识,能运用专业知识分析、解决生产实践中的普遍问题。

1 《船体装配工艺学》理实一体化教学的必要性

本课程实践性和应用性较强,涉及知识面较广,目前教学实践中往往存在以下问题:

1.1 传统的教学方法落后,不适应当代职业教育。通常以老师为中心,在教室运用课本,粉笔,黑板照本宣科,讲授《船体装配工艺学》理论知识,内容单调,往往理论课很长时间后再安排到车间进行实训教学,甚至跨学期。安排实训内容单一,仅安排焊接、气割实操。缺乏综合技能实训,这就造成理论和实训脱节,不利于充分发挥理论指导实践的作用。教学形式基本上都是“填鸭式”。

1.2 中职学校学生多是中招落榜生,学生基础知识薄弱,理解力差年龄多在15-18岁之间,认知特点是形象思维大于逻辑思维,动手能力长于动脑能力。由于生源文化基础知识掌握不扎实,影响知识吸收。如学生数学三角函数、几何知识、空间思维能力等较差直接影响了船体装配测量、装配施工图识读等教学。

1.3 教材滞后于生产实际,甚至脱节。随着科学技术日新月异,造船技术也在不断的进行设备更新、工艺改进。《船体装配工艺学》教材中的一些工艺方法已在实践中落后,甚至淘汰,在教学中存在内容“过时”或不贴近生产实际,不能学以致用。更不能举一反三,培养学生创新能力。

上述问题影响教学质量,造成学校培养的船体装配工种学生难以适应现代造船企业技能型人才的需求,因此有必要对本课程教学进行改革探索,提高教学质量,培养合格人才。尝试“理实一体化”教学模式运用教学实践,显得更为迫切和需要。

2 理实一体化教学模式特点

理实一体化教学倡导以职业活动为基础,以技能学习为主导,应用专业知识,通过技能训练掌握实践操作技能。由“双师型”素质教师运用理实一体化教材,在理实一体化教室中让学生边学专业理论边学习操作技能。师生双方边教、边学、边做,实现理论讲解和技能训练一体化。教学过程中理论知识围绕实习课题讲解,用理论知识指导职业技能的学习,所授理论知识结合解决生产中的实际问题,学生为了掌握操作方法、完成实训操作任务而学习相关理论知识。

3 《船体装配工艺学》课程实施理实一体化教学的准备

3.1 按理实一体化教学模式需要,整合课本知识,注重实用原则,采用模块化

根据大纲和培训目标要求,在深入了解造船企业的船体装配技术发展现状的基础上,本着知识够用、会用原则,注重实用性和可操作性。对现有理论和实践教材进行整合,对理论偏深,内容陈旧知识进行删减。如删除装配基础知识中的船体建造的外部条件、铆接知识、装配工序的生产组织和管理等。将教材整合成基本技能、专业技能、安全要求等三个模块知识。每个模块设置相关课题,每个课题又有若干个项目组成,包含有知识目标和技能目标。如:基本技能模块内容设置装配工具,气割,焊接,火工矫正,起重知识等五个课题。装配工具课题有划线工具,度量工具,手工工具等三个项目。知识目标:熟悉各装配工具的名称,性能,用途。技能目标:掌握各装配工具的使用技能,进行安全文明生产。内容浅显易懂,简洁明了。

3.2 按理实一体化教学模式,改进教学环境,丰富教学内容,营造职业氛围

将理论教室、实训室结合实际工作场景,营造船体装配生产一线真实职业环境氛围。激发学生学习兴趣,提高感性认识。在实训场地设置授课场所,构建既能集中听讲,又利于分组实训的教室,理论教学区配置现代多媒体教学设备,实训操作区配备装配操作工具、仪器设备以及操作耗材。把部分设备放在理论教学区进行讲解和演示,如装配工具、装配测量仪器使用等。对于重型设备,借助模型演示。如分段、总段的装配工艺,船台的装配工艺等。对实训中装配工艺操作不具备现场操作条件的利用计算机图片展示、仿真动画、视频播放以及到船厂现场参观教学增加职业体验。

3.3 按理实一体化教学需要,培养过硬师资,突出“双师型”

理实一体化教教师既是教师,又是技师。具有扎实的专业理论知识和熟练的操作技艺,课程理论和实践教学由一位老师完成。这就要改变传统理论教学教师“会说不会做”,实操教师“会做不会说”的弊端。本人作为《船体装配工艺学》课程的理论和实训教师,每年都利用暑期到造船企业进行一段时间的实践并参加各种造船工艺培训讲座等。学习掌握船体装配新工艺,熟悉新设备,紧跟企业工艺技术发展步伐。更新知识,勤学技能。通过学习和实践先后获得船体装配高级工、技师等职业资格证,为《船体装配工艺学》课程理实一体化教学提供保障。

4 《船体装配工艺学》理实一体化教学实践

教学过程主要包括理论学习,技能训练,考核评价等。现以船体装配教学中的专业技能模块―分段装配课题―底部分段装配项目为例,具体步骤如下:

4.1 在理论教学区集中学生,通过投影仪播放课件,展示底部分段实物模型,引起学生学习动机。先讲解底部分段类型,在船体上的位置,组成构件名称,表示符号,装配过程,质量要求等基础理论知识。再通过制作分段模型,增加感性认识。

4.1.1 识读分段工作图及相关数据。将学生分组,以某船厂700TEU集装箱船205P\S底部分段为例,每组分发该分段工作图,【设问】该分段的结构组成?先安排学生自主识读和讨论。然后教师再进行分段基本情况介绍。让学生对照图纸,一一解读。

4.1.2 熟悉分段装配工艺过程。在学生充分识读图纸信息的基础上,【设问】该分段的分段装配工艺过程如何?安排分组讨论,介绍船厂的实际装配施工工艺过程,从胎架制作到构件定位装配,再到完工检测,对照传统工艺进行分析和讲解,强调工艺的革新。

4.1.3 制作分段模型,模拟装配过程。在学生充分识图和熟悉工艺过程的基础上,运用牛皮纸进行模拟胎架划线和制作,分段外板定位,划线,安装纵横构架,完工测量等分段模型制作,体验装配过程。制作过程中学生仍以小组为单位,由组长进行分工合作,教师在指导过程中发现问题及时引导,让学生“知其所以然”。每组制作完毕,教师进行点评,指出存在问题,结合现场如此操作可能带来的问题,进行改正。使学生对工艺理解上升理性层次。

4.2 在实训操作区进行技能训练,增加职业体验,掌握基本操作技能。

4.2.1 教师强调操作要领,装配工手工工具的使用,焊接、气割操作,安全注意事项等。

4.2.2 教师进行示范操作,分解步骤,说明原因。

4.2.3 学生分组,一般3~5人一组。每组选一名组长配合教师,模拟生产安排本组实操。

4.2.4 指导学生随老师操作顺序识图、划线、切割、定位、焊接、检验等。

4.2.5 学生操作训练,教师巡回指导,观察学生操作方法,安全以及劳动态度。发现差错,及时纠正辅导,如学生划线方法,夹紧顺序,定位测量,焊接间距,气割质量等,引导学生自己动手解决存在问题,提高学生的实际操作能力。

4.2.6 学生以小组为单位进行反复练习,可将装配定位好的试件运用气割拆除,可以重复使用耗材,也可锻炼气割和定位焊技能。

4.2.7 课堂测评。项目训练结束,采用口试和操作技能测试相结合进行测评。口试由教师提问,学生回答,如提问底部分段的结构名称,外板如何定位,构件装配方法等,通过学生回答,了解其理论知识掌握情况。操作技能测试,教师指定学生进行装配现场操作,并进行现场打分,了解学生技能掌握情况。

4.3 组织现场观摩教学,安排学生到船厂进行观摩,观看底部分段装配生产工艺过程。丰富职业体验。与现场技术工人进行互动,让所学知识技能对照生产实际,得到升华。

4.4 建立有效的考核评价,准确把握学习情况。教学过程中理论和技能训练同时进行, 在每个教学课题结束后,进行学生考核评价,考核时注重教学过程以及学生实践能力,《船体装配工艺学》教学中采用理论40%,实操60%的比例进行综合评价。评价后教师进行分析存在问题,提醒需要改进和注意事项。指导学生认真总结,帮助学生提高实践技能,在知识和技能上丰富学生的个体体验。

5 《船体装配工艺学》课程采用理实一体化教学效果

通过理实一体化教学实践,改善了目前中职学校学生普遍存在的厌学的现象,提高了学生学习的积极性, 《船体装配工艺学》课程教学质量有了明显的提升,学生的现场快速准确读图能力得到加强,学生的装配测量、焊接、气割、火工矫正等动手能力大有提高,近年来学生在船体装配工中级职业技能鉴定中通过率高达95%以上。安全操作意识也加强了,在装配实践教学和实习中均为零事故。实习和就业单位普遍反映学生船体装配岗位在顶岗实习中,“上手快”,表现突出,就业后,“磨合期”缩短。

6 《船体装配工艺学》课程采用理实一体化教学体会

理实一体化教学模式是一种行之有效的培养技能型人才的教学方法,适应当代中职教育特点,由于还在探索实践的初级阶段,同时也受到教学管理理念、“双师型”师资水平、教学经费投入、硬件设施等因素影响,还存在一些局限,特别是在一体化教室的建设中,大型船体装配教学分段,起重设备,音响设备等的配备,课程内容的设置等都有待进一步改善和优化。理实一体化教学今后在不断探索实践和总结中,定会取得新的进步,为船舶行业培养更多合格人才,为中职教育作出贡献。

【参考文献】

[1]王云梯.船体装配工艺[M].哈尔滨:哈尔滨工程大学出版社,2007.

[2]金仲达,吕学奎,车冬华,闵微.船体装配工艺与操作[M].哈尔滨:哈尔滨工程大学出版社,2009.

装配工艺范文6

当今世界各国,对于天然气在世界能源中所占地位的认识,已经上升到了一个极其重要的高度。天然气作为继煤炭、石油之后的第三大天然能源,被誉为二十一世纪的新型环保能源。天然气消耗量将在二十一世纪上升到第一位。因此,各国对于天然气的开发利用,都投入了大量的人力和物力。我国以“陕气进京”工程为标志,拉开了天然气大发展的序幕。“西气东输”工程将成为我国规模最大的天然气建设工程。这意味着我国已经进入了天然气大发展时代。

但是,在天然气输配过程中,仍有诸多因素制约着天然气建设的发展。我们认为主要有以下三方面问题:

1、 天然气管网建设投资巨大

2、天然气消费结构不合理

3、管理体制不适和天然气发展的需要

基于上述观点,许多中小城镇,特别是地理位置远离天然气管网的城镇,天然气建设非常困难。本文讨论以瓶装压缩天然气输配工艺,满足中小城镇对天然气需要的可行性。

二、 瓶装压缩天然气输配工艺简介

瓶装压缩天然气输配工艺,将压缩天然气技术灵活应用到城市燃气输配系统,解决了超高压天然气系统与城市燃气管网系统的衔接、调压问题。主要工艺分为三个部分:

1、天然气的加压充装

在气源地,天然气净化处理后,压缩至205 兆帕,经灌装设备充装进压缩天然气钢瓶中。

在这一过程中,天然气气质必须满足高压运送要求,其中水、C02含量必须严格控制。

(天然气气质要求见表一)

表一:

2、压缩天然气的输送

利用汽车或船运,将压缩天然气瓶组运送到用气点(中小城镇、用户)。这一过程充分利用公路运输、船运便利灵活的优点。同时利用压缩天然气瓶组量可随意调整的特点,满足不同用户的需要。目前,我们开发的橇装式瓶组符合劳氏船籍社标准,并取得国家专利。

3、减压输送系统

瓶装压缩天然气瓶内压力20.25兆帕,为满足城市燃气系统的需要,需将压力减至城市燃气管网的压力级别(高、中、低压均可)。根据用户或城市燃气管网的压力级制,可选用多种工艺、设备,满足压力需要。目前常用伴热调压器或回型管束解决。减压流程还设置超压放散、紧急切断、低压切换等控制设施。

上述工艺见工艺流程图

综上所述,瓶装压缩天然气工艺,主要设备我国均以实现国产化,并己形成国标或部颁标准。超高压天然气连接,在石油系统已有实用设备。因此,瓶装压缩天然气工艺在技术上是完全可行的。

瓶装压缩天然气输配工艺具有以下优点:

1、运行灵活可靠,可满足不同类型用户需要。

2、工艺简单,占地少。

3、建设周期短。

三、经济可行性分析

瓶装压缩天然气输配工艺,是为满足中小城镇或工业用户天然气需要,开发出来的燃气输配工艺,因此,其经济性比较应以中小城镇燃气开发方式为测算基础。目前,作为中小型城镇,常用的管道燃气供应方式有以下三种:

1、天然气管网输送(长输管线)

2、液化石油气管道输送

3、液化石油气混气输送

就第一种输送方式而言,如果城镇的地理位置靠近天然气管网,无疑,第一种输送方式最为经济。否则,第一种输送方式将面临亏损运营(管线长、投资大、用量小,管输费用高)。在此情况下,第二种、第三种输送方式将被选择。

因此瓶装压缩天然气输配工艺经济可行性,应同液化石油气管道输送和液化石油气湿气输送的经济性进行比较,比较结果见表二、表三。

基础数据;

2、液化石油气低热值108兆焦/标方;天然气低热值40兆焦/标方。

3、运输距离200公里以内。

表二:

工程建设比较 (万元)

表三:

成本比较

几点说明:

1、压缩天然气的原料成本,考虑了加压成本和运输成本。

2、天然气为石油伴生气

3、混气工艺按比例调节福气工艺考虑。

从抗风险性分析,按照目前我国天然气、液化石油气的实际价格:

液化石油气:3000元/吨

燃气销售价格如果保持不变,经济比较见表四

通过比较得出以下结论:

1、瓶装压缩天然气输配工艺,在抗风险上优于其它两种工艺。

2、从经济效益分析,瓶装压缩天然气输配工艺在经济上是可行的。

3、瓶装压缩天然气输配工艺规模效益明显;

4、500户以下居民小区不适宜瓶装压缩天然气输配方式。

5、2000户小区应为瓶装压缩天然气输配工艺的启动规模。

四、实际使用事例及完成的工作

瓶装压缩天然气输配工艺已获得国家一项发明专利,两项实用新型专利。并通过北京科委和资产评估部门的技术鉴定和资产评估。

至今,瓶装压缩天然气输配工艺,已经在京律两地多处小区使用,均取得良好效果和收益。

五、 瓶装压缩天然气输配工艺存在的问题

瓶装压缩天然气输配工艺,虽然取得了一定的成果,但是仍有许多技术问题亟待解决。

主要问题有以下几点:

1、规范解释问题

瓶装压缩天然气输配工艺是一项新技术,城镇燃气设汁规范中未涉及有关问题,因此在该工艺的规范解释上存在空白。

2、设备完善问题

目前使用的设备多为国产,设备的自控程度不高,控制手段落后,需要开发高控制水平的产品,此项工作,我们正在积极进行,同时需要广大燃气同行的支持和帮助。