电气一体化论文范例6篇

前言:中文期刊网精心挑选了电气一体化论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

电气一体化论文

电气一体化论文范文1

[关键词]内磁场、宇宙能量、惯性力、引力、地球向心力

中图分类号:R55 文献标识码:A 文章编号:1009-914X(2017)04-0312-02

1.内磁场理论的产生

导体切割磁力线时,导体内必然要产生磁场,在这个磁场作用下使自由电子瞬间位移,原子因为失去自由电子产生的磁场(电场)称:内磁场。内磁场是导体内部被外磁场磁化p消磁p反极性磁化所表现交替变化的磁场现象。内磁场是可以吸引导体内自由电子移动。当交替变化的外磁场切割导体时,导体一端为N极另一端是S极,当导体形成闭合环路时,S极端的自由电子受到N极磁场的吸引力作用,将快速移动到N极端磁场。当外磁场对导体反极性磁化时,使导体两端磁极改变,自由电子移动方向也同时改变。如此循环就形成交变电子流。如果按三角正弦函数规律变化的外磁场使导体磁化时,被磁化的导体也产生按正弦规律变化的内磁场,内磁场也就是我们日常生活用的正弦交流电。

通过以上分析电场是不存在的,是内磁场吸引力移动自由电子在作功。所谓感生电动势就是内磁场吸引力。试验数据也不能证明导体内部是电场力还是内磁场吸引力,因为它们表现的各种物理特征都一样,只能通过对自然科学中的一些无法解释的自然现象。用内磁场理论来分析它们的工作原理,看是否符合自然规律和逻辑推理。如电磁理论中的感应电动势、自感现象、电磁波等自然科学中一些谜团。只要能解开这些谜团。就可以验证内磁场理论真实的存在。

1)用内磁场理论解析“自感现象”原理

在交流电路中线圈产生的自感现象有“自感电动势”“反电动势”交流电路中的“感抗”。自感现象是交流电路中一种特殊的电磁感应现象很难理解。本文用内磁场理论来分析自感现象的原理,用“磁滞”现象来解释自感现象。交流电是指大小和方向都随时间做周期性变化的矢量场,本文称内磁场。当在电路中的线圈输入交流电时,线圈内磁场做周期性变化过程中,线圈产生的剩磁与线圈匝数正比例叠加,线圈内新磁场的形成与线圈内叠加的剩磁相减,减弱了线圈内新磁场的强度。而这种相互作用的现象随时间做周期性变化,导体内磁场充磁、消磁、剩磁现象与磁滞回线相似。可以确认自感现象就是“磁滞”现象。(磁性物质都具有保留其磁性的倾向,磁感应强度B的变化总是滞后于磁场强度H的变化的,这种现象就是磁滞现象)

2)用内磁场理论解析“安培力洛伦兹力”

书上讲安培力的实质是形成电流的定向移动的电荷所受洛伦兹力的合力。磁场对运动电荷有力的作用,这是从实验中得到的结论。如果内磁场引力使电荷在作功,而移动的电荷是被磁化的粒子,磁性粒子移动过程中必然产生磁场,电动机是磁性粒子移动产生的交变磁场在作功,电灯是磁性粒子移动时摩擦碰撞产生热量在作功。实际上无论是电动机还是电灯都是磁性粒子运动在作功。它们的动力是内磁场引力。霍尔原理也证实磁场对运动电荷控制作用,这与内磁场理论不谋而合。用内磁场理论分析安培力p洛仑兹力都是磁场力,是内磁场引力使磁粒子在作功。

3)用内磁场理论解析“电磁波”产生与传递原理

用内磁场理论来分析电磁波,交替变化的磁场能量,通过天线向空间传递磁能量形成了电磁波。电磁波在空气中离不开介质,介质是空气间的各种气体的原子和宇宙间氢原子p氦原子,这些都是电磁波很好的传播介质。发射端天线线圈中电子流产生的磁场,通过天线对周围的空气中的气体原子磁化及反极性磁化,被磁化的气体原子对周围的气体原子磁化及反极性磁化,最终传播到电磁波的接受端。接受端天线触及到被磁化的气体原子,被磁化的气体原子将磁场能量传递给接受端天线的线圈,在线圈两端产生交变的内磁场。电磁波在空气中传播,可以理解是气体原子与气体原子通过磁化及被磁化的过程。如果提高电磁波输出频率就能提高瞬间功率,使电磁波通过空间传播到达更远的地方。

2.宇宙能量产生惯性力

大道之简看宇宙。浩瀚的宇宙空间,唯一能看到闪闪发光是宇宙中的恒星。恒星是由非固态、液态、气态等离子组成的。核聚变所释放出的能量达几百万度高温是发光的天体。宇宙空间还有稀薄的氢和氦等物质,中国宇航员在空间作水蒸汽试验时,水蒸汽产生的小蘑菇云也认证了空间有气体存在。如一个大流星撞击恒星时,被撞击的恒星会形成大片高温星云,使周围空间气体产生冷热气体对流形成宇宙旋风,旋转气体带动周围高温物质旋转,因为旋风中心气体处于负压状态,高温物质进入旋风中也只能在旋转,旋风中心因没有高温物质,所以在我们观察宇宙空间时,旋风中心没有光亮称之为\洞。宇宙旋风把周围大到星球小到粒子的物质都吸引在其中,它们在旋风引力作用下,使旋涡中的物质自转并且公转,新的天体诞生了黑洞就是它的摇篮,我认为黑洞也是我们太阳系的摇篮,我们就生活在这种旋转的空间之中,地球在自转和公转时人类根本察觉不到地球在运动,我们也无法知道地球在黑洞的那个位置,如果我们在宇宙另一个黑洞中也只能看见太阳的光线。宇宙旋风产生的能量,是热能转换动能的过程。由于宇宙空间有很稀薄的气体,气体阻力又非常小,这个由惯性产生的力,它的消失时间就要按光年来计算。惯性力在力学中应该是不可忽视的力。宇宙空间惯性力的存在就是力的源泉。

3.惯性力与引力

在牛顿力学体系中,惯性力一直影响力学的建和应用。因此惯性力又称为假想力或虚拟力。这种力是可以测量出来的,从这个意义上说,惯性力又像是一个真实力。这种力的作用即可以看做是抵抗力或是外力转移使物体产生加速度,而加速度又代表物体运动状态变化,使物体的惯性转化为惯性力。在摩擦力和气体阻力很小的空间,物体靠惯性力就能长时间运动,在力学中应有其位置而且是重要位置。宇宙空间存在惯性力使太阳糸中行星卫星都在不停运动,它们运动的力就是宇宙旋风负压产生的惯性力。由于空间的特殊性质,才使得物质具有惯性。而且这种惯性力的大小与物质的质量大小有关。而质量大小,又会决定引力大小。所以这就是惯性质量和引力质量独有的正比关系。在宇宙空间惯性力存在的时间要按光年来计算,所以惯性力是引力的源泉?。

4.地球引力

地球靠惯性力自转时带动大气层外稀薄的气体形成气体轨道,称为地球引力。人造卫星就是围绕在地球气体轨道上运转,是地球引力作用的结果。地球的惯性力产生气流,气流产生引力。研究宇宙就从宇宙中各种各样的气流开始。月亮围绕地球旋转是月亮自己的惯性力在起作用,因为地球自转产生的气流,不可能使36万公里外的月球不停的自转和公转。但是造成地球潮夕现象是月亮围绕地球公转产生的气流引力作用。宇宙空间的龙卷风使这些空间物质不停地旋转,于是就形成了银河系、太阳系。我们感觉不到这股强大的“宇宙风”,是因为我们处于风的中间,就像我们在地球上感觉不到地球的快速运动的道理是一样的。

5.地球向心力

地球上的物体随地球自转,他们和地球同步转动相互的力对等。地球向心力来源于地球大气层压力p气体阻力p空气浮力。大气层分为对流层、平流层、中间层、暖层和散逸层再上面就是星际空间了。对流层在大气层的最低层,紧靠地球表面,其厚度大约为10至20千米。对流层的大气受地球影响较大,云、雾、雨等现象都发生在这一层内,水蒸汽也几乎都在这一层内存在。这一层的温度随高度的增加而降低,大约每升高1000米,温度下降5~6℃。由于水蒸汽向上空h兀高空冷空气使水蒸气单位体积变重,造成水蒸汽有下降的趋势,此刻后续水蒸汽继续向上空飘兀形成其厚度大约为10至20千米云层。产生约一个标准大气压力。大气压力S环境温度变化也有所改变,水蒸汽在上升过程受温度影响形成了大气压,使氧气和氮气等气体不能离开地球。而这些气体的密度形成阻力和浮力。是地球上的大气压力、气体阻力、空气浮力三力合一,创造了人类美好的生存环境。

结束语

综上所述:本文论证了内磁场理论,电场理论与磁场理论有很多相同之处,就像影子一样同时出现又相互联系不可分割。用磁场理论可以解释电场发生的所有物理现象。而用电场理论确不能解释磁场所发生的物理现象。电场理论是通过试验过程和试验数据形成的,无法用语言按照自然规律和逻辑推理论述,所以只能判断电场实际上是磁场的另外一个名字。内磁场理论是导体切割磁力线,使导体内自由电子位移,原子因为失去自由电子产生的磁场现象。自然界还有其它方法也能使自由电子位移产生内磁场,如化学反应、摩擦、压力、热能、光照等。用内磁场理论代替电磁场理论,就能把万有引力、电磁力、强相互作用力、弱相互作用力的理论合并成大统一理论。

附件:

实验报告:

实验课题:

1、带电粒子定向运动时产生磁场,此刻带电粒子是否有磁性?

2、如果带电粒子定向运动时,带电粒子有磁性是否是磁单极粒子?

3、带电粒子定向运动时,每一个带电粒子的磁能量是否相同?

4、带电粒子定向运动时,判断推动粒子移动的动力是什么能量?

实验仪器:

指南针、直流电源、电压表、电流表、负载、开关等。

实验步骤:

1、电路(图1)

2、合上开关,电路中有定向运动电流1安培,将电路中导线平行地放在磁针的上方,磁针偏转,电流方向与磁针偏转方向小于90度磁针稳定不波动。当把定向运动电流调整到大于6安培时,磁针偏转,电流方向与磁针偏转方向垂直90度磁针稳定不波动。

3、将电路中电源正极与负极相互对换后,磁力线的方向改变了180度,同时带电粒子运动方向也改变了180度。

4、此项试验是丹麦物理学家汉斯奥斯特(H.C.Oersted,)在1820年发现的电流磁效应时做过的试验。

实验结论:

1、带电粒子定向运动时,带电粒子因外磁场作用下离开了原子核含有一定的磁性,在移动过程中对外显示磁性,磁针发生偏转证明定向运动时的粒子是有磁性的。

2、带电粒子定向运动时,磁针发生偏转证明粒子是有磁性的。磁针稳定不波动又证明带电粒子是磁单极粒子。

3、带电粒子定向运动时,带电粒子的数量与磁场强度成正比,结论是每}带电粒子磁通量相同。所以根据磁场强度可以准确测验出带电粒子的数量(安培)。

4、带电粒子定向运动时,通过试验和以上的结论证明带电粒子实际上是带磁性粒子。

5、通过试验证明粒子运动方向是从低电位向高电位移动的,如果推动粒子移动是电场力,粒子运动方向应该是从高电位向低电位方向移动的。但是实际上粒子是从低端移动到高端的,所以可以判断推动粒子移动的能量不是电场力。而是磁场吸引力把粒子从低端移动到高端的,所以可以确认是磁场力吸引电子移动,是导体内磁场作用完成了电子运动的全过程。

参考文献

[1] 360百科全书.

电气一体化论文范文2

关键词:正交试验法;电解水

文章编号:1008-0546(2013)02-0095-01 中图分类号:G633.8 文献标识码:B

doi:10.3969/j.issn.1008-0546.2013.02.038

电解水实验是大学化学教学论实验和初中化学实验中的一个重要内容[1-3]。本实验成功标志有两点:(1)通直流电流能看到两个电极都迅速产生大量气泡。气体汇集在玻璃管或试管上部,氢气与氧气体积比为2∶1。(2)检验氧气时,带火星的木条应明显复燃,检验氢气时应看到点燃的氢气火焰。但是,做到这两点难度较大。针对《化学教学论实验》(科学出版社)[1]和《义务教育课程标准实验教科书·化学·九年级(上册)》(上海教育出版社)[2]的实验装置比较烦琐不仅难以加工,而且快速且成功的实验条件难以控制的问题,本文对实验装置进行了简化改进并采用正交试验法考察了电解液、电极材料及电压等因素对电解水实验的影响,以期找到实验现象明显且快速的较优化实验条件。

一、实验部分

1.实验用品

NaOH (5%)、H2SO4(10%)、Na2SO4 (10%)、电解水装置、学生电源(J1202-1)、碳棒、曲别针、铁钉、导线。

2.实验装置

3.实验方法

实验条件按表1进行。A1、A2、A3分别为NaOH (5%)、H2SO4(10%)、Na2SO4 (10%);B1、B2、B3分别为碳棒、铁钉、曲别针;C1、C2、C3分别为6V、8V、12V。仔细观察电解器两极产生气体情况。待收集的气体达到一定数量后,停止电解。挤压阴极端尖嘴上的玻璃珠,在尖嘴口点火,观察现象。然后检验另一管口中的气体,用带有余烬的细木条放在管口,观察现象。

二、实验结果与讨论

一般认为,影响电解实验的主要因素是电解液、电极材料和电解电压[1]。为了增加水的导电性、加快水的电解速率、缩短实验时间,在不影响水的电解本质前提下往往在水中加一定的电解质,如:Na2SO4、NaOH、H2SO4等[1]。考虑操作方便和安全,本文选用NaOH (5%)、H2SO4(10%)、Na2SO4 (10%)为电解液。电极材料可以用碳棒、曲别针、铁钉、保险丝及铂丝等。从价格、电解速率及电解效果这些方面综合考虑,本文选用碳棒、铁钉、曲别针为电极材料。一般地,电解电压为6V~12V[1]。本文采用三因素、三水平正交试验法考察了电解液、电极材料和电压对电解水实验的影响规律。

利用自制水电解器如图1,依照表1试验方案进行电解水试验。记录两极收集已定体积气体所需的电解时间。实验结果及分析见表2。

三、研究结论

从表2可以看出,第一列极差R较大,第三列极差R次之,第二列极差R最小。表明影响水电解因素的主次顺序为:电解液、电压、电极材料。

本文交试验结果表明,其他条件不变情况下,电解液为NaOH (5%)、H2SO4(10%)、Na2SO4 (10%)时,水电解速率依次减小;电极为曲别针、碳棒、铁钉时,水电解速率依次减小;电压越大,电解速率越大。表明电解水试验的较优试验条件为:电解液为NaOH (5%)、电极为曲别针、电压为12V。

参考文献

[1] 李广洲,陆真. 化学教学论实验[M]. 北京:科学出版社,2000.6

电气一体化论文范文3

【关键词】电气工程;办学条件;专业规范

一、电气工程专业教育概论

电气工程及其自动化专业,主要包含计算机技术、电力电子技术、机电一体化技术和网络控制技术等众多领域,是综合性相对较强的学科,具有机电相结合、元件与系统相结合、强弱电相结合、电工技术与电子技术相结合、软硬件结合等突出特点,使学生掌握系统控制、电工电子、电气自动化装置、电力系统自动化和电气控制技术等多方面的基本技能。

该专业主要培养能掌握电气工程专业知识和工程技术基础知识,具备分析和控制电气工程技术问题的能力的高级工程专业技术人才。电气工程及其自动化专业的宗旨是为社会培养出能在电气工程及其自动化、经济管理和计算机技术应用等领域工作的过硬综合素质高级技术专业人才。本文涉及的电气工程专业一般是包含电气工程和自动化专业的。中国电力工业目前处于高速发展阶段,对于电气工程人才有大量需求,因此我国电气工程领域对培养相应的人才非常重视,并且我国主要的工科大学在教育和科研上对电气工程专业的投入比重相对较大。

二、电气工程专业的学科内涵

中国电气工程专业的研究对象是电能,主要研究电能从产生到利用各个阶段的规律的专业。其理论基础主要是电磁理论。电能从产生到利用的各个环节中需要充分掌握和利用电信息,因此电信息技术的研究是电气工程和自动化专业的不可或缺的内容。

同时,现代通信和计算机载体主要是电信息。所以电信息技术的研究也属于电类专业,其中电气工程是专业母体。电气工程是基础性的学科,因此具有较强的学科派生和交叉能力。如其与生命科学的交叉造就了新的专业―生物医学工程和生物电磁学;电气工程同材料科学的结合造就了纳米电工技术和超导电工技术;电气工程同电子科学的结合造就了电力电子技术,而后者也进一步推动了电气工程的发展,并且逐渐发展成为电气工程的一个分支。电气工程专业的范围主要有电电力系统运行和控制、电气装备制造与应用以及电工基础理论三部分电气工程的基础,是以电磁场理论和电路理论为主的电工理论。他们属于电磁学的发展外延。

电工理论运用于实践产生了新的电子技术和计算机硬件技术等性技术,因此电工理论是主要的理论基础。电气装备制造一般涉及制造电动机、变压器、发电机等电机设备,也涉及用电设备等电气设备和电器制造,同时包括电力控制装置的制造、各种电气控制装置、电子设备的制造等内容。电气装备的应用则主要指上述装置和设备的具体应用。电力系统一般涉及电气自动化和电力网的运行和控制等内容。需要注意的是制造和运行必须相互统一,电气设备的制造同时要兼顾实际运行状况,如电力系统稳定的运行需要依靠良好的设备。

三、电气工程专业的方法论、影响因素、培养目标和要求的介绍

电气工程专业由于理论分析较多,比较注重对数学工具的使用。作为一门工科专业,实验研电气工程需要通过实验研究来完成主要的学习和教学任务,在一定的实验条件和实验研究的支持下,学生在学习电气工程专业知识过程会事半功倍。

电气工程专业紧随现代科技,引入了以计算机技术为基础的仿真模拟技术进行教学研究。同时在进行电气工程的理论分析、试仿真模拟和实验研究时,教学也经常运用到等效与类比等科学方法。

电气工程专业是一门典型的基础性很强的学科专业,在与其他学科的交叉过程中,派生出了很多如电子科学与技术专业、电子信息工程专业、通信工程专业、计算机科学与技术专业专业等学科。这些专业由于是电气工程专业派生而来,被划为电子与信息类专业,电气工程专业与其派生而来的专业统一被称作为为电类专业。电气工程专业作为电子与信息类专业的母体,又被派生而来的专业注入了新的发展活力。

电气工作专业的专业宗旨主要是培养能够在电气工程领域的研究开发、系统运行、装备制造、和相关管理等方面工作的,掌握技术开发、组织管理和科学研究能力的高素质综合型专业技术人才。电气工程的培养具体目标主要是,该专业学生要掌握计算机技术、信息技术和电子技术等专业技术,控制理论和电工理论等基础理论知识,通识性知识和对应的专业知识。

基于电气工程专业特点,学生在下列知识和能力上也有要求:

第一,掌握扎实的数理化等基础学科理论知识,掌握人文学科的管理基础知识,具备一定的外语运用能力;

第二,系统地学习与电气工程相关的工程技术知识,如信息处理、电机学、控制理论、计算机软硬件和网络技术等知识;

第三,得到良好的工程实践训练,掌握对电气工程领域实际问题的分析和解决能力;

第四,熟练运用计算机的能力;

第五,能在电工领域内掌握不低于1个专业方向的专业技术和理论,并清楚学科发展未来趋势;

第六,具备一定的适应工作条件、进行科学研究和信息管理等实际工作能力。

四、电气工程专业知识结构要求和知识体系

第一,熟悉系统的模拟和数字电子技术和相关电路理论;熟悉并会运用电子电路原理,会分析和解决相对复杂的电工电子电路问题;能掌握基础的电磁场理论;掌握控制理论、计算机软硬件、程序设计等相关知识;具备能检测、分析并处理电气系统物理量的能力。

第二,掌握扎实的电力系统、电力电子技术和电机学理论等相关知识;掌握力学和机械学科中最基本的原理和方法。

第三,能掌握不低于一个专业方向的基本技术和理论知识。第四,能掌握在工程中测试与表示常用物理量的能力,以及掌握设计和调试电气系统的相关知识。

电气工程专业教育内容和知识体系一般包括:

第一,通识教育和基础教育;

第二,专业类基础技术与理论知识(电磁场理论、控制理论、电路理论、、信号分析与处理、计算机网络、电子技术、检测技术等);专业基础知识一般涉及电力系统、电力电子技术和电机学基础理论和知识;

第三,专业方向技术与知识。如电机电器及其控制、电力系统及其自动化、高电压与绝缘技术以及其他专业方向的技术。

第四,实验和实践技能。实验和实践技能主要包括简单的设计与调试电气系统实验技能、设计和调试相对复杂电气系统的初步实验的技能。

电气一体化论文范文4

一、引言

电气传动技术课程群是电气工程及其自动化本科专业的课程主线之一,其课程包括“电机学”、“电力拖动基础”、“电力电子技术”、“电气数字控制技术”、“电气传动控制技术”等。课程的数量多、相互衔接和耦合紧密,因此对课程群中各门课程的所需基础、课程内容、掌握程度、时间安排和实践方式方法等都需要合理设计、规划和实施,否则出现一个环节不合理,就会影响整个教育质量。

目前,高校的教学改革主要针对两个方面:一个是宏观层次,即研究某一专业的课程规划和设置,以该专业学生在毕业之后应具备的素质和能力为牵引,提出全周期的总体课程规划和时间安排。例如,文献[1]讨论了电气工程及其自动化专业的总体培养目标及毕业后的服务对象,对专业四年中应当学习的公共基础类课程和专业技术类课程进行规划设置,但没有考虑课程的具体内容和统筹衔接。另一个是微观层次,即针对某一门具体的课程,提出相应的课程内容改革、教学方法改革等,如文献[2]、[3]等分别讨论了“电机学”、“电力电子技术”等课程的改革和教学方法,这些研究都是从课程自身建设的角度出发,都没有考虑该门课程和其他课程之间的接口关系。而课程群是处于二者之间的一种课程体系,它既讲究内容安排,又讲究衔接关系,集系统性和个体性于一体。现有的教育科研对电气工程专业的课程群系统教学方法鲜有研究。因此需要针对电气工程及其自动化专业本科学生的最终培养目标,对课程群中的各个课程的课程内容和授课时序等进行统筹安排,才能在达到良好教学效果的同时提高教学效率。

二、电气传动技术课程群的培养目标和课程设置

电气工程及其自动化专业学生的培养目标是要求学生在掌握电气工程学科基础理论、基本知识和学科研究方法的基础上,系统地掌握电气工程专业的专业理论,具有较强的实践实作、工程计算、仿真建模等方面的能力,能够综合运用所学知识分析解决工程技术实际问题。同时具有归纳、评估、处理各种资料信息并加以利用的能力。

电气传动技术课程群作为电气工程及其自动化专业的重要分支方向必然要配合专业的人才培养要求实现高素质人才的培养。结合电气工程及其自动化专业的总体人才培养目标以及电气传动技术课程群方向的实际情况,可制定电气传动技术课程群的分培养目标为:在掌握电路、电子技术基础、自动控制原理、数字信号处理等专业基础课程基本知识与实践方法的基础上,能够系统深入地掌握电机学、电力电子技术、电气传动控制技术的理论基础以及对电气传动系统进行数字控制的编程基础;能够综合运用所学的各门专业知识实现对电气传动系统的分析、计算与仿真,最终完成电气传动系统的软件、硬件设计与制作。

上述培养目标决定了电气传动技术课程群融合了电机学、电力电子技术、现代交直流电气传动技术以及数字控制技术等多个方向的理论知识与实践知识,在有限的教学周期内需要多门课程的理论教学与实践教学统筹规划才能更好地完成。

三、电气传动技术课程群教学内容统筹规划

在传统的教学方法中,课程群中的各个课程和课时虽然安排比较多,但是,一方面各个课程内容上交叉重复较多,另一方面仍然缺少电气传动技术所亟需的一些教学内容,因此需要进行合理的梳理和统筹规划,以提高教学效率和效果。为此采用以下措施。

(一)课程设置调整

取消“电力拖动基础”课程,把课程中的传统电力拖动部分的内容并入到“电机学”中进行讲授。把“现代交直流调速控制技术”课程调整为“电气传动控制技术”课程,课时由60学时调整为40学时,并新增40学时的“电气传动控制技术综合设计及实践”课程,以强化学员的综合分析、设计和实践能力。新增40学时的“电气数字控制技术”课程,使学员掌握电气传动控制所需要的单片机、PLC等方面的数字控制知识。

(二)课时及课程内容安排

“电机学”的课时由122学时调整为110学时,精简合并有关直流电机特性、特殊用途的直流电机、变压器的并联运行和不对称运行、非正弦分布磁场下绕组电动势中的高次谐波及削弱方法等部分内容,强化直流电动机的电力拖动和交流异步电动机电力拖动部分的教学内容,使得被取消了的“电气传动”课程中与传动电力拖动控制相关的内容在电机学中进行了补充。

“电力电子技术”作为电气工程专业的专业基础课程,除了为电气传动技术课程群服务之外,还要为电力系统自动化课程群服务,因此其教学时数保持60学时不变,但是对教学内容进行调整,删减部分基于晶闸管器件的教学内容,增补电气传动控制技术所需要的SVPWM、多电平控制、间接直流变换等内容。对于四大基本变流器以及PWM控制技术的内容仍然作为重点在“电力电子技术”课程中讲授。

调整后的“电气传动控制技术”变为40学时,删减PWM控制和变流技术部分的内容,该部分内容由“电力电子技术课程”统一讲授。

(三)教材调整

由于课程及课程内容进行了调整,因此对各个课程的教材也进行调整:

“电机学”的教材改为自编教材《船用电机学》;“电力电子技术”课程的教材改为王兆安编《电力电子技术》第5版;“现代交直流调速技术”课程调整为“电气传动控制技术”后,选用的教材为阮毅、陈伯时编写的《电力拖动自动控制系统》第4版;“电气数字控制技术”课选用的教材为:韩俊峰等编写的《单片机原理及应用》和王阿根等编写的《电气可编程控制原理与应用》。

(四)课程时序安排

课程群中的各个课程,既相对独立,又相互联系,有的课程需要其他的课程作为基础,因此在开课顺序上要合理安排,否则在授课和学习上都会造成困难。

电气传动技术课程群的各个课程中,“电气传动控制技术”及其综合实践应当是终极课程,其他课程都是为该课程服务并作为该课程的基础,因此应在其他课程之后开课。此外,“电机学”是所有其他课程的基础,应当在课程群中最先开课。因此在课程时序安排中,应当把握以上基本原则。

四、结语

电气一体化论文范文5

关键词:电气工程;自动化;智能技术

21世纪是一个全新的时代,在新的时代背景下,我国正处于经济腾飞的关键时期,各行各业都在不断的发展和进步。就电气行业而言,自动化和智能化是未来发展方向。对电气工程自动化的研究一直是热点问题,总的说来传统的自动化控制存在一定的劣势,已经无法满足人们日益增长的需求。智能化技术的出现有效的弥补了传统自动化控制方法的不足之处,极大的促进了电气工程领域的发展和进步。本文以电气工程自动化中的智能技术为研究对象,首先介绍了智能化技术在运用过程中的理论基础,接下来讨论了智能化技术在运用过程中的优势,最后探讨了智能化技术在电气自动化控制中的具体应用。

1智能化技术在运用过程中的理论基础

所谓智能化技术指的就是将人工智能理论和计算机技术有效的融合到一起的一种科学技术,现阶段人们刚开始将智能化技术引入电气工程领域,相关研究还处于初始阶段。但是,智能化技术在电气工程自动化领域具有广阔的应用前景。智能化技术是许多学科融合在一起得到的成果,具体来讲包括:控制技术、信息理论、生物理论和语言学理论等等。智能化技术的研究宗旨就是使得机器在人工智能的协助之下具有一定的自主能力,可以自主的开展一些操作行为。一般来讲人们会使用具有智能化能力的机器来完成一些危险性相对较高的操作,这样就可以有效的保证人的安全性。

对电气工程自动化控制的智能化研究是人们十分关心的问题,具体的研究内容主要包括:第一,对相关信息的采集和整理;第二,对相关电子电气技术的研究等等。在研究人员的不断努力之下,目前有些智能化技术已经在电气工程领域得到了应用,而且取得了令人满意的结果,这充分说明了智能化技术在电子工程自动化领域具有广阔的应用前景。融合了智能化技术的电气工程自动化控制具有下述优势:首先,系统的控制效率得到了显著提升;其次,企业可以在一定程度上降低成本投入,从而获得更多的经济效益;再次,工作人员的工作量得到了显著降低;第四,企业可以对人力资源进行更加合理的配置。

2智能化技术在运用过程中的优势

在电气工程自动化控制领域,智能化技术可以发挥自己的作用,总的说来智能化技术的优势主要体现在以下三个方面:

2.1不再需要建立控制模型

在智能化技术未面世之前,人们在电气工程领域使用的是传统控制方式,传统控制方式具有一定的不足之处,包括:第一,控制对象的动态方程不是很容易实现;控制模型中经常存在一些无法控制的变量。在这种情况之下,人们构建的控制模型和系统实际的过程具有一定的出入,控制模型无法实现对系统的精确控制,这样最终的控制效率也就相对较低。智能化技术的出现有效的解决了上述问题,在智能化的控制器中,人们不再需要对控制系统进行建模处理,这样也就避免模型不准确现象的出现,从而有效的提升了控制器对系统的控制精确度。

2.2便于对电气系统进行调整控制

在对电气系统进行控制时,由于系统处于一种动态变化的状态,在控制过程中智能化控制可以实现对控制过程的动态调整。这样的动态调整过程可以有效的保证电气系统处于正常的工作状态,并提升其工作能力。除此之外,融合了智能化技术的控制系统的另一个特点就是:相关人员只需要远程通过数据来操控整个控制过程,技术人员完全不需要在控制现场开展相关操作。

2.3智能化控制器具有很强的一致性

智能化控制在对电气系统进行控制的过程中可以实现很高的一致性,具体体现在就智能控制器而言,当相关人员向控制器传入不同类型的数据时,智能控制器可以通过一定的处理给出合适的控制输出,从而实现对电气系统的有效的控制。总的说来,影响控制效果的主要因素就是具体的控制对象,在智能控制系统中,如果更改了控制对象,那么控制效果就可以无法达到预期效果。因此,相关人员一定在明确系统中的控制对象,根据控制对象的特点设计科学合理的智能控制系统。

3智能化技术在电气自动化控制中的具体应用

在智能化技术的推动以及研究人员的不断努力之下,现阶段智能化技术已经在电气工程自动化领域得到了一定的应用,具体情况如下:

3.1智能控制

人们将智能化技术融入了电气自动化控制中,这样技术人员就可以对电气系统实现远程智能控制,无需工作人员参与控制过程,控制效率也得到了提升。智能控制不但在电气系统中发挥了巨大的优势,也为智能化技术在电气工程领域中的应用提供了坚实的基础。

3.2优化设计

在电气工程自动化的优化设计中,智能化技术也发挥了作用。现阶段,相关人员借助CAD技术和一些计算机软件实现对电气系统的优化设计,有效的避免了传统方法中不方便修改的劣势。此外,人们在优化设计中还可以使用遗传算法,保证了设计结果的有效性和最优性。

3.3故障诊断

现阶段,人们可以通过智能化技术实现对故障的有效诊断。当系统出现故障时,在故障真正产生之前一般会出现一定的特定现象,利用智能化技术可以对上述特定现象进行有效捕捉,从而实现对故障的预警。

参考文献

[1] 蒋敦旗.浅议在电气工程自动化控制中智能技术的应用[J].科技创新导报,2014,v.11;No.32032:106.

[2] 綦振宇.解析人工智能技术在电气工程自动化中的应用[J].黑龙江科技信息,2014,36:14.

[3] 靳虎.人工智能技术在电气工程自动化中的应用[J].科技展望,2015,v.25;No.31902:128.

[4] 翁娟.浅谈电气工程自动化中智能技术的应用[J].电子制作,2015,No.27704:225.

[5] 李鑫.试论电气工程自动化中智能技术的应用[J].中国高新技术企业,2015,No.35035:51-52.

[6] 杨振兴.电气工程自动化控制中智能技术的应用研究[J].科技传播,2013,v.5;No.8807:143+133.

电气一体化论文范文6

【关键词】电力系统 自动化 人工智能

电气工程自动化是一种集计算机技术、机电一体化技术、电力电子技术、信息网络技术、以及电机电器技术等在内的综合性技术,它十分广泛地运用在每个行业,在提高中国自动化企业生产管理水平和使用者满意的服务质量水平中起着重大的作用。

1 电气工程项目管理的现况

在电气工程项目的实施上,企业实行的是粗放的管理模式,大多以为电气工程项目管理就是将任务分配给有关部门或相关人员,并想象他们会取得预期的进展,这导致了很多项目延迟或虽有目标和总体规划,但没有具体的实施方法。一些电力企业,还停留在管理不当的层面,企业的硬件和软件存放不规范,现场仪表材料放置杂乱,更不用说整个管理过程利用计算机来进行。

2 电气工程自动化设计的原则

(1)尽量的满足生产工艺和机械对控制电气的条件,但在此基础上,设计的方案要经济和简练。

(2)处理好电气和机械之间的关联。

(3)电气元件的选择。

3 电气工程自动化的设计思维

3.1 统一监控模式

统一监控模式不仅操作维修十分方便,而且控制站不需要过高的防护,系统设计起来也非常简单。不过因为这种方法是把系统的各种功能同时集中在同一个处理器中,因此难度比较大,任务比较重,同时,对处理器的处理速度也会有一定程度的影响。因为所有的电气设备都进了监督控制之中,导致主机的冗余降低,需要更多的电缆,进而使得投资的增加,长距离电缆的干扰也有可能会影响到系统的安全可靠。

3.2 远程监控的模式

远程监控模式有节约安装成本,节省原材料,节省大量的电缆、配置灵活以及较高的安全可靠性等特点。 但是因为各种现场总线通信线的速度不是非常的高,从而使发电厂电气部分相关的通信量比较大,因此,远程监控模式主要用于监测小系统,并不适用于工厂电气自动化的系统建造。

3.3 现场总线控制模式

现今,现场总线、太网等已经广泛应用于变电站综合自动化体系,并且拥有了非常丰富的经验,智能化电气装备也得到了快速的发展,这些技术和装备的发展都为网络控制体系应用于发电厂电气系统打下了牢固的基础。现场总线控制模式使系统的设计更具备针对性,对于不一样的间隔有着不一样的功能,因此就可以根据间隔的不同情况来设计。这种控制方法不仅具有远程监控模式的全部优势,还能够减少许多的隔离设备,接线盒等,并且智能设备现场的安装,由通信线路连接的监控系统,节约了更多的控制电缆,节省了大量的投资以及安装维护的工作费用,进而使得成本不断减少。

4 电气工程的应用

电气工程包括电气和电机,电力系统及其自动化,高电压与绝缘技术,电力电子与电力传动,电工理论与新技术专业五二级。

发电、输送电、变电、配电、由电气设备和辅助系统构成的汇集能源生产,运输,配送和使用的系统被称为电力系统。在同一时间完成电力能源的生产和使用,过度的过程很短,具有较强的区域特性的电力系统,和国民经济息息相关等都是电力系统的特征。

5 电气工程自动化研究的偏向

5.1 智能防护以及变电站综合自动化

电力系统防护新原理的探究,把国际最新的模糊理论,人工智能,综合自动控制系统,自适应控制理论,网络通信,计算机新技术运用于新的继电保护装置上,从而使新的继电保护装置可以实现智能控制,大大提高了电力系统的安全级别。变电站自动化体系的长期钻研,开辟的分层分布式的变电站综合自动化装备可以应用于多种品级变电站。在国际领先水平的微机防护领域钻研基础上,变电站综合自动化范畴的研究已经达到了先进水平。

5.2 电力市场的理论与技术

由于中国当前经济发展形势的具体情况,电力市场的需要以及电力工业技术的经济形势,仔细地研究电力市场运营方式,深入研究、明确操作过程中每一步的具体规则;提出了适合中国目前的电力市场运作方式的期货交易,具体的数学模型和算法,紧紧地围绕着中国现阶段电力市场模拟运营中急待解决的理论性的问题。

5.3 电力系统的实时仿真

对电力负荷监控,电力系统实时仿真模型的建立等进行了钻研,建立了一个高校第一所包含实时仿真设备的实验室。这个仿真体系既可用于多种电力体系稳态和暂态尝试并提供许多的实验结论,还能和各类控制装置组合成闭环体系,帮助研究人员测试新的装置,为智能防护和快捷交流输电体系提供优良的研究条件。

5.4 运行电力系统的员工培训仿真体系

电力系统仿真培训系统是为满足中国电力企业职工岗位培训的要求,把多媒体技术、计算机以及网络的最新成就和传统理论共同结合,利用专家系统,计算机辅助智能教学理论,实施电力系统的知识培训的强有力手段。该系统设计创新,教学资源配置分布合理,系统硬件扩充容易且方便,所以学员可以在理论上无限延伸。

5.5 电气装备状态监控与故障诊断方式

通过把光纤手艺,数字信号处置手艺,传感手艺,计算机技术和模式识别等一起组合,细心研究监测的基本方法和电气设备的故障诊断机制,开发了开关设备、发电机等基本电气设备的监测体系,大大提高电力设备和供电体系的运行安全。

5.6 电力系统中的人工智能的运用

按照电力工业的发展需求,进行了专家系统、人工神经网、模糊逻辑和进化理论运用到电力系统的计划、设计和实施等方面的研究。基于该软件研究,还进行了电力智能控制理论和在电力系统智能监控中的应用的研究,来提高电力系统运行与控制水平的智能化。

5.7 电力系统中当代电力技术的运用

进行了电力装置的控制原理和算法,各类电力装置在电力系统中的功能和一些新兴技术等方面的研究。

6 结束语

现今的发展前景,电气自动化在中国拥有三个目标:开放化、信息化和分布式。这三个目标决定中国电气自动化的发展前景。在现代工业的发展中科技是不可或缺的,及工业自动化是一个国家在世界上无可取代的坚实基础。

参考文献

[1]章昌南.浅谈我国工业自动化发展状况[J].金属加工,2005(19).

[2]杨耕,王雄,窦曰轩.对自动化专业"电力拖动""运动控制"类课程改革的一些探讨[A].中国自动化教育学术年会论文集,2003.

[3]徐德淦.电机学[J].北京:机械工业出版社,2004.