微生物培养方法范例6篇

微生物培养方法

微生物培养方法范文1

关键词 微生物分离 选择

1 教材分析与课时安排

“土壤中分解尿素的细菌的分离与计数”是人教版高中生物(选修1)专题2“微生物的培养与应用”的第二个课题,学生已学习了有关培养基和无菌技术的基本知识,在掌握使用平板划线法和稀释涂布法、分离和纯化微生物的实验操作的基础上,研究培养基对微生物的选择作用,并测定其数量。其中既有关于特定菌株的选择策略等知识性内容,又有土壤溶液的稀释、菌落数量统计等操作性内容,难度较大、探究性较强,是培养学生设计实验、动手操作等科学探究能力,提高生物科学素养的好素材。

本课题教学实施中的关键在于两点:① 教师要处理好知识性内容与操作性内容的关系,要让学生理解特定菌株的选择策略,并学习有关的实验方法和操作程序;② 处理好课常与课后的关系。本课题的实验操作时间不长,但是操作前要制备培养基、对培养基和其他操作用具进行灭菌,操作后的培养时间和对微生物进行观察则需要较长时间,因此需要教师精心设计教学程序,统筹安排教学时间。

根据这一教材特点,本课题教学可分2个课时进行,2个课时之间应留有2 d左右的间隔,以便进行微生物的培养与观察。

2 教学目标

2.1 知识目标

简述稀释涂布平板法分离微生物和进行微生物计数的实验原理;说出选择性培养基和鉴别性培养基的用途;归纳分离纯化微生物的原理和方法。

2.2 能力目标

学会制备土壤样本稀释液,学会用稀释涂布法将菌样液接种到固体培养基平板;学会用稀释涂布平板法进行微生物数量测定的方法。

2.3 情感、态度与价值观目标

体验科学知识的形成过程,加深对科学本质的理解;体会在实验活动中合作学习的有效性,养成严谨的科学态度。

3 教学准备

3.1 土壤样品的采集以及土壤溶液的配制

为保证实验取得预期效果,应选择经常施用尿素的农田,铲去表土后采集3~8 cm深度范围内的土壤;回实验室后,去除土壤中的植物枯枝败叶及其他杂物,用托盘天平称取样品10 g,加入到盛有90 g无菌水的锥形瓶中,震荡10 min,即制得101土壤溶液;制备完成后可置于冰箱冷藏室内备用(1~2 d)。

3.2 配制培养基并进行高压蒸气灭菌

配制牛肉膏蛋白胨固体培养基(配方:牛肉膏5 g,蛋白胨10 g,氯化钠5 g,琼脂20 g,加热溶解后,加水定容至1 000 mL。如条件具备可用琼脂糖代替琼脂), 分装到100 mL 带棉塞的锥形瓶中,每瓶各25 mL。

配制尿素固体培养基(配方:葡萄糖10 g,尿素1 g,KH2PO4 1.4 g,Na2HPO4 2.1g,MgSO4・7H2O 0.2 g,琼脂15 g,加热溶解后定容至1 000 mL),分装到100 mL 带棉塞的锥形瓶中,每瓶各25 mL。

将上述分装好的两种培养基、装有4.5 mL 蒸馏水的带棉塞试管、装有99 mL 蒸馏水的250 mL锥形瓶、包装好的培养皿进行高压蒸气灭菌。

4 教学过程

4.1 导入新课

教师讲解:尿素是动物体内蛋白质代谢终产物,也是农业生产中常用的化肥,但农作物并不能直接吸收利用尿素,而有些土壤微生物能产生并分泌脲酶。通过分解土壤中的尿素为自身和植物生长提供氮元素,由此引出课题:在特定的土壤中可以分解尿素的微生物的数量是多少?如何从土壤中的众多微生物中分离出能分解尿素的微生物?

4.2 分析原理,学生尝试进行实验设计

教师介绍Taq细菌的发现和选择过程,引导学生认识到研究微生物的分离和培养,是研究微生物利用的基础,而要选择出符合需要的特定微生物,则要从微生物的生理和代谢特点出发,创造有利于目的菌株生长的条件,同时抑制或阻止其他微生物的生长。在此基础上,教师引导学生提出实验的初步设想,以尿素为惟一氮源,配制培养基,阻止不能利用尿素的微生物的生长,从而筛选出分解尿素的微生物。学生以实验小组为单位进行实验设计。由于本实验的综合性强,难度大,学生在设计实验流程时可能存在不少困难。教师一方面要鼓励小组内部开展讨论,逐步修正设计;另一方面也要适时的参与到各组的讨论过程中,提出合理的建议。

4.3 总结设计结果,得出可行的实验流程

让各小组展示设计结果,组织全体学生讨论,教师给予评价,最终得出可行的实验流程(图1),并要求学生明确各步骤的具体目的。根据教师课前所进行的预实验,所取的土壤样品中分解尿素的微生物大约为1.5×108个/g。因此,可选择让学生进行104、105两种土壤稀释液的涂布接种。这样既可保证实验效果,又减少了器材、试剂的用量,节约教学时间,提高教学效率。同时,以牛肉膏蛋白胨固体培养基的培养作为实验对照,以便让学生充分理解和认识选择性培养基的设计策略和选择效果。

4.4 学生分组操作

为节约教学时间,教师可在课前将前期备好的牛肉膏蛋白胨固体培养基和尿素固体培养基,用电磁炉加热融化后,于课前置于80 ℃的水浴中进行保温,保持融化状态,以便学生及时取用。

倒平板:将融化的两种培养基分发给每个实验小组,指导其按规范倒平板,将两种融化的固体培养基倒入已灭菌的培养皿中,每个100 mL锥形瓶中盛有的25 mL培养基,可倒两个平板,每个实验组可制得两种平板共四个。制作完成后,分别编号,置于实验台上等待其冷却凝固。

配制104、105土壤稀释液:将101土壤溶液和经灭菌的装有4.5 mL 蒸馏水的带棉塞试管、装有99 mL 蒸馏水的250 mL锥形瓶分发给各小组,教师指导学生制备104、105两种土壤稀释液。具体的方法可由教师直接给出,也可由各小组自行讨论制定方法,因学生对微量移液器的使用不熟悉,教师应给予指导。

接种菌液,分离尿素分解菌:教师指导学生用微量移液器,各取0.1 mL104、105土壤稀释液,分别加入到装有牛肉膏蛋白胨培养基和尿素固体培养基的培养皿中,使用涂布器,在酒精灯火焰附近打开培养皿,将加入的菌液均匀涂布于整个培养基,盖上培养皿后,倒置于37℃恒温培养箱中培养。

以上为第一课时。在第二课时教学实施前,教师可组织学生定期观察培养情况。

观察对比培养结果并计算:2 d后观察比较牛肉膏蛋白胨培养基和尿素固体培养基中菌落的形态并计数。可以明显地发现,牛肉膏蛋白胨培养基上的菌落形态多样,数目较多,而且随稀释倍数的增加,菌落的数目减少。而尿素培养基上的菌落形态比较单一,数目也明显少于对应稀释倍数的牛肉膏蛋白胨培养基上菌落。学生根据计数结果,计算出土壤中分解尿素的微生物的数量。例如学生计数在105稀释倍数的培养基上出现的菌落为60个,则每克土壤中尿素分解菌数量为60×5×105×10=3×108个/g。

4.5 小组讨论,促进学生对微生物选择性培养的理解

学生完成分组操作后,教师可设计问题,引导学生巩固有关微生物培养的原理和方法,加深其对微生物选择性培养的理解。具体问题及设计意图如下:

(1) 牛肉膏蛋白胨培养基中,提供碳源和氮源的物质分别是什么?

(2) 尿素固体培养基中,提供碳源和氮源的物质分别是什么?

(3) 你所在的实验小组的培养结果如何?按生长菌落的多少,将4只培养皿排序,从多到少的顺序是什么?为何会出现菌落数量的差异?

(4) 你所在的实验小组,实现了对土壤中分解尿素的微生物的选择性培养吗?为什么?

以上问题串从复习上一课题介绍的微生物培养过程中的碳源、氮源入手,让学生体会不同微生物在生长过程中利用的碳源和氮源是不同的,从而引导其深刻理解微生物的选择性培养的思路,进一步掌握特定微生物的选择和分离的方法。

4.6 设计“意外”,引导课题延伸

教师展示学生的实验结果,从中选择符合实验预期的尿素固体培养基,打开培养皿,使用手持式喷壶,向培养基表面喷入事先配好的质量分数为0.1%的酚红试剂,静置片刻,让学生观察现象。

教师讲解并提问:酚红试剂是一种酸碱指导剂,其变色范围是pH6.8(黄)~8.4(红),观察到的培养基上的颜色有何变化?这说明了什么问题?

学生通过观察可知,在培养基上出现了两种不同类型的菌落,一种菌落周围出现了红色圈,另一种则呈现黄色。这说明这些微生物的种类是不同的,菌落周围变红的说明微生物培养过程中产生了碱性物质,而菌落周围变黄则说明产生了酸性物质。

教师给出如下资料,指导学生阅读:

资料:微生物将含氮有机物分解产生氨的过程被称为氨化作用。能进行氨化作用的细菌统称氨化细菌。有些氨化细菌能分泌脲酶,可将尿素分解生成氨,为微生物提供氮源,如脲芽孢八叠球菌。

硝化细菌可利用氨氧化过程中释放的能量,将无机物转化成有机物而营自养生活,其中能将氨氧化成亚硝酸盐的称为氨氧化细菌,如亚硝化单胞菌;能将亚硝酸盐氧化为硝酸的是亚硝酸氧化细菌,如硝化杆菌等。

教师要求学生根据以上资料,进一步判断培养基上出现的两类菌群,分别是资料所给出的哪一类细菌。

在此基础上,教师提出问题:本实验中使用的尿素固体培养基中的惟一氮源是尿素,其目的在于选择土壤中的分解尿素的微生物,那么为何在培养基中出现了以氨为氮源的氨化细菌?如果想进一步选择分解尿素的微生物应该怎么做?

笔者设计这一问题串的目的在于帮助学生理解选择性培养基和鉴定性培养基的用途。借此问题,教师引导学生认识到,尿素分解菌可将尿素分解为氨,这时培养基中的氮源的种类就发生了变化,由原来的尿素是惟一氮源变成了除尿素外还存在其他的氮源。因此,可在这样的培养基上生长的细菌,有些是可以分解尿素的,有些则是以氨为氮源的杂菌。而要想选择出其中分解尿素的微生物,可在配制尿素固体培养基时加入酚红起到鉴别作用,然后用灭菌后的接种环,挑取菌落周围出现红色区域的微生物进行接种培养。

4.7 总结归纳

在总结归纳阶段,教师可设计一系列问题,引导学生回顾微生物分离纯化的方法和实验设计的思路,具体问题如下:

(1) 分离纯化微生物的方法有哪些?(平板划线法、稀释涂布法、选择培养基分离、鉴别性培养基鉴别后挑取接种)

(2) 本实验中,为何要设计使用牛肉膏蛋白胨培养基培养土壤微生物的步骤?(设置对照,通过比较实验组和对照组培养基上菌落的数量和形态,证明尿素固体培养基的选择效果)

(3) 要想提高土壤中尿素分解微生物计数的准确性,应该怎么做?(设置重复,取均值,减少实验误差)

(4) 请归纳微生物计数的方法。(稀释涂布法、血球计数板、比浊法等)

以上教学过程充分挖掘了该课题的教学价值,使课程标准中“微生物的分离与培养、微生物计数、选择性培养基的选择作用”等具体要求得到有效落实,同时,该教学过程较好地处理了知识性内容与操作性内容及课堂与课后的关系,可起到节约时间,提高教学效率的效果。

参考文献:

微生物培养方法范文2

一、微生物不可培养的原因

对微生物进行常规培养时,由于生活条件的改变,有些微生物不能适应而死亡,另一些则通过产生孢子进入休眠状态或改变细胞形态、进入维持一定代谢活性但不生长繁殖的“活的非可培养状态”,结果均表现为微生物的“不可培养性”。

实际上,微生物的不可培养性是由于对微生物生长条件及其规律性的认识严重不足,而采取了偏离微生物生长实际情况的培养条件所造成的,这些偏离具体可以包括以下几个方面:

(一)实验室中无法完全模拟自然界的环境条件

由于目前监测技术和手段的限制,人们对微生物生存环境和自然条件的了解尚不充分。因此,人们没有或无法完全模拟微生物的自然生存条件,而通常将培养条件进行简化:将微生物置于恒温、恒湿、黑暗等环境中;将微生物限制在“板结”的琼脂或不扰动的液体介质中;简化微生物的营养组成没有提供微生物生长繁殖所必需的某些化学物质等等。所以在自然界中可以生长繁殖的微生物,在“纯培养”中生长条件得不到满足,从而导致了微生物的不可培养性。

(二)生长缓慢的微生物被忽视

环境中很多微生物都聚集生长,当将这些微生物接种至培养基时,适合生长的微生物由于生长快而占据优势地位,它们对营养成分的大量摄取使生长缓慢的微生物得不到充足营养而生长受到抑制。

(三)采用高浓度的营养基质

最初对微生物的培养是在富含营养的培养基中进行的,但是由于自然界中微生物数量庞大,其可利用的营养物质极度匮乏,多数处于“岔营养”状态。常规纯培养对这种认识不允分,通常将寡营养微生物迅速置于富营养状态,微生物初期的快速生长会产生大量的、微生物自身难以调节的过氧化物、超氧化物和羟基自由基等“毒性氧物质”,该类物质快速、过量的积累会破坏细胞内膜结构,导致细胞死亡,从而表现出微生物的不可培养性。

(四)环境微生物之间的相互关系被忽略

微生物相互关系繁多复杂,包括:(1)种间的偏利共生关系和互惠共生关系,两者的共性是至少一个群体提供另一些群体所需的生长因子而使微生物群体获利;(2)群体感应,这种关系被认为是通过细菌间的信息交流来调控细菌的群体行为:细胞通过感应一种胞外低分子量的信号分子来判断菌群密度和周围环境的变化,从而调节相应的细菌表达以调节细菌的群体行为。以上这两种关系都是微生物生长所必需的。由于人们目前对环境中微生物之间多数复杂的相互关系所知甚少,采用的培养技术没有将这种关系考虑在内。纯培养技术将待培养的微生物与其它微生物群体、以及生存环境人为地分离开,种间的共生关系和信息交流被阻断,微生物缺乏必需的生长因子和信号分了而死亡,表现出微生物的不可培养性。

(五)对微生物生长状况进行判断的常规标准存在的缺陷,也导致某些微生物生长不被发觉,表现为“不可培养”

微生物培养方法范文3

意义

无土栽培是指不用天然土壤,而使用营养液或固体基质加营养液的栽培方法。固体基质或营养液代替天然土壤向作物提供良好的水、肥、气、热等根际环境条件,使作物完成从苗期开始的整个生命周期。无土栽培是实现蔬菜由传统大田生产向工厂化、规模化、集约化转化的新型栽培方式。

无土栽培的植物主要依靠营养液提供生长发育所必需的营养元素。目前营养液的使用存在以下问题:①营养液容易缺氧。无土栽培尤其是水培,因营养液层较深、根系活动范围小,容易造成氧气供应不足。作物根系缺氧时,其生长缓慢,水分及养分吸收减弱,从而影响地上部分生长,导致产量下降。②营养液的循环使用容易接触病原菌。植物根系一旦染病,传播会非常迅速,短时间内就能使整个栽培系统全部染病,造成重大的经济损失。因此,开发一种经济高效的循环营养液增氧和消毒方法成为亟待解决的重要课题。

营养液增氧和消毒的方法

增氧技g

在植物根系生长发育过程中,呼吸过程要消耗氧气,为使其能正常生长就需要有足够的氧气供应。无土栽培植物根系生长环境可以是在类似土壤的生长基质中,也可以是在与土壤环境截然不同的营养液中。因此,在无土栽培中根系氧气的供给是否充分及时,往往会成为制约作物生长的重要因素。

营养液中氧气溶解量可以用溶解氧浓度(DO)表示。溶解氧浓度是指在一定温度、一定大气压力条件下,单位体积营养液中溶解的氧气的数量,以毫克/升(mg/L)表示。营养液中溶解氧的多少与液温、大气压有关,温度越高大气压力越小,营养液的溶解氧含量越低;反之,温度越低大气压力越大,其溶解氧的含量越高。这是导致夏季高温季节水培植物根系容易缺氧的一个原因。

在植物生长过程中,营养液中溶解氧还与植物根系和微生物的呼吸有关,同一植物在白天和夜间对营养液中的溶解氧的消耗量也不尽相同。晴天时,温度越高,日照强度越大,植物对营养液中溶解氧的消耗越多;在阴天,温度低或日照强度小时,植物对营养液中溶解氧的消耗较少。植物根系的耗氧量与根系数量、呼吸数量、呼吸强度成正比,因此耗氧量取决于植物种类、生育时期、种植密度。生长过程耗氧量大、处于生长旺盛期以及每株植物平均占有营养液液量少的植物,则营养液中的溶解氧的消耗速率较大;反之,溶解氧的消耗速率较小。一般甜瓜、辣椒、黄瓜、番茄、茄子等瓜菜或茄果类作物的耗氧量较大,而蕹菜、生菜、菜心、白菜等叶菜类作物的耗氧量较小。另外,营养液内的还原性物质被氧化时也要消耗一些溶解氧。

一般营养液中的溶解氧含量维持在4~5 mg/L

以上,能满足大多数植物的正常生长。但是无土栽培别是水培营养液中的溶解氧很快会被消耗掉,因此必须采取一些方法来补充植物根系对溶解氧的需求。营养液溶解氧的补充,实质上是通过破坏营养液液相与空气气相之间的界面而让空气进入营养液的过程。在一定的温度和压力条件下,液-气界面被破坏得越剧烈,进入营养液的空气数量就越多,溶于营养液的氧气也越多。补充营养液溶解氧的途径主要来源于空气向营养液的自然扩散和通过人工的方法来增氧。自然扩散进入营养液的溶解氧的速度慢,数量少,远达不到作物生长的要求。人工增氧的方法包括营养液循环流动、落差法、喷雾、增氧器、间歇供氧、滴灌、压缩空气、反应氧、动态液位法等,其原理和特点见表1。

营养液循环流动、落差法、喷雾法和增氧器等都是通过增加营养液与空气的接触而提高营养液中的溶氧值,陈艳丽[2]在研究水培生菜有机态氮的营养效应及营养液溶氧管理技术时发现,水泵增氧达到溶氧浓度的饱和点后不再增加,这也可能是几种方法的共性。滴灌法、潮汐法均通过间歇供氧的方法,将根系暴露于空气中直接吸收氧气。甘小虎等[3]研究辣椒潮汐式灌溉育苗技术时指出,育苗过程中基质始终疏松透气不易板结,具有降低能耗、减少用工、节约用水等优点。动态液位法同时采用了增加营养液与空气的接触以及暴露根系于空气中的方法来增加根系对氧气的吸收效率。宋卫堂等[1]对动态液位法的研究表明,提高根系对氧气的吸收效率可以提高番茄的相对生长率、增强根系的活力、促进根系的生长发育。不同的增氧方式应用于不同的无土栽培方式,往往是几种增氧方式协调增氧。夏季高温时营养液增氧困难是制约增氧效果的一个关键问题。

消毒技术

营养液灭菌消毒的方法比较多,包括化学药剂消毒、高温消毒、紫外线消毒、臭氧消毒、慢砂过滤消毒等[4-11]。宋卫堂等[10]对营养液加热消毒机的研究表明,75℃、90 s的杀菌组合对(3.9×105~8.3×105)cfu/mL番茄萎蔫病病原菌、黄瓜枯萎病病原菌、番茄细菌性青枯病病原菌达到100%的杀菌效果。刘楠等[11]研究循环消毒装置时指出,在0.57 mg/L臭氧浓度下,对空心菜的生长有一定的促进作用,可以增加空心菜产量,而对于臭氧在营养液消毒及水培空心菜的影响等需进一步的试验研究。刘伟等[7]研究慢砂过滤装置时指出,慢砂过滤对病毒、线虫及部分细菌的消除率达到90%~99%,不会杀死营养液中所有的微生物,可以利用有益微生物抑制病原微生物,因此慢砂过滤用于营养液消毒还需要进一步研究与完善。宋卫堂等[9]对紫外线-臭氧组合式营养液消毒机进行了研究,UV、O3、UV+O3 3种方法的消毒效果分别达到70.6%、15.9%和89.9%。紫外线-臭氧组合式消毒比单一灭菌方法效果更好,显现出了协同效应,可以较大幅度地提高消毒效率。各消毒原理和作用见表2。

营养液微纳米气泡

增氧消毒技术

针对现有无土栽培营养液增氧效率低,各种消毒方法单一使用,存在环境污染大、运行成本高以及效果差、效率低等问题,一种新型高效的无土栽培营养液的增氧、消毒技术――“营养液微纳米气泡增氧消毒系统”经研发并逐步推广。

营养液微纳米气泡增氧消毒系统采用国际先进的微纳米气泡发生技术,并结合臭氧杀菌技术、紫外线消毒技术等,解决营养液供氧不足以及因病原微生物侵害而造成的无土栽培作物生长受抑制、产量下降等问题,避免由此造成的经济损失,在设施农业领域具有很好的实用性。

微纳米气泡发生技术是利用微纳米气泡快速发生装置将气体快速高效溶入水中产生微纳米气泡。微纳米气泡的显著特点是其在水中上升缓慢,停留时间长,并产生自我压缩,在水中具有很高的溶解度,并且微纳米气泡具有促进植物生长的生理活性,因此微纳米气泡技术被认为非常适合应用于水培栽培系统[12]。此外,利用微纳米气泡发生技术将气体溶入水中,与其他曝气方式相比,受温度影响较小,在夏季高温季节使用具有显著优势。

营养液微纳米气泡增氧消毒系统的技术原理:利用微纳米气泡发生技术将氧气溶入营养液中形成微纳米气泡富氧水对营养液进行增氧;利用微纳米气泡发生技术将臭氧溶入营养液中形成微纳米气泡臭氧水,并经过紫外线消毒器对营养液发挥协同消毒作用[13]。

营养液微{米气泡增氧消毒系统的创新点:①利用微纳米气泡发生技术使氧气、臭氧在水中高效溶解,生成的微纳米气泡具有缓释效果,可延长氧气、臭氧在水中的存留时间,提高利用率;②臭氧、紫外线协同作用灭菌,臭氧与有机物分子反应需要活化能,紫外线的照射提高了有机物分子能量,使活化分子比例增多,从而使有机物更容易在臭氧的氧化下分解。另外,水中溶解的臭氧在紫外线照射下能够生成反应活性更高的羟基自由基(OH-),进而加速了水中有机物的去除速率;③在营养液进行臭氧和紫外线消毒前过滤,减少了营养液中还原性物质和不透明杂质对消毒效果的影响,提高杀菌效果;④采用空压机对残留臭氧进行吹脱,使营养液中的臭氧浓度迅速下降,减少或避免对植物根系产生危害;⑤无土栽培换茬时不启动空压机,含有较高浓度微纳米气泡臭氧水的营养液在串联水培设施内进行数次循环,有效清除设施死角的病原菌;⑥可实现增氧、消毒双重功能,既能对营养液进行增氧,又能对营养液进行消毒,有效降低了单一设备的累加投资成本;⑦装置采用自动化控制,使用PLC和LED控制面板,操作简便;控制单元预留数据端口,可连接其他装置的控制单元,实现物联网综合控制。

适用范围

营养液微纳米气泡增氧消毒系统非常适用于水培,直接对营养液进行增氧、消毒。深液流水培(DFT)营养液的溶解氧随栽培槽长度的增加而降低,因此DFT种植槽长度不宜过长[14]。利用微纳米气泡技术增氧,其产生微纳米气泡具有缓释效果,可保证DFT种植槽末端的溶解氧浓度。

对于气雾栽培,营养液以喷雾的形式喷射出,在雾化的过程中营养液与空气充分接触,有效提高了营养液的溶解氧浓度,配以营养液循环流动方式,足以满足植物生长需要。因此,只需使用营养液微纳米气泡增氧消毒系统的消毒功能即可。

对于基质栽培,既可以通过控制滴灌流量及时间,使基质的透气性和持水性达到动态平衡而使根系获取充足的氧气,亦可利用营养液微纳米气泡增氧消毒系统进行增氧;基质栽培的营养液残液不再循环利用,排放前需经营养液微纳米气泡增氧消毒系统进行消毒,消毒之后可作为肥料用于大田灌溉。

推广应用

营养液微纳米气泡增氧消毒系统率先应用于北京农业嘉年华的蔬菜主题馆,该馆展示了各种新颖的无土栽培设施及蔬菜(图1~2)。营养液增氧方式包含了营养液循环流动、落差法和营养液微纳米气泡增氧消毒系统。该系统布置于地下贮液池附近,增氧时调节溶氧值10 mg/L左右(浓度范围>20 mg/L),与贮液池的营养液混合后将含有丰富溶氧值的营养液通过液循环流动供无土栽培蔬菜根系利用;消毒时调节臭氧浓度1 mg/L左右(浓度范围1~8 mg/L)对营养液进行消毒,消毒后采用空压机对残留臭氧进行吹脱处理,使营养液中的臭氧浓度迅速下降到0.1 mg/L,减少或避免对植物根系产生危害。增氧消毒后无土栽培内的作物无烂根现象和营养液病害,营养液微纳米气泡增氧消毒系统确保了无土栽培蔬菜保持良好的生长态势。

山东惠民鑫诚现代农业科技示范园也应用了营养液微纳米气泡增氧消毒系统(图3~4),园区内有2栋连栋温室,总建设面积为18276.48 m2,以荷兰高效无土栽培(椰糠基质培)生产模式为主。椰糠基质培除了应用间歇滴灌法增氧与紫外线消毒外,还应用营养液微纳米气泡增氧消毒系统对营养液进行增氧,收集的残液进行消毒后还可以应用于大田灌溉;该系统也可应用于园区的深液流水培韭菜,增氧消毒效果明显,韭菜根系发达,病害发生率极低。

应用展望

我国无土栽培的生产面积不断增加,与传统栽培模式相比,无土栽培可以有效克服保护地栽培中土壤盐渍、土传病害等连作障碍,在非耕地场所进行周年种植,并能提高单位面积产量和产品质量。无土栽培主要依靠营养液为作物提供所需养分,而营养液的增氧和消毒是无土栽培进行有效生产的关键。

目前,很多生态园区和农业园区在生产运营过程中,常常会遇到营养液增氧困难、易滋生藻类和病菌等问题,客户对营养液增氧消毒设施具有很强烈的需求。因此,该技术具有切实的推广市场。

营养液微纳米气泡增氧消毒系统由于集成了现有的增氧消毒优势技术及自控和物联网控制系统,成本相对比较高,这就决定了该系统需首先面向高经济附加值的蔬菜、水果、中药、花卉、食用菌等作物进行应用推广。其次,营养液微纳米气泡增氧消毒系统在生产与示范方面具有一定的应用,其增氧与消毒的基础研究有待进一步探索,以期为技术改进、降低成本、生产应用提供参考。

参考文献

[1] 宋卫堂,张树阁,黄之栋.营养液动

态液位法的原理及其增氧效果[J].农

业工程学报,2003,19(2):194-198.

[2] 陈艳丽.水培生菜有机态氮的营养效

应及营养液溶氧管理技术研究[D].

州:河南农业大学,2004.

[3] 甘小虎,何从亮,胡静,等.辣椒潮

汐式灌溉育苗技术应用效果初报[J].

蔬菜,2014(6):14-16.

[4] 范洁群,吴淑杭,褚长彬,等.无土

栽培营养液废液循环利用研究进展

[J].农学学报,2014,4(7):51-53.

[5] 徐燕,赵春燕,孙军德.臭氧对无土

栽培营养液的消毒作用研究[J].微

生物学杂志,2004,24(6):60-61.

[6] 宋卫堂,孙广明,刘芬,等.臭氧杀

灭循环营养液中三种土传病原菌的

试验[J].农业工程学报,2007,23

(6):189-193.

[7] 刘伟,陈殿奎,E A vanOs.无土栽

培营养液消毒技术研究与应用[J].

农业工程学报,2005,21(12):121-124.

[8] Van Os E A, Amsing J J, Van Kuik

A J, et al. Slow sand flitration:

apotential method for the eliminatin

of pathgens and nematodes in

recirculating nutrient solutions

from glasshouse- grown crops[J].

Acta Horticulturae,199 (481):

519-526.

[9] 宋卫堂,王成,侯文龙.紫外线-

臭氧组合式营养液消毒机的设计

及灭菌性能试验[J].农业工程学报,

2011,27(2):360-365.

[10] 宋卫堂,袁小艳,王冬华,等.营

养液加热消毒机的设计与灭菌性

能试验[J].农业工程学报.2007,

23(5):111-115.

[11] 刘楠,王琨琦,余礼根,等.基于

臭氧的水培空心菜促生装置及初步

试验[J].农机化研究,2017(1):

92-95.

[12] Park J, Ohashi K, KurataK, et al.

Promotion of lettuce growth by

application of microbubbles

innutrient solutionusing different

rates of electrical conductivityand

under periodic intermittent

generation in a deep flowte- chnique culture system[J].

Europ.J.Hort.Sci.,2010,75(5):

198C203

[13] 北京中农天陆微纳米气泡水

科技有限公司.一种无土栽培营养

液的增氧、消毒装置:中国,CN

203482710 U[P].2014-3-19

[14] 陈海生,崔绍荣,苗香雯.深水培栽

微生物培养方法范文4

[关键词] 微生物限度检查;验证;如意金黄散

[中图分类号] R286.0[文献标识码] B [文章编号] 1673-9701(2011)19-97-02

Study on the Method of Microbial Limit Test for Ruyi Jinhuang San

GAO HongLI KaiZHU Huiqin

Ningxia Institute for Drug Control, Yinchuan 750001, China

[Abstract] Objective To establish the method of microbial limit test for Ruyi Jinhuang San. Methods The validation test was carried out according to Chinese Pharmacopoeia (Chp 2010). Results The results of validation test showed Ruyi Jinhuang San had antibacterial activity. The culture media dilution method was used as the counting methods for the bacteria, moulds and yeasts (0.5mL/dish, 1∶20 sample solution) and the controlled bacteria detection test. Conclusion This method is feasible for the microbial limit test of Ruyi Jinhuang San.

[Key words] Microbial limit test; Validation; Ruyi Jinhuang San

为确保微生物限度检查方法的可靠性和准确性,《中国药典》2010年版规定对微生物限度检查方法需进行验证。目前,绝大多数药品的微生物限度检查方法药典中都未有具体的检查方法,都需要进行验证试验后建立。如意金黄散具有清热解毒、消肿止痛的功效,是国家评价性抽验样品品种之一。为了比较全面地反映此药品的整体质量,确保人民用药安全,另一方面也是为了更好地完成国家评价性抽验样品工作,为国家制定政策提供参考依据,本文对如意金黄散的微生物限度具体检查方法进行了验证和总结,供同行参考。

1材料与方法

1.1仪器

高压灭菌器,恒温恒湿培养箱(32.5℃、25.5℃)。

1.2药品

如意金黄散七个厂家56个批次(样品来自全国各地市售及生产厂家)。

1.3培养基

营养琼脂培养基,玫瑰红钠琼脂培养基。胆盐乳糖增菌液(BL增菌液),营养肉汤或亚碲酸钾肉汤,溴化十六烷基三甲铵琼脂培养基,甘露醇氯化钠琼脂培养基,pH7.0氯化钠-蛋白胨缓冲液。

1.4菌种

枯草芽孢杆菌(Bacillus subtilis)[CMCC(B)63501]、铜绿假单孢菌(Pseudomonas aeruginosa)[CMCC(B)10104]、金黄色葡萄球菌(Staphylococcus aureus)[CMCC(B)26003]、大肠埃希菌(Escherichia coli)[CMCC(B)44102]、白色念珠菌(Candida albicans)[CMCC(F)98001]、黑曲霉菌(Aspergillus niger)[CMCC(F)98003]。

1.5方法

菌液、供试液制备按中国药典2010年版二部附录ⅩⅢ C[1]进行。

按中国药典2010年版二部附录ⅩⅢ C进行细菌、霉菌及酵母菌计数方法的验证试验、控制菌检查方法的验证试验和样品检验。

2结果

2.1细菌、霉菌及酵母菌计数方法的验证试验结果

2.1.1常规法取如意金黄散七个厂家26个批次的110供试液各1mL按常规法进行细菌、霉菌及酵母菌计数方法的验证试验。结果为24批样品大肠埃希菌、白色念珠菌试验组和稀释剂对照组回收率都>70%;个别几个试验组<70%而>50%。而26批样品金黄色葡萄球菌、枯草芽孢杆菌试验组回收率都<10%,黑曲霉菌的试验组回收率都<60%而>40%;其稀释剂对照组回收率都>70%;表明供试品在此条件下对枯草芽孢杆菌、金黄色葡萄球菌、黑曲霉菌有不同程度的抗菌活性。综合验证试验结果得出如意金黄散按常规法进行细菌、霉菌及酵母菌计数,方法学验证试验不成立,需要建立新的检验方法。常规法的验证试验结果同时也表明细菌计数的敏感菌为金黄色葡萄球菌、枯草芽孢杆菌;而霉菌及酵母菌计数的敏感菌为黑曲霉菌。

2.1.2 培养基稀释法、薄膜过滤法、上清液法(1)培养基稀释法:取110或120供试液1mL,分别注入2个或5个平皿中,每个平皿0.5mL或0.2mL。同时每个平皿加入含50~100cfu的1mL试验菌,立即倾注相应的培养基,培养后计数。(2)上清液法:取110供试液摇匀后静置10min,取其上清液按常规法或培养基稀释法试验。(3)薄膜过滤法:取1:10供试液摇匀后静置10min或500r/min低速离心5min,取其上清液1mL于100mL pH7.0氯化钠-蛋白胨缓冲液中,按薄膜过滤法操作。

26批样品计数方法按其敏感菌进行培养基稀释法、上清液法、薄膜过滤法验证试验,结果见表1。

表1结果得到枯草芽孢杆菌、金黄色葡萄球菌、黑曲霉菌在培养基稀释法0.2mL/皿(110供试液)或培养基稀释法0.5mL/皿[120供试液或上清液(110)]或薄膜过滤法条件下试验组和稀释剂对照组回收率均>70%,表明供试液在此条件下对其基本无抑菌作用。细菌、霉菌及酵母菌计数按培养基稀释法0.2mL/皿(110供试液)或培养基稀释法0.5mL/皿[120供试液或上清液(110)]或薄膜过滤法进行都可行。

2.2控制菌检查方法的验证试验结果

对七个厂家共26个不同批次的样品按常规法、培养基稀释法即取110、120供试液各10mL分别加入100mL、200mL和400mL BL增菌液和营养肉汤或亚碲酸钾肉汤进行两个控制菌铜绿假单孢菌和金黄色葡萄球菌验证试验,结果见表2。

结果为七个厂家共26个不同批次样品试验组常规法、培养基稀释法都检出控制菌铜绿假单孢菌;110的供试液其培养基稀释法400mL都检出金黄色葡萄球菌;120的供试液其培养基稀释法200mL、400mL都检出金黄色葡萄球菌;表明该样品溶液在此条件下对铜绿假单孢菌无抑制作用,铜绿假单孢菌的检查采用常规法就可以;而该样品溶液对金黄色葡萄球菌有一定程度的抑制作用,金黄色葡萄球菌的检查要采用培养基稀释法。

通过方法学验证实验得出,如意金黄散采用培养基稀释法0.5mL/皿(120)进行细菌、霉菌及酵母菌计数检查,控制菌铜绿假单孢菌检查可按常规法进行,金黄色葡萄球菌的检查采用培养基稀释法200mL(120)。按照上述验证过的检查方法对56批如意金黄散进行微生物限度检查,结果都符合规定。

3讨论

控制菌金黄色葡萄球菌的检查虽然也可以采用亚碲酸钾肉汤增菌,但由于亚碲酸钾微溶于灭菌水,溶解时要适当加温;亚碲酸钾对热不稳定,加温温度不能太高,最好溶解后马上使用,否则极易析出结晶;此外亚碲酸钾的加入量要适合,不能超过0.002%,否则亚碲酸钾也抑制金黄色葡萄球菌的良好生长。因此样品杂菌不多时,建议还是采用营养肉汤增菌。

计数方法采用培养基稀释法0.2mL/皿(110供试液)或培养基稀释法0.5mL/皿[120供试液或上清液(110)]或薄膜过滤法都可行,但考虑到样品数量多,计数方法采用培养基稀释法(0.2mL/皿,1∶10的供试液),双碟用量多,费时费力,成本也高;上清液法、薄膜过滤法操作繁琐些。本着简便、快速、节约成本及同时考虑到控制菌的检查,最终选用培养基稀释法(0.5mL/皿,1∶20的供试液)作为计数方法。

如意金黄散生产厂家不同,即使是同一个生产厂家,其有抑菌作用的原药材来源不同,其抑菌作用也不一样,其微生物限度检查方法也就不同;为了统一制定出适合各厂家同一品种的微生物限度检查方法,我们对同一厂家3~4个不同批次进行试验,选取各厂家各批次都可行的方法作为此品种的微生物限度检查方法。

[参考文献]

[1] 国家药典委员会. 中华人民共和国药典(一部)[S]. 北京:中国医药科技出版社,2010:79-88.

[2] 朱会琴,李奋勇,李凯,等. 几种微生物限度检查方法的比较[J]. 西北药学杂志,2007,22(6):323-324.

[3] 刘鹏,马仕洪,戴,等. 加替沙星微生物限度检查方法的建立[J]. 药物分析杂志,2007,27(6):881-884.

[4] 李继扬,陆金根,曹永清,等. 复微生物限度检查法的建立[J]. 复旦学报(医学版),2008,35(6):922-924,934.

微生物培养方法范文5

关键词 食品微生物;检验;影响因素

中图分类号 TS207.4 文献标识码 A 文章编号 1673-9671-(2013)012-0213-01

1 食品微生物检验的意义与方法

食品微生物检验是运用生物、理化、医学等方法系统地分析不良微生物对人和动物的健康影响,它是食品安全监测中必不可少的一部分。食品可否被人类食用,不是看它的口味如何,而是看它是否具有危险性。食品中的微生物含量和性质一直是影响食品质量安全的主要因素之一。对食品中的微生物进行检验是衡量食品卫生质量的重要指标之一,而且系统的检验工作可以判断出食品的加工环境,为政府和有关部门的监管提供科学依据。食品微生物检验应遵循以预防为主的原则,坚持“以人为本、严谨科学”的理念开展工作,有效地预防大规模食品中毒和人畜共患病的发生。

目前,我国卫生防疫机构和专门的食品化验室对于食品微生物的检验方法有五种:1理化检测,主要包括传统的形态检测和相关的理化方法。形态检测是最基础最简单的方法,主要是通过显微镜和染色剂来判定菌落形态和结构特征;理化方法则是通过化学反应测定微生物的代谢产物,间接鉴别一些形态和其他方面不易区分的微生物。2微量生物化学反应系统,该法与计算机联合使用具有高效便捷的特点,用作分析肠杆菌、非发酵菌、葡萄球菌。3PCR技术,又称基因体外扩增法,可利用其精确微量的特点对食品中微生物特异基因进行扩增以判定食品是否受到了污染。4核酸探针技术,该技术于20世纪80年展起来,即利用已知的DNA或RN段加上可识别的标记做成“探针”用以检测未知样品中是否含有特定的碱基序列来判定其同源性。5即用型纸片法,即采用生物测试片分别检测菌落种数、大肠杆菌计数、霉菌和酵母计数,该法操作简便、快速省料,已被列为国家标准方法。

2 影响食品微生物检验的几点因素

2.1 检验人员的素质与能力

实验室是开展实验教学和科研的重要基地。在实验室建设的诸多要素中,人是决定性因素,其作用是最主要的。检验人员的素质与能力影响到最终的检验结果。因此,突出以人为本关系到实验室未来的发展。良好的思想品德是检验人员健康成长的内在动力,应严于律己,加强自身修养,加强学习和锻炼,保持乐观和积极向上的健康心理,才能全身心地投入到工作当中。检验人员不仅要精通本专业的知识,还应具有较广泛的社会科学和自然科学知识。

微生物检验人员必须具有严肃认真的工作态度,具有较强的工作责任感,观察事物要细致,有发现问题、解决问题的能力,有科学严谨的工作作风。具体要求如下:具有多方面的专业技术知识;掌握微生物学的有关基础知识,包括微生物的形态结构、生理特点、种类、生长繁殖的条件,分离、培养微生物的基本方法、无菌操作的有关知识等;掌握并正确理解国家食品卫生微生物检验方法(新制定)、食品的国家标准、行业标准及本企业的企业标准;熟悉计量学的基本知识、计量法令和法规及质量保证体系知识;熟悉食品生产工艺,具备较强的解决问题的能力;检验人员应通过技监或防疫部门的专业技能培训,取得合法的上岗资质。

2.2 实验室环境与仪器设备

微生物实验室主要分为无菌实验室、净化实验室、生物安全实验室等。严格区分办公区域和操作区域。对实验室的空气质量要定期监测,以保证检测结果的可靠性、有效性和准确性。微生物实验室应有完善合理的卫生管理制度,工作人员每天做好环境卫生工作,定期对操作环境进行消毒,废弃物应投入指定的容器内,经无害化处理才能排放,防止病原微生物的散布传播。

在微生物检验工作中要用到的仪器设备较多,实验室常用的仪器设备主要有冰箱、培养箱、高压灭菌器、净化台、显微镜、蒸馏设备等,所有的仪器和设备都要按照生产厂家提供的操作方法和有关规定正确使用。对于某些需要长时间使用的仪器设备(如冰箱、培养箱)每天都要进行温度监控和记录并定期维护,以保证仪器处于良好的工作状态。某些仪器保养不当会丧失实际使用价值,操作方法不当也会影响检验结果。例如,在使用高压灭菌器的过程中,物品不宜放的过挤,灭菌完毕要等到压力自然降低后才能开盖取出物品;干热灭菌器在处理带有纸包装的物品时,温度应≤160℃;培养箱在放入培养液后不能随意开闭,一次培养完成后需要马上清洁,时刻关注培养箱内温度是否与设定温度一致;等等。总之,正确的使用和养护,科学严谨的按照流程操作显得尤为重要。

2.3 试剂与培养基的质量控制

试剂与培养基的质量控制是保证检验质量的基础。要严把进货关,选择质量合格符合要求、质保期内品质优良的干粉培养基,保存注意防潮不结块,对于受潮变质的培养基坚决不能使用。在实际的贮存中要加强包装容器的密封性能,一般性的培养基要贮存于阴凉干燥处,避免强光直射,特殊性的培养基要放在干燥器内。培养基的配制必须在玻璃容器、搪瓷缸、铝锅中进行,严格按照按照实验操作手册与GB4789.28-2010规定的配方配比进行操作,不得随意更改组成成分。记录配制量与操作者、日期,并于包装上标明使用期限,定期做质量检查,以保证其有效性。对于检验的试剂和药品,不仅要做好分类存放,定时清理,也要做好防变质工作。坚决不使用已经变质的药品。

2.4 检验标准

在颁布了《食品卫生检验方法微生物学部分GB4789-2010》之后,我国的食品卫生微生物检验逐步走上了标准化的发展轨道。此外,我国还颁布了各类国家标准、行业标准及卫生行政部门颁布的检验方法等。按照国家标准方法进行项目检验是检验人员开展工作的最基础要求,但在实际工作中会遇到更多需要灵活变通的问题。因此这就要求检验人员自主识别验标准的变化,有

效控制实际工作中的“灵活性”不至于变成“非法性”。

3 结语

近年来,随着生活水平的提高,人们对生活质量的要求也越来越精致。随着工业化进程的发展,食品生产作为一种大规模商业化生产已经进入到人们的日常生活中,但工业化生产不可避免的会引发食品污染问题。不良微生物往往会伴随着原料的生产、成品的加工、包装、贮存进入到食品中,引起食品污染。因此准确、快速、有效地开展食品微生物检验工作对预防某些肠道性传染疾病和食品中毒、保护消费者权益乃至生命财产安全具有重要的现实意义。

参考文献

[1]赫荣乔.《食品微生物安全成为我国重要研究领域》[J].微生物学通报,2011(01).

[2]李颖.《食品微生物检验质量监督问题分析》[J].中国新技术新产品,2010(12).

微生物培养方法范文6

1 材料与方法

1.1 仪器及试剂 液体撞击式玻璃采样器(军事医学科学院提供),FA-1型多级撞击式空气微生物采样器(辽阳新技术研究所提供),直径9 cm平皿,普通营养琼脂培养基(北京生化试剂三厂)。

1.2 采样地点 采样在实验室内进行,面积约 40 m2,室温22~28℃、相对湿度45%~65%。采用对角线布点方式布点设3个采样点,采样高度为1.5 m,模拟人群呼吸带高度。自然沉降法、液体撞击法及固体培养基撞击法同时进行。

1.3 采样方法

1.3.1 自然沉降法 将普通营养琼脂平皿放置于各采样点,打开平皿盖暴露5 min,采样后的平皿置于恒温箱内36℃培养48 h后观察结果。空气中细菌总数(cfu/m3)=N50 000(/AT)。N表示所有平皿菌落数,T 表示平皿暴露时间(min),A 表示平皿面积(cm2)。

1.3.2 液体撞击法 液体撞击法采用液体撞击式采样器,采样前将灭菌的采样液(生理盐水)10.0 ml加入到液体撞击式采样器玻璃吸收管中,以1.0 L/min流量采集空气20 min。采样后以无菌操作取采样液1.0 ml加入到灭菌平皿中,再倾注融化并冷却至45℃的普通营养琼脂,每管采样液接种2个平皿,置于恒温箱内36℃培养 48 h 后观察结果。空气中细菌总数计算公式:N10 000(/QT)。N表示接种平皿平均菌落数,T表示采样时间(min),Q表示采样流量(L/min)。

1.3.3 固体培养基撞击法 固体培养基撞击法采用FA-1 型撞击式空气微生物采样器,以 28.3 L/min 流量采集空气10 min。采样后的平皿同时置于恒温箱内36℃培养 48 h 后观察结果。空气中细菌总数(cfu/m3)=N1 000(/QT)。N表示所有平皿菌落数,T表示采样时间(min),Q表示采样流量(L/min)。

1.4 统计学处理 采用 Spss 17.0 软件对不同采样方法测得的细菌总数进行方差分析,对不同采样方法测得的空气微生物超标率采用配对四格表卡方检验进行分析,检验水准=0.05。

2 结 果

2.1 不同采样方法的测定结果 3 种不同采样方法中,自然沉降法所测细菌总数结果相对较高,固体培养基撞击法最低,3种不同方法的结果差异有统计学意义(F=16.508,P0.05);进一步两两比较,差异亦均有统计学意义(由于各组方差不齐,故采用Dunnett T3法进行两两比较),见表1。

表1 不同采样方法测得的空气中细菌总数

2.2 不同评价方法对自然沉降法结果判定的影响以直接计数(cfu/皿)评价时超标率为17.07%,以经验公式计算(cfu/m3)评价时超标率为41.46%,差异有统计学意义(2=4.05,P0.05),见表 2。

表2 不同评价方法对自然沉降法结果判定的影响

2.3 自然沉降法与固体培养基撞击法超标率一致性分析 自然沉降法超标率为17.07%,固体培养基撞击法超标率为24.39%,差异无统计学意义(2=0.571,P0.05),见表 3。

表3 自然沉降法与固体培养基撞击法检测结果比较

2.4 液体撞击法与固体培养基撞击法超标率一致性分析 液体撞击法超标率为31.71%,固体培养基撞击法超标率为24.39%,差异无统计学意义(2=0.364,P0.05),见表 4。

表4 液体撞击法与固体培养基撞击法超标情况

3 讨 论