电路与模拟电子技术范例6篇

电路与模拟电子技术

电路与模拟电子技术范文1

关键词:电路;模拟电子技术实验教学;Multisim;仿真

1概述

计算机专业是软硬件结合、面向系统开发和应用的专业,而电路与模拟电子技术作为计算机专业的专业基础课,要求学生能够熟练掌握电子电路的基本分析方法,以便掌握计算机的硬件知识以及计算机接口电路的分析与设计。通过本课程的学习,要求学生掌握电路与模拟电子技术的基本理论、基本知识和基本技能,对其应用及未来发展方向有所了解,为今后学习后续课程以及毕业生就业拓展更宽的领域。

2课程教学中存在的问题

计算机专业很多学生认为计算机专业是学习软件编程的,电路与模拟电子技术课程不属于计算机专业课,能否学好无关紧要,在学习上重软件轻硬件;另一方面,该课程概念多、内容抽象、逻辑性较强,造成学生对课程学习力不从心,排斥这些课程的学习。当学生毕业后从事计算机相关工作的时候,发现自身硬件知识非常薄弱。嵌入式系统是当前最热门最有发展前途的IT应用领域之一,随着嵌入式系统开发和应用的盛行,掌握硬件理论和计算机专业的软件理论是IT行业工作人员在新时代的基本要求[1]。电路与模拟电子技术课程的主要内容包括电路和模拟电子技术,理论知识既抽象又难懂,使得学生感觉枯燥乏味,学习热情大幅下降,而该课程的内容不断增加,教学计划要求讲授的知识与学时少的矛盾更加突出。以我校计算机专业为例,课程本身理论学时44学时,实验10学时。理论知识比较深奥,实验学时较少,要在有限的时间内让学生接受和理解课程还很困难。如果充分利用先进的媒体,适当地引入Multisim10仿真软件,这样有利于学生接受复杂的知识,取得良好效果[2-4]。

3Multisim仿真软件在电路与模拟电子技术教学中的应用

在电路与模拟电子技术课程中Multisim软件是美国NI公司推出的一个用于电路设计和仿真的工具软件,它的功能很强大,以形象生动的仿真效果而被誉为“虚拟电路电子实验室”,因此它是电子类专业教学的重要仿真软件。设计人员可利用此软件对所设计的电路进行仿真和调试。Multisim仿真软件在电路与模拟电子技术教学应用中的优势体现在[5]:

3.1电路与模拟电子技术课程是一门理论性很强、难度较大的课程。一台PC机和一个仿真软件就可以搭建电路,通过Multisim图形化的仿真环境,可以将抽象、枯燥的电路理论直观的展现出来,降低教学难度,提高课堂教学效率,学生容易理解和掌握。

3.2在实验教学中搭建电子实验平台,实现了虚拟实验和实际实验的结合。Multisim仿真实验和实际实验相比具有直观、简单和速度快等特点。学生既可以在计算机机房做实验,也可以把实验搬回宿舍。仿真实验不需要真实环境的介入,元器件较多,在实验过程中元件没有损耗,实验室维护方便,这样的“电子实验平台”有助于提高学生实践能力。

3.3电路易受到干扰模拟电子技术部分在实验室环境中实验波形易出现较大失真,而仿真实验没有干扰信号,可实时观测参数对波形的影响,比真实的实验更能反映实验的本质,更加准确、真实、形象。

4Multisim10在电路与模拟电子技术课程教学中的应用

4.1将开关J1断开,电路中暂不引入级间反馈

当输入电压是正弦交流电时,在输出端通过万用表可测得输出电压为。没有引入级间反馈时,该放大电路总的电压放大倍数为。

4.2将图中的开关J1合上,引入电压串联负反馈

加上正弦输入电压,由虚拟示波器看到,输出电压的幅度明显下降,但波形更好。

结束语

Multisim仿真软件在电路与模拟电子技术课程教学改革中的应用与实践顺应我校转型发展的大趋势,把仿真教学融入课堂,改变教学方法和手段,引导学生在课后自己去分析更多复杂的电路,通过对虚拟仪器的熟练使用,提高了学生的自学能力,增强了理论教学的灵活性,激发学习的兴趣和主观能动性,大大提高教学质量和教学效果。

参考文献

[1]包蕾,管冰蕾.计算机专业电子技术基础课程教学内容的组织[J].科教导刊,2015,(4):139-140.

[2]吴玲敏,王维娜.Multisim10仿真技术在“电路基础”教学中的应用与实践[J].教育教学论坛,2017,(9):64-66.

[3]张志友.Multisim在电工电子课程教学中的典型应用[J].实验技术与管理,2012,29(4):108-110.

[4]罗廷芳,南江,李伟.NIMultisim10在电工电子技术教学中的应用[J].电子设计工程,2012,20(6):154-157.

电路与模拟电子技术范文2

关键词:模拟电子技术;数字电子技术;优势;对比

中图分类号:TN79+2 文献标识码:A

收录日期:2014年5月13日

随着电子技术的不断发展,对于电路技术的应用也不断增加,在很多领域中,电子技术都有着广泛的应用。此外,尤其是在计算机技术领域以及工业领域中,实践的技术结合,让现代工业和电子行业有了巨大的进步。在实际的电子技术使用过程中,针对不同的应用领域,其使用的技术也有所不同。电子技术中,以模拟电子技术和数字电子技术为主流,两者有着较大的差别,因此在优势对比方面,也会比较明显。本文将重点分析两者在不同领域的应用优势,并对两者的优势进行对比分析。

一、模拟电子技术分析与应用

电子技术一般主要应用于电路中,电路的放大器,反馈期以及后期的电流增益等等。这些电子技术是以基本的元器件为基础的,从而实现电路所需功能。在自然界中,一般以模拟和数字两种方式来作为基础的分析方向。模拟实际上就是连续的,而数字则是不连续。模拟电子技术,实际上就是针对连续的电子信号进行处理的。在模拟电子技术使用的领域中,其使用范围最为广泛,在电路以及工业控制设备中,模拟电子技术都有所应用。但是,模拟电路一般造价相对较低,使用的技术也会比较娴熟,其传输的效果还是有一定的差异。由于容易受到噪声的影响,对于信号的接收效果也是产生了一定的影响。

二、数字电子技术分析与应用

数字电子技术一般应用于对于精度要求较高的设备中,数字电子技术是一种相对技术,即通过抽样定理,对模拟信号进行抽样,从而形成相对精度较高的电子信号。在数字电视中,使用的就是数字电子技术,可以将信号的传播精度有效提高,并且在传输的过程中,可以减少噪声对于信号的影响。在加密过程中,由于数字信号可以使用较高级的加密系统,因此对于信号传递的安全性,数字电子技术有一定的保障。数字电视的推广,实际上就是由于信号传播一般都要使用译码和解码的过程,而收到噪声影响的越少的信号,其还原和解码的过程就越简单。因此,数字信号的优势也非常明显。在实际生活中,目前市场上使用的数字电视就是采用的数字信号进行传输的,数字电视的效果更好,画面更清晰,原因也就是因为数字信号的优势体现。

三、模拟电子技术与数字电子技术对比分析

电子技术通常会与计算机技术进行结合,从而实现电子技术的多功能性。在电路领域中,数字电子技术与模拟电子技术才会真正可以进行优势对比,从而根据不同的电路实现不同的功能。一般情况下,电路以信号为主导,信号的形式在一定程度上决定了使用怎样的电子技术。

(一)信号形式与电路形式对电子技术的主导作用。在电路工程中,信号的形式在很大程度上决定了采用怎样的电子技术。或者是根据电路的要求,进行相应的技术匹配。模拟电路中,一般采用的是模拟电子信号,从而根据模拟电路的特点,进行模拟电子技术的相关技术标准进行设计。例如需要设计增益与放大器的电子电路中,模拟电路就会更加适合。此外,在电路的精度要求方面,会相对比较明显。模拟电路一般造价相对较低,使用的技术也会比较娴熟,但是其传输的效果还是有一定的差异。由于容易受到噪声的影响,对于信号的接收效果也是产生了一定的影响。因此,即便模拟信号有一定的缺陷,但是依然有较大的市场占有率。原因就在于其原理相对简单,并且造价较低,在一些低端的应用中比较适合。而数字电子技术一般适合采用高端的电子电路中,尤其是对信号传播的精度要求高的电路中,一般都要采用数字电子技术。数字电子电路的设计比较高端,对于信号的传播效率以及接收效果要求也比较高。但是,数字电子电路的造价相对较高。所以,一般都会在比较高端的设备中使用。因此,不同的电子技术对应不同的信号形式,模拟电子技术一般就针对模拟信号进行使用,数字电子技术一般就会针对数字信号进行使用。电路形式方面,则会根据电路的要求以及其复杂程度和精度进行相应的使用。高精度就代表这高造价,而数字电子技术可以实现高精度,但是要考虑市场造价。而模拟电子技术虽然存在一定不足,但是由于电路要求相对简单,而造价也有一定的优势,因此才会依然有很大的市场。总之,要依据电路的形式以及信号的传播要求,进行相应的电子技术选择。

(二)模拟电子技术与数字电子技术之间的优势对比。模拟电子技术适用于模拟信号的设计与使用,由于模拟信号也可以称之为连续信号,在自然界中是普遍存在的。也可以认为模拟电子是绝对存在的,而数字电子则是相对存在的。利用通信工程中的抽样定理可以了解,抽样定理实际上就是针对模拟连续信号进行的定点抽样,然后形成的数字信号。从高等数学微分与积分的角度分析,可以证明连续信号是绝对的,但是抽样后的数字信号则是相对的。由于模拟信号是自然存在的,因此在通常的电路使用中,一般都会使用模拟信号,模拟信号的使用范围广,并且在使用的过程中造价相对较低,对于电路的设计也不是非常苛刻。但是,模拟信号由于是自然存在信号,相对而言在加密过程中就存在一定的不足。此外,由于在自然界中是存在噪声的,因此模拟信号在传播的过程中非常容易收到噪声的影响,而且在传播的过程中容易出现损耗。因此,在模拟电子电路的设计中,通常要设计放大器。放大器进行增益处理以后,噪声并不能很好的过滤,从而造成了接收端的接收信息的准确性相对较低,并且接收的效果也不是十分好。从实际的案例中分析,电视信号的接收就是非常常用的案例,一般的电视信号就是采用的模拟电信号。因此,对于电视的效果而言,也存在一定的不足。有时候电视的效果不佳,或者是存在一定的失真,就是模拟信号在传输的过程中,出现了噪声的混杂。而数字电子技术,一般是将原有的模拟信号进行抽样处理,从而生成数字信号。数字信号虽然是相对存在,但是在优势方面比较突出。数字信号可以进行高精度的加密,这样就可以避免噪声的影响,同时也保证了信号传播的安全性。此外,在数字信号的传输过程中,由于数字信号的精度更高,所以在接收端的接收效果也会更好。此外,数字信号的损耗和衰减也相对较低,因此,在使用的过程中,可以减少放大器的使用。数字电子信号的优势还在于数字信号的解码相对简单容易,并且在还原的过程中也相对方便。由于信号传播一般都要使用译码和解码的过程,而收到噪声影响的越少的信号,其还原和解码的过程就越简单。因此,数字信号的优势也非常明显。在实际生活中,目前市场上使用的数字电视就是采用的数字信号进行传输的,数字电视的效果更好,画面更清晰,原因也就是因为数字信号的优势体现。

四、结语

在信号处理与电子电路应用中,模拟电子技术以及数字电子技术实际上可以认为是针对不同的信号的应用技术。模拟信号是连续信号,在自然界中普遍存在,而数字信号则是通过抽样定理进行抽样所获得的信号,针对数字信号即可使用数字电子技术。在两者的对比中,一般情况下,模拟电子技术的使用会相对方便,由于是客观存在,在较为低端的电路设备中,一般会采用模拟电子技术,由于造价相对低廉,原理也比较简单,在增益与放大的过程中,对信号的误差率要求相对较低。而在比较精端的电路设备中,通常要使用数字电子技术,利用抽样定理,提高信号的精准度,从而保证电子电路的高精度运行。总之,两者在不同的领域有不同的应用优势。

主要参考文献:

电路与模拟电子技术范文3

关键词:多媒体技术;高职;模拟电子技术;课程教学

随着计算机信息处理技术、网络通讯技术、多媒体数字化技术的快速发展,传统的教育观念、教育思想、教学内容、教学模式、教学环境、教学方法、教学手段和教学管理等正在发生深刻的变革,其中对现代信息化教学技术的应用是诸多教育教学改革的重要组成部分。《模拟电子技术》作为高职院校电类专业的一门重要基础课程,主要研究各种半导体器件的性能、电路及应用,是后续电类课程的理论和实践基础。然而,《模拟电子技术》课程概念抽象、非线性特性多、电子器件参数分散性大、工程应用性强,在传统教学中,往往是教师讲得通学生却听不懂,或学生听懂了却想不通。将现代信息化教学技术——多媒体技术应用到《模拟电子技术》课程教学,具有非常重要的现实意义。

高职《模拟电子技术》课程教学的特点

(一)概念抽象

该课程的概念和理论比较抽象,给教学带来了较大困难。如pn结单向导电性、正弦波振荡电路起振过程等,学生对这些概念和理论很难理解。为了使学生能够较好地接受这些单调、枯燥的理论,课程教学中教师多采用启发式、互动式、引例式、演练式等教学方法来加深学生的理解,但教学效果并不显著。

(二)非线性特性多

模拟电路是由半导体二极管、三极管为主要器件组成的。二极管、三极管均具有非线性特性,因此,线性电路理论对于分析和设计模拟电路不适用,必须采用非线性电路的分析方法。传统教学在这方面收效甚微。

(三)电子器件特性分散性大

电子器件的参数是特性的定量描述,也是实际工作中根据要求选用器件的主要依据。然而电子器件参数分散性较大,相应的特性分散性也较大,往往需要通过手册查得,在实际电路中往往难以或是不需要精确计算输出值。

要准确选取具有分散性的电子元器件,除了需要扎实的理论,还需要丰富的经验。

(四)工程应用性强

在科学技术飞速发展的今天,模拟电子技术几乎在所有的领域——科学研究、生产实践、日常生活中无处不在。模拟电子技术工程应用十分广泛,设计、应用一个模拟电路,即便是一个小型的应用电路,也是一项系统工程。

多媒体技术在教学中的优势

(一)多媒体技术形象生动,容易激发学生的学习兴趣

多媒体教学手段以灵活多变的教学方式,给学生提供鲜明、生动、清晰的感受,使学生感兴趣。多媒体教学手段以大量视听信息和高科技手段来冲击学生的思维兴奋点,可以极大地激发学生学习《模拟电子技术》课程的兴趣,从而调动起学生的学习积极性。

(二)多媒体技术丰富课堂信息量,能大大提高教学效率

《模拟电子技术》课程的主要特点是合理利用视图及表达方法表达各种元件及电路图的结构及有关国家标准。为了收到较好的教学效果,教师往往在课堂上手绘各种电路图。这个过程要占用许多授课时间,如果刻意减少绘图,势必会影响教学效果。而将多媒体技术应用到《模拟电子技术》课程教学中,制作电子教案、绘制电路、解答习题、做虚拟实验、进行仿真应用,能极大地丰富课堂教学信息,从而提高课堂教学效率。

(三)多媒体技术便于理论联系实际,有助于培养学生的动手能力

处于工作状态的模拟电路看似平静,实则正在发生量和质的深刻变化。这样的过程,传统教学手段根本无法在学生面前展示,学生的兴趣点往往只停留在电路的输出结果上,而忽视电路的实际工作原理和工作过程,不利于学生动手能力的培养。多媒体技术教学最大的优势是可以将复杂模拟电路的工作过程形象化,使理论联系实际。这对于促进学生实际操作、设计、应用模拟电路具有十分重要的意义。

多媒体技术在高职《模拟电子技术》课程教学中的应用

(一)使微观世界和抽象概念直观化

由于半导体内部的载流子是微观粒子,看不见、摸不着,因此,在传统教学中,学生对pn结形成过程的理解全靠想象,学生感到太抽象、难以接受,在短时间内很难透彻理解。

采用多媒体动画教学,可将p型半导体与n型半导体内部的空穴与电子用不同的标识符形象地描绘出来,生动地演示pn结内部微观粒子的运动。这样,将学生带入微观世界,就可以让学生去观察和发现“奥秘”:扩散运动内建电场漂移运动扩散与漂移达到动态平衡,从而理解pn结的形成过程。

通过在pn结两端加不同极性的电压来破坏pn结原有的动态平衡,会使它呈现单向导电性。可利用多媒体动画演示pn结加正向电压处于导通状态时,外加电压的方向与内电场方向相反,使p区的多子空穴和n区的多子电子都推向空间电荷区pn结厚度变窄内电场削弱pn结原有的平衡被打破扩散运动大于漂移运动在外电源作用下,p区空穴不断扩散到n区,n区的自由电子不断地扩散到p区,从而形成了从p区流入n区的正向电流pn结正向导通。pn结反偏时的动态过程正好相反,少子漂移运动形成极小的反相饱和电流。这样,就能使学生真切感受pn结的单向导电性,“亲眼见到”在微观世界里pn结如何正偏导电与反偏截止。

三极管与场效应管内部载流子的运动都可以用多媒体动画形象生动地演示,将肉眼看不见的微观世界载流子传输过程非常形象和直观地展现出来,学生的学习效果会非常好。

(二)使非线性特性形象化

非线性电压放大电路对低频信号的放大作用是本课程的重点,是学生学习后续各章节的基础,同时也是难点。许多学生很难在脑海中建立交直流共存的概念,尤其是对于非线性电路。为了使学生更好地理解交直流如何共存于一个非线性电路,最直观的方法就是图解法。

这种方法通过波形图与非线性元器件的特性曲线来动态展示电路的电压放大特性。先画出只有直流信号作用下的共射极放大电路的直流通路,带领学生分析仅在直流信号作用下流过三极管的静态基级电流与静态集电极电流的波形图。然后在直流通路的基础上,输入与输出端加上耦合电容,由输入耦合电容将低频交流小信号加在放大电路的输入端。最后利用动画效应给出输入端交流小信号随着时间的推移电压ui波形的动态变动情况。此时,在交流信号的作用下,基级电流ib,集电极电流ic,集电极与发射极之间的电压uce以及输出电压u0的波形,随着ui的动态变化就生动形象地显现在各支路与输出端。动画演示可采用慢放方式,使学生在波形的缓慢变化中看到输入与输出信号之间的动态关系与变动过程,以及ube与ib和uce与ic的非线性关系,由此即可形象展示交直流的共存现象。动画展示时,信号波形的变化快慢以及信号的周期可以根据具体情况调整,启发学生从中观察输入信号频率变化对输出信号的影响。

分析温度、电路参数对静态工作点的影响时,利用多媒体课件,可逐步展示随着温度与各电路参数的变化,静态工作点逐步上移或下移的过程,以及工作点位置不当时,输出信号波形出现的非线性失真。静态工作点过高使放大管进入饱和区输出波形出现饱和失真,过低使放大管进入截止区输出波形出现截止失真,以及波形上半周或下半周出现畸变的情况,都可以用动态图像形象地展示,进而取代书本上的静止图像。这样,就能马上吸引学生的目光,促使学生去思考。恰当地运用多媒体刺激学生的多种感官,不仅可以吸引学生的注意力,而且能有效地突出重点,突破难点。

(三)使电子器件参数分散性带来的不必要复杂计算简单化

电子器件的参数是特性的定量描述,也是实际工作中根据要求选用器件的主要依据。二极管参数分散性较大,在实际电路中难以精确计算输出值。利用多媒体技术可以简化因电子器件参数分散性带来的不必要的复杂计算(有时复杂精确的计算对于电路分析也没必要,只需知道局部电路的输出值即可反映电路设计的有效性),从而直观演示模拟电路的工作过程。

教师在讲授直流稳压电源内容时,传统的教学方法是先介绍整流、滤波与稳压的理论,然后再通过复杂数学计算与理论推导来求解负载上的输出电压值以及电压脉动系数,最后通过实验演示或实施分组实验教学来验证理论以提高教学效果。如果在这部分教学中辅以多媒体教学,对半波整流电路与桥式整流电路的整流效果、电容滤波与电感滤波的区别,电容c以及负载rl对滤波效果的影响(如图1所示),均可以通过视频动态镜头来展示。可通过慢放展现各种情况下的输出电压波形,引导学生对比波形的不同之处,让学生根据过程演示推导出正确的结论,从而使学生自然而然地得出结论。这要比通过繁杂的数学理论推导得出结论更有说服力,更容易使学生牢记结论。

尤其是在实验条件没办法满足教学要求时,通过多媒体技术进行实验演示,可以使学生通过观察实验过程和现象总结出规律或得出结论,有助于提高学生的学习积极性,提高学生的动手能力。不过要注意的是,多媒体课件所演示的实验难以替代学生亲自动手进行的真实实验,若完全代替真实实验,有可能会扼制学生活跃的思维和丰富的想象力。

(四)虚拟化工程应用实践

对于振荡电路的起振过程,传统教学全靠学生想象,由于学生的知识水平和阅历有限,对起振情景想象不出或想象不全,从而限制了他们对相关知识点的理解。多媒体技术在正弦波振荡电路课堂教学中的应用却能很好地解决这一难题。利用电路仿真软件ewb或protel先搭建振荡电路,接通电源后由虚拟示波器来测试振荡信号的波形(如图2所示),来模拟实现振荡电路的起振与振荡过程,不仅可以使学生深刻体会和理解振荡的抽象理论,而且还可以间接地教会学生如何利用虚拟仿真软件进行电路仿真,可谓一举两得。

正弦波振荡电路的理论讲授完成后,为了使学生能够将所学理论知识运用到实践中,加深对专业理论知识的理解,应带领学生做一个信号发生器。但由于教学资源与教学条件受限,实现起来比较困难。在这种情况下,可以考虑利用虚拟技术来实现,带领学生运用计算机技术与多媒体技术做一个虚拟信号发生器。在制作虚拟信号发生器的过程中,加深学生对振荡电路的理解,从而掌握振荡频率与谐振电路元器件及谐振频率之间的关系。

将多媒体技术应用于教学不仅可弥补有关理论教学、实践教学环节的不足,而且可使仿真软件与虚拟仪器的强大功能在教学领域获得进一步应用。

多媒体辅助教学引入高职模拟电子技术课堂教学后,弥补了传统教学的不足,优化了教学效果,不仅使枯燥乏味的理论变得形象生动,提高了学生的学习主观能动性,也使得学生不再惧怕实验与实训,学会在实践中去思考问题,从而提高动手能力。但多媒体技术的运用要恰到好处,不能取代教师的主导地位与学生的主体地位。巧用与妙用多媒体技术,才能使学生消除对本课程的畏难心理,真正激发学生学习电类专业课的兴趣。

参考文献:

[1]陈吉利,黄克斌,杨斌.多媒体技术在《模拟电子技术》课程教学中的应用[j].软件导刊(教育技术),2009,(5):32-33.

电路与模拟电子技术范文4

【关键词】模拟电路;智能故障诊断技术

一、前言

现阶段,电子电路被广泛应用于各行各业中,在控制及通信等领域取得了良好的发展效果。要想确保电子电路运行的稳定性,需要加大对模拟电路及数字电路故障诊断的研究和分析,降低电子电路故障的发生概率,提升电子电路的可靠性能。目前,人工诊断技术已经无法满足模拟电路的诊断需求,加强自动诊断成为现阶段模拟电路故障诊断一项亟待解决的问题。

二、模拟电路故障诊断的分类

模拟电路中的元器件值呈现出连续性变化特点,其数值会随着温湿度等外部条件的变化而变化。另外,在使用过程中,还会受使用时间过长所引发元器件实际数值与标准数值之间存在一定的差异。按照元件器的变化范围,将模拟故障分为以下两类:

(一)硬故障

模拟电路故障发生硬故障时,说明元器件的本质发生了较大的变化,会对电路的拓扑结构及自身的工作性质造成较大的影响,进而引发短路及开路故障的出现,在模拟电路故障中,通常将该类故障称为是灾难性故障。

(二)软故障

软故障的出现,与模拟电路元器件自身的容差有直接关系,在容差范围内,元器件的值发生变化,在容差范围内的值均属于正常现象。一旦超过容差范围,就会引发电路软故障现象。在通常情况下,元器件的容差值被控制在10%范围内,一旦超过这个范围,说明电路工作的特性下降[1]。

三、模拟电路故障诊断特点

第一,模拟电路信号与数字信号之间存在着较大的区别,模拟电路信号的大小会随着时间的连续变化而变化,内部包含的物理量属于连续函数,在进行模拟故障判断时难以用简单的量化处理来进行描述。第二,模拟电路元器件特性,模拟电路中的元器件参数自身存在着较大的容差,对功能物的故障物理位置难以确定,存在模糊性特点。第三,模拟电路中存在非线性及反馈电路问题,增加了模拟电路的测试及计算难度。第四,模拟电路自身存在着严重的故障问题,可供测试的节点数量相对较少,受电路的多层及封装影响较大,无法完成对电路故障信息的判断,导致电路信息存在不充分情况,增加了电路故障信息的判断难度。第五,模拟电路的频率范围较宽,其使用范围直接决定了模拟电路设备之间的差异性。在测量同一个信号时,在不同的设备频段上所使用的设备存在一定的差距,直接决定着设备的使用性能。

四、模拟电路智能故障诊断技术

现阶段,最常见的模拟电路故障诊断技术包括专家技术、神经网络技术、模糊技术、小波变换及Agent技术等。在应用这些技术来解决模拟电路智能故障时,其应用建立在综合自动故障诊断系统基础上,能够快速解决数学模型中的电路故障,确保故障诊断的准确性,提升故障诊断效率,提升故障检修人员对故障问题的全面性、针对性及有效性认识。

(一)专家系统故障诊断技术

专家系统故障诊断技术作为模拟电路智能故障诊断技术中应用最为广泛的一项诊断技术,专家系统故障属于智能计算机程序系统,系统内部凝聚着专家的知识及经验,通过对某一领域内的知识及经验进行判断和推理,来完成对人类专家决策过程的模拟,以更好的解决复杂电子电路故障问题。诊断专家的系统任务,通过观察数据来推断出故障存在的原因,其中最为典型的应用为产生式规则系统,将专家的知识和经验运用规则的形式表示出来,形成故障诊断系统知识库,通过对报警信息进行处理,来完成对故障元件的判断。诊断工作在开展过程中,需要做好如下工作步骤:第一步:结合电子电路的具体情况,制定故障诊断专家系统知识库,知识库中的内容包括相关的诊断经验及诊断技术,不同的故障类型相对于不同的诊断技术,以组合的形式呈现在故障诊断专家系统知识库中。第二步,当故障发生时,诊断系统会自动发出警报信息,面对该种情况可以使用系统知识库对故障进行推理,找到故障发生的原因,为工作人员的故障诊断工作提供了较大便利,使故障诊断更具针对性,提升了故障诊断效率及效果。以上诊断过程可以理解为,专家系统故障诊断技术,为故障诊断及决策提供了模拟的过程,有助于解决复杂的故障问题。但是该种技术在取得一定成果的同时,在技术方面还存在一定缺陷,对该项技术的使用范围造成了较大的限制[2]。

(二)神经网络故障诊断技术

神经网络故障诊断技术是人工智能技术中的重要组成部分,在诊断电子电路故障中展现出了较强的优势,其优势主要表现在以下几方面内容:第一,能够快速处理无法用显性公式表示及复杂非现性关系的故障,提升了解决反馈回路、非现象及容差等所引发的神经网络故障问题,以上故障问题是传统的故障模式所无法识别和解决的。神经网络故障的优势被越来越多的人意识到,实现了对该技术的大力推广和使用。第二,实现了对权值分布及拓扑结构的非线性映射,运用分布的形式来完成对信息的存储。第三,能够直观的了解到非线性信息变化问题,主要是结合全局并行处理来解决信息变化问题,提升了故障诊断的效率,解决了故障指示获取中存在的“瓶颈”及“组合爆炸”问题。第四,还可以充分利用人工神经网络技术的自适应性强、联想记忆及并行分布处理等特点,来提升神经网络故障诊断效果。基于以上优势,为神经网络故障诊断技术的发展开辟了新的渠道。在实际的应用过程中,通过将专家系统与神经网络系统相结合,确保了两者之间的互补和扬长避短,为故障诊断工作提供了新的发展渠道。

(三)模糊故障诊断技术

近年来,模糊故障诊断技术被广泛应用,其自身的优点不断的展现出来,应用于不确定问题故障中。模糊理论在解决故障问题时,能够得到多个解决防范,通过对方案模糊度的高低及优先程度进行排序来完成故障解决。然后,在具备一定优势的同时,模糊故障诊断技术在实际的应用过程中,还受隶属度获取、复杂系统模糊模型的建立、辨识、修改、语言规则的获取不完善有直接关系,对该理论的合理有效应用造成了极大的限制。模糊故障诊断技术主要应用于复杂电路中,在进行故障诊断时,受非线性、元器件容差及电路噪声影响较大,在运用传统的电路理论来解决故障问题时,难以精确的解决故障,会引发故障解决出现模糊现象。模糊故障诊断方法在实际的应用过程中,主要是依据专家的经验,在故障征兆空间与故障原因空间之间通过建立模糊关系矩阵的形式来实现,通过将各条模糊推理规则,模糊关系矩阵进行组合,结合阈值来识别和判定元件中的故障。因此,模糊故障诊断技术在实际的应用过程中,需要与ANN及专家系统理论有机结合起来,提升故障解决效果[3]。

(四)小波变换故障诊断技术

小波变换故障诊断技术的基本原理为:主要是运用小波母函数在尺度上的伸缩及时域上的平移来完成对信号的分析,在实际的应用过程中,要合理选择母函数,促进函数的扩张,以展现出小波变换故障诊断技术的局部性特征,因此可以判定其是一种时-频分析方法。在时-频域中展现出了良好的局部化性质及多分辨分析特性,主要应用于非平稳信号的奇异性分析中,例如,通过对小波变化的应用,能够检测到信号的奇异性,对信号的噪声及突变进行分析。同时,还可以利用离散小波变换来完成对随机信号频率结构突变的检测。小波故障诊断机理包括两方面内容:主要是利用观测器信号的奇异性来完成对观测器信号频率结构变化的故障诊断,在检测过程中,不需要借助系统的数学模型来进行诊断,故障检测的灵敏度较高、对噪声的抑制能力较强、对输入信号的要求较低,运算量要求不高,检测时会出现时间延迟等情况,不同的小波基对选取的诊断结果也会产生一定的影响。因此,在模拟电路诊断中,需要借助小波变换器来提取故障特征信息,并将故障特征信息传送入故障分类处理器中,以完成对故障的诊断。

(五)Agent故障诊断技术

Agent故障诊断技术自身具有较强的感知能力、外界通讯能力及问题求解能力的实体,通过外部Agent和预定义协议来完成通讯工作,并通过松耦合的分布式途径来完成分布式智能求解。将Agent故障诊断技术应用于模拟电路故障诊断中,有效的克服了传统人工智能诊断系统中无法解决的实时性问题,强化了诊断系统对动态环境的适应能力,提升了不完全信息的处理能力,为网路环境下的分布式计算机问题求解提供了渠道,强化了故障诊断中的信息监测、搜索及推理,展现出了良好的故障诊断效果[4]。

五、结论

丰富智能化故障诊断技术内容,有助于提升系统故障诊断能力,降低系统的开发及运行成本,提升故障诊断系统的开发运行成本,促进故障诊断系统资源的共享。人工智能诊断方法被广泛应用于工程电子电路智能故障诊断中,进一步推动了模拟电路故障诊断理论及方法的发展,确保了故障诊断技术的完善性及适用性,为复杂及大规模的电子电路故障诊断提供了有效及具有实用性价值的诊断方法,是模拟电路故障诊断的主要发展方向。

参考文献

[1]孟萍.电力电子电路智能故障诊断技术研究[J].无线互联科技,2017,(14):130-131.

[2]宋芷莹.人工智能在电力电子电路故障诊断中的应用[J].现代经济信息,2015,(16):350.

[3]杨博.模拟电路的融合智能故障诊断[J].通讯世界,2015,(02):198.

电路与模拟电子技术范文5

关键词:模拟;电子电路;实验平台;设计

21世纪是信息时代,电子计算机技术得到了快速的发展,覆盖了社会的方方面面,尤其是在教育教学方面的影响更是十分显著,模拟电子电路虚拟实验发展十分迅速。模拟电子电路虚拟实验的出现为电子电路的学习与研究带来了巨大的方便,有效的培养了学生对电子电路的分析、测试、理解与研究能力。传统的电子电路实验过程复杂,方法单一,对于实验设备的要求比较高,浪费了大量的人力物力,而且对一些复杂的电子电路实验而言,传统的实验方式根本无法实现,或者由于实验设备的制约,很多情况下根本无法完成相应的电子电路实验。模拟电子电路虚拟实验出现解决了这些难题,无论是在时间还是教学内容上都有很大的优势,在实际的学习与教学过程中得到了广泛的应用。

1 建设模拟电子电路虚拟实验平台的理念

1.1 与理论相结合

电子电路教学是电学体系中十分重要的知识板块,电子电路教学又分为理论教学、实验教学两个部分。我们进行模拟电子电路虚拟实验就是为了更好的促进电子电路教学整体的进步,因此在实际的教学过程中我们应该充分的考虑模拟电子电路虚拟实验与电子电路理论教学的有效结合,实现两者之间的相互促进,这才是最为科学的实验教学方式。

1.2 解决传统实验模式弊端

传统的电子电路实验教学经常受到仪器设备。实验环境和实验条件的影响,造成在进行电子电路实验的过程中往往不能顺利进行。另一方面,传统的电子电路实验过程中由于实验步骤的复杂性,因此常常是以教师的讲解为主导,学生动手操作和动脑思考的过程很少,并不能真正达到实验的目的。传统电子电路实验教学的这些弊端共同造成了传统实验教学与理论知识脱节,失去实验的意义,但是我们使用模拟电子电路虚拟实验平台进行实验,可以有效的克服这些弊端,解决在实验过程中的条件问题,让学生通过思考进行设计仿真,这样的实验过程能够培养学生的创新性和思维能力,真正达到实验教学的目的。

1.3 与教学目标吻合

我们设计模拟电子电路虚拟实验平台就是为了促进电子电路教学的发展。通过实际的模拟电子电路虚拟实验教学我们也清楚的发现,该技术可以很好的与电子电路课程的教学目标相吻合,这是传统的实验课程无法实现。在具体的表现方面有:首先,采用先仿真后实验的方式,这样帮助学生进行思考,锻炼了学生思维能力;其次,重视基础实验,实现了对学生动手能力和操作能力的全面提高;最后在很大程度上可以对学生的创新能力进行培养,实现学生综合能力的提升。

2 模拟电子电路虚拟实验平台的设计

2.1 模拟电子电路虚拟实验平台的硬件结构

模拟电子电路虚拟实验平台最为重要与核心的部分就是硬件结构的设计,一般的模拟电子电路虚拟实验平台的硬件结构主要是由计算机、接口电路、实验板三个板块组成。

2.1.1 计算机

计算机是进行模拟电子电路虚拟实验平台设计的物质基础也是硬件结构的核心。学生在进行实验的过程中首先要进行的就是在计算机上进行实验的设计与模拟验证。模拟电子电路虚拟实验平台还可以实现多个实验之间的横向对比,这样的设计可以让学习者更加清楚的掌握实验。在模拟电子电路虚拟实验平台的设计中要想实际的实验与虚拟实验进行有效的结合,这样的设计才是更加科学合理的。

2.1.2 接口电路

接口电路也是模拟电子电路虚拟实验平台中十分重要的设计要素。计算机输送的信号一般都是并行数据,而控制节点可以接收的一般都是串行数据,这时就需要植入接口电路,这种电路的作用就是实现控制信号与智能插件版的有效结合,通过这种方式控制节点的通断,这时整个实验平台的关键所在,接口电路对于电路的控制功能一般是通过单片机进行的。

2.1.3 实验板

模拟电子电路虚拟实验平台的实验板是由稳压电源、函数发生器、智能插件板、集成器件插件板等模块组成。它是模拟电子电路虚拟实验平台中主要的模拟实验中心,依靠正弦波形、方波、三角波三种函数发生器进行。

2.2 模拟电子电路虚拟实验平台的软件结构

2.2.1 电子电路虚拟实验子系统

作为电子电路虚拟实验平台的核心电子电路虚拟实验子系统主要是由拟实验子系统、模拟电路虚拟实验子系统、数字电路虚拟实验子系统和综合电路虚拟实验子系统4个部分构成。该子系统可以帮助学生对理论知识进行深入的理解,对电子电路的基础知识进行实验验证,培养和锻炼学生的操作能力。在进行设计的过程中要将RLC移相电路与谐振电路,基本定理(律)验证电路等系列实验设计到该系统中,这样才能充分发挥其作用。

2.2.2 模拟电路虚拟实验子系统

模拟电路虚拟实验子系统的主要作用是帮助学习者加深对于电路知识的理解与认识,同时提高学生的探究能力与独立解决问题的能力。系统中经常会涉及到一些具有思考价值的实际问题,让学生通过分析掌握模拟电路分析、仿真、设计的能力。在该系统的设计过程中要植入晶体管放大电路、信号运算电路、功率放大电路、滤波电路、信号产生电路和直流稳压电源、二极管电路等系列实验。

2.2.3 数字电路虚拟实验子系统

该系统的作用是帮助学生学习数字电路相关的理论知识的学习与理解。让学生通过模拟实验子系统熟练的掌握数字电路的分析、测试与仿真。在具体的系统设计中应该将A/D与D/A转换电路、组合逻辑电路、逻辑器件测试、时序逻辑电路以及555定时器应用等系列实验设计到该子系统中去。

3 结束语

模拟电子电路虚拟实验平台是现代计算机技术发展的产物,对于现代电子电路实验研究和教学工作有着十分重要的意义与价值。该平台为学生的学习提供了一个科学、理想、实用的实验平台,实现了电子电路教学的跨越式发展,对于现代教育教学工作有着重要的意义与价值。

参考文献

电路与模拟电子技术范文6

【关键词】数字电路 模拟电路 发展

1 前言

随着国民经济的快速增长,科学技术的快速进步,电子信息产业得到快速发展,逐渐渗透到国民经济生活的各个领域,使人们的生活发生了翻天覆地的变化。电子信息产业对军事领域也有着深远的影响,改变了传统战争的作战模式,在现代国防中发挥着越来越重要的作用,其在其在国防领域的应用也彰显了一个国家的综合国防水平。

作为高新技术产业,知识、技术和资本是电子信息技术产业得以快速发展的三个重要因素,它彰显了一个国家或地区制造业的整体水平,也是一个国家或地区科学技术和制造业综合实力的重要标志。就我国目前的社会经济现状而言,我国正处于传统产业结构转型时期。如何平衡新的产业结构,达到经济的稳定快速发展,解决目前政府资本过剩、内需不足、市场疲软等宏观经济问题是我国目前经济社会发展面临的一个重要挑战。而加速电子信息产业的建设与发展,对于促进传统产业变革、改变传统产业结构、增加就业率、提升就业水平具有重要作用是应对这一挑战的最好办法。

电子电路是电子信息产业的技术支撑。是电子信息产业的发展重要限制因素。电子信息产业的快速发展离不开电子科学技术的发展及应用。生产技术的提高及加工工艺的改进加快了集成电路的更新速度,也为电子信息产业注入了蓬勃的朝气以及更加旺盛的生命力,使其得以快速发展。根据其结构、功能的不同,电子电路可以分为模拟电路和数字电路。

2 模拟电路

模拟电路是一种针对模拟信号(幅值随时间连续变化的信号)行传输或处理的电子电路。它主要是利用电流或电压对真实信号进行模拟,使其等比例的再现。如调幅/调频的收音机,接收处理无线电广播信号,然后经过一系列的混频、放大、解调等过程,最终完成音乐的播放和新闻等的报道。模拟电路在生活中的应用非常广泛,如晶体管小信号放大器,低频功率放大器,负反馈放大器,MOS 集成运放,谐振放大器,直流稳压电源等。都是用模拟电路制作的。

模拟电路的设计过程比较复杂,其设计的重点在于电路参数的实现。其设计的基本流程主要包括以下几个方面:

2.1 系统定义

系统定义是模拟电路设计的基本前提。根据设计要求,模拟电路设计工程师需要对电路系统及子系统做出相应的功能定义,并确定面积、功耗等相关性能的参数范围。

2.2 电路设计

电路结构的选择是电路设计的重要环节。模拟电路设计工程师需要根据模拟电路需要实现的功能要求、设计规范及相应的参数指标选择合适的电路结构,并在此基础上确定元器件的组合方式等。针对模拟电路的设计,目前暂时没有可以利用的比较成熟的设计软件,因此,只能是有工程师根据自己的经验手工完成。这在一定程度上增加了模拟电路设计的难度,限制了模拟电路的发展速度。

2.3 电路仿真

电路仿真是模拟电路的设计过程中必不可少的一个环节,是模拟工程师判断模拟电路是否可以达到设计要求的一个重要依据。工程师根据仿真结果,不断对电路进行修改和调整,直到模拟电路的仿真结果可以达到设定的指标及相应的功能要求。常用方法主要有参数扫描法,直流和交流分析法、蒙特卡罗分析等

2.4 版图实现

版图将电路设计转化生产的重要桥梁。在由前面的设计及仿真结果确定了模拟电路的结构及相关参数后,设计工程师对设计的模拟电路进行物理几何性的描述,将其转换成图形格式,以便于模拟电路后续的加工与制作。

2.5 物理验证

在物理验证阶段,需要对设计的模拟电路进行设计规则检查(DRC)。设计规则检查是在给定的设计规则的基础上对其最小线宽、孔尺寸、最小图形间距等限制工艺进行检查,衡量版图工艺实现上的可行性。此外,还要对版图与电路图的一致性进行检查(LVS)。可以利用LVS工具提取版图的参数,将得到的电路图与原电路设计图进行比较,保证版图与原电路设计的一致性。

2.6 寄生参数提取后仿真

在版图之前进行的电路设计的仿真称之为“前仿真”,“前仿真”都是比较理想的仿真,没有考虑到连线的电阻、电容等寄生参数。将寄生参数加入版图后进行的电路仿真称之为“后仿真”,只有当后仿真的仿真结果达到设计指标及系统功能要求,电路的设计工作才算完成。寄生参数对模拟电路的影响较大,前仿真的仿真结果满足的情况下,后仿真结果却无法满足要求。因此,设计工程师需要根据后仿真结果不断进行晶体管参数的修改,有时甚至要进行电路结构的调整,直至后仿真结果达到系统设计要求。

目前,模拟电路设计难度高且比较复杂,使用的EDA工具的功能和系统配套性又相对落后,且在设计过程中需要进行频繁的人工干预,对寄生参数等比较敏感等,这些都在一定程度上限制了模拟电路的发展,导致模拟电路发展速度相对缓慢。

3 数字电路