概率论与数理统计心得体会范例6篇

概率论与数理统计心得体会

概率论与数理统计心得体会范文1

关键词:数学建模;大学数学;基础理论教学;能力培养

作者简介:于林(1965-),男,山东滨州人,三峡大学理学院,教授。(湖北 宜昌 443002)

基金项目:本文系三峡大学教学研究项目(项目编号:J2010057)的研究成果。

中图分类号:G642.1 文献标识码:A 文章编号:1007-0079(2013)32-0124-02

大学生数学建模竞赛和数学建模活动在对大学生创新能力培养和数学技术应用能力培养中的重要作用已经是一个不争的事实,而在大学数学课程教学中融入数学建模思想的理念也被广大的数学教师所公认,并且取得了许多宝贵的实践经验。但是,在众多关于此问题的教学研究文献中,基本上都是仅仅就高等数学课程中那些本身就具有很强的应用性的数学方法和数学技术介绍了其在数学建模中的一些应用实例,而难得见到有关如何将原始的数学概念和抽象的数学定理的教学与数学建模相互联系的研究和分析。本文旨在通过对概率统计中两个最原始的概念(概率空间与统计结构)和高等数学中一个最抽象的定理(Weierstrass定理)的教学中如何融入数学建模思想的分析,揭示了在大学数学核心课程的教学中,数学建模与深化学生对基本概念的理解以及加强对抽象数学理论的实际应用能力的培养之间的关系。目的在于进一步探讨如何借助数学建模来激发学生对数学课程的学习兴趣,深化学生对抽象理论的理解。

一、最原始的概念,最基本的模型

众所周知,概率论和数理统计理论中有两个最原始的基本概念,一个是概率空间,另一个是统计结构(或者统计模型)。通常在“概率论与数理统计”课程教学中一般总是这样进行的,在给定了概率空间(Ω、F、P)之后,研究定义在其上的随机变量及其分布等性质;在给定了统计结构(或者统计模型) 之后,研究其上的样本、抽样分布及其由此而建立起来的统计推断问题。例如,一般的课本上几乎都是主要介绍建立在“正态分布总体”这样一种统计结构上的统计推断理论的。但是,只要稍微仔细思考一下,就会发现一个被忽略的问题:这种作为研究起点的所谓“概率空间”和“统计结构”是怎么来的?这一问题一般情况下被教师和学生所忽略,因为同学们只需要会做课后的习题就够了,而在每一个习题里这些所谓的“起点”早就被题目的设计者给设计好了。于是,时间久了,同学们也就习惯了,很容易由此而造成一种假象,似乎这些作为“起点”的东西是天生的,或者是自然就有的,很容易对这一课程中最基本的两个概念缺乏必要的理解。

然而,如果将这一问题与数学建模结合起来则情况就大不一样了。对于数学建模,任务不再是求解那种被人设计好的习题,而是面对的各类实际问题。运用概率分析的方法或者统计分析的方法对这些实际问题进行研究,但是概率分析理论、统计分析理论都不能直接作用于任何实际问题,这就需要首先确定这一实际问题所对应的“概率空间”或者“统计结构”是什么。事实上,“概率空间”就是架设在实际问题和概率分析理论之间的一座桥梁,而“统计结构”即是贯通在实际问题和统计分析理论之间的一条隧道。随机数学建模或者统计分析建模从对“概率空间”和“统计结构”的建立就已经开始了。

1.概率空间

(1)随机现象与随机试验。数学建模的研究对象都是一些实际的问题,如果这一实际问题表现为具有某种随机性的时候则被认为是一种随机现象,因此准备运用概率分析的方法进行研究。但是,概率理论直接的研究对象并不是随机现象,而是为研究随机现象所作的随机试验(Random Experiment)。为简单计,今后凡是在概率论中的随机试验皆简称为试验,并记之以英文字母E。对于数学建模者需要指出的是:对于同一随机现象,根据研究者的研究目的和研究方法的不同可以设计不同的随机试验。

例如,某同学打篮球投篮,这当然是一个随机现象,因为他可能投中也可能投不中,也就是说他每次投篮是否能投中具有随机性。假设现在要考察该同学投篮的命中率,可以设计如下两种不同的随机试验。试验E1是让该同学先后投篮10次,看他其中能投中几次;试验E2是请该同学连续投篮直到投中为止,看该同学共需要投几次才能投中。由于所设计的随机试验不同,因而所产生概率空间就不同,以后所运用的概率分析方法也就不一样。

(2)样本空间。当确定了随机试验E之后,称试验E的每一个可能结果为样本点(Sample Point),并称由全体样本点的集合为试验E的样本空间(Sample Space),并分别用希腊字母ω和Ω表示样本点和样本空间。

例如,对于上述的两个试验,试验E1的样本空间可以表示为,其中表示该同学在该次试验中共投中k个球;试验E2的样本空间可以表示为,其中表示该同学在该次试验中总共的投篮次数。注意,是一个有限样本空间,而则是一个无限样本空间。

(3)几何概率模型的实例。几何概率在现代概率概念的发展中起到了非常重大的作用。在19世纪,人们一度认为任何概率问题都有唯一的解答,然而Joseph Bertrand在1888年提出的一个问题改变了人们的想法,这就是贝特朗奇论(Bertrand’s paradox)。

Bertrand奇论:在一半径为1的园内“任意”作一弦,试求此弦长度l大于园内接正三角形的边长的概率P。

解法1:由于对称性,可预先固定弦的一端。仅当弦与过此端点的切线的交角在60°~120°之间,其长才合乎要求。所有方向是等可能的,则所求概率为1/3。

解法2:由于对称性,可预先指定弦的方向。作垂直于此方向的直径,只有交直径于1/4 点与 3/4 点间的弦,其长才大于内接正三角形边长。所有交点是等可能的,则所求概率为1/2。

解法3:弦被其中点位置唯一确定。只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求。中点位置都是等可能的,则所求概率为1/4。

于是得到了三个不同的答案,原因是什么呢?这是因为三种解法中使用了三个不同的随机试验,从而得到三种不同的概率空间。解法1 的样本空间Ω1是全圆周;解法2的样本空间Ω2是直径上点的全体;解法3的样本空间Ω3是二维区域C。这一例子说明,对于同一个问题,由于构造了不同的概率空间而可以得到不同的结论。相对于各自的概率空间,每一种解法都是正确的,而概率空间即是最基本的数学模型。

2.统计结构

(1)对统计总体的认识。正如“概率空间”是概率研究的起点一样,“统计结构”(或称统计模型)则是统计分析的起点。数理统计学就是这样一门学科:它使用概率论和数学的方法,研究怎样收集(通过试验或者观察)带有随机误差的数据,并在设定的统计结构(或称统计模型)之下,对这种数据进行分析(称为统计分析),以对所研究的问题做出推断(称为统计推断)。

面对应用中遇到的实际问题,统计结构是如何得来的呢?首先,来看一下如何认识统计的总体。所谓统计总体是指具有某种分布的随机变量(或随机向量)。所以,通常总体记为随机变量ξ,它服从某分布(族)P。

(2)统计结构(统计模型)。统计总体的随机变量量ξ及其服从的分布P统称为统计结构(或统计总体),P代表的实际上是一族分布函数。如果已经知道P的分布类型,即已知分布函数的类型,只是对其中的某个或者某几个参数θ未知,则问题就归结为根据样本值推断参数θ究竟取何值为好。此类统计模型就是参数模型,涉及的统计问题就是参数统计问题。如果连分布函数的类型也知道得很少,以至于不能给出参数模型,那么问题就成为非参数统计问题。

以对某物理量的测量问题为例:假设有某物理量μ,采取多次测量的方式以求得到该物理量真实值μ的估计。如何建立统计模型呢?

模型一:设总体随机变量,其中,所以

该研究者认为:测量仪器工作状态稳定,可以认为测量结果只存在随机误差。根据误差分析理论,此时有理由认为误差服从正态分布,由此总体随机变量。其中均值μ和方差都未知。所以该模型是一个含有两个未知参数的正态分布函数族。

现在再设想,假如该项测量工作是由一个非常专业的测量团队来完成的,因此事前可以假设测量的精确程度是已知的,即可以假设上述的方差已知,且取值为,于是又有如下模型。

模型二:设总体随机变量,其中,所以

当然,与建立模型二时相反,建模者可能十分悲观,或者事实上也是如此,这就是事前对该总体的信息收集实在太少。研究者只能肯定的是测量者既不会有意把数据夸大,也不会有意缩小,也就是测量所得的随机变量关于真实值应该是左右对称的,除此之外没有其它信息了。这样就只能设置模型如下:

模型三:设总体随机变量{对称分布}。

模型三得到的只是一个非参数统计模型,因此决定了首先必须运用非参数统计进行分析和研究,这较之前两种模型要复杂得多。

二、最抽象的定理,最直接的应用

1.Weierstrass定理

有界闭区间上连续函数的性质表现为一系列十分抽象的定理,Weierstrass定理是其中的一个。一方面,从理论上讲,它们在微积分理论体系中具有非常重要的地位;而另一方面,它们在形式上十分抽象。因此,一般情况下,学生们会认为其没有实用价值。其实正好相反,在数学建模中Weierstrass定理就经常被用到。该定理说:如果是上的一个连续复函数,那么便有多项式的序列,使得在上一致地成立。如果是实函数,则是实多项式。

2.在数学建模中的一个应用

土豆施肥效果分析:在土豆生长期间,施用不同量的氮(N)和钾(K)肥,土豆产量结果见附表1,求土豆产量与施肥量之间的关系。

首先,为了计算方便,对数据作中心标准化处理,即令:

如果说,施肥量x1、x2与土豆产量y有很密切的关系,则应该有,其中可能是线性函数,也可能是非线性函数,探求的具体形式是本题的目的,需要用回归分析方法。

(1)失败的线性回归模型。通常情况下,同学们首先想到的是线性模型:。根据最小二乘法计算得回归方程:。但是这个模型的效果究竟如何呢?计算多重判定系数得。显然,该线性模型对所给数据的拟合效果很差,由对数据的直观观察亦可以看出,用线性模型去拟合所给数据是不合适的。

(2)有效的多项式回归模型。显然,所求的函数关系肯定不是线性函数,而一定是一个非线性函数。然而,非线性函数有无数种,最有可能是哪一种呢?此时,Weierstrass定理帮了大忙。其实,无论是什么样的非线性函数,总可以用多项式去逼近。因此,可以考虑为多项式函数,且不妨从最低阶的二次多项式开始。

设模型为:,

同样根据最小二乘法计算得回归方程:。经计算多重判定系数为:。由此可知该模型拟合效果非常好,问题得到圆满解决。

三、结论

由上述实例分析可见,恰当地将数学建模融入大学数学课程教学,不仅有利于对学生数学应用能力的培养,而且更重要的是还可以帮助学生对抽象的基本概念和理论的理解。因此,对于更多的抽象概念和定理,如何引入适当的数学模型是一个非常值得进一步详细探讨的问题。

参考文献:

[1]李大潜.中国大学生数学建模竞赛[M].第四版.北京:高等教育出版社,2008.

概率论与数理统计心得体会范文2

笔者结合自己在概率论与数理统计中的教学经验和实践,结合当前教学现状,以学生的学习兴趣为导向,从引入数学史内容,利用案例教学法,引导学生建立合理的知识结构体系,让课后作业成为课堂教学的补充与延伸四个方面探讨了激发学生学习兴趣的教学方法,切实提高课程教学效果。

【关键词】

概率论与数理统计;兴趣;数学史;案例教学

概率论与数理统计课程是高等院校理工类和经管类等专业大二学生开设的一门核心数学公共基础课程,也是大多数专业研究生入学考试的一门重要必考科目。概率论与数理统计是一门研究和探索客观世界随机现象的数学学科。它以随机现象为研究对象,在金融、保险、经济与企业管理、工农业生产、医学、地质学、气象与自然灾害预报方面等方面都起到非常重要的作用。随着计算机科学的发展,以及功能强大的统计软件和数学软件的开发,这门学科得到了蓬勃的发展,它不仅形成了结构宏大的理论,而且在自然科学和社会科学的各个领域应用越来越广泛。概率论与数理统计课程以微积分知识为理论基础,是微积分知识体系的进一步提高和升华。然而,随着近年来高校招生规模的扩大、生源质量的降低,相当部分的学生尚且对于微积分课程知识掌握程度不佳,如何结合概率论与数理统计课程的特点,让学生在短时间内掌握本课程基本理论和方法,并能够利用所学知识解决生活中的一些实际问题,是每一位高校数学教师都必须认真思考的问题。本文笔者将结合自己多年的教学经验,针对当前教学中普遍存在的问题,探讨课程教学中如何激发学生学习概率论与数理统计课程的兴趣。

一、概率论与数理统计课程教学现状分析

1.教学方法滞后于当今教育的需要目前,概率论与数理统计课程的教学模式依然沿袭以知识传授为主的传统方法。在整个教学过程中,教师往往重知识传授,轻能力培养;重技巧训练,轻思维形成;重理论教学,轻实践指导。在过于注重理论知识传授的数学课堂上,应用实例的分析求解较少,这种缺乏实践内容的概率论与数理统计课程变得缺乏生机、空洞无力,学生被动地接受与生活脱节的理论,对于应用问题无从下手,这将极大地阻碍学生独立分析解决实际问题的能力和创新能力的培养和发展。

2.教学内容滞后于当今教育的需要高中数学的教学改革在近些年发展迅速,教科书内容上做了相当的改动,概率论与数理统计的部分基础知识,比如古典概率、期望和方差、抽样等已经纳入到高中数学教学内容中,与此同时,大学数学的知识却几乎没有任何改变,这一现象直接导致高中数学到大学数学的内容衔接不畅。教学中我们发现学生在学习概率统计时,开始对概率统计很有兴趣,并且认为很容易学,因为他们认为概率统计和高中内容差不多,因此,就不认真听,不认真学,相当部分同学没有看到大学概率统计与中学概率统计的联系与区别直接导致教学质量的下降。同时大学和高中课本中的记号有很多不一样,由于很大部分学生对高中知识记忆深刻,很难接受新的记号,这样势必会影响进一步的学习。

3.教学模式滞后于当今教育的需要大学数学课程重理论轻实践,与专业联系并不紧密,这不适应学生日益增大的信息量的需要。各专业实施的材、教学计划和教学大纲,导致教师仅仅把重心放在教材内容上,很少顾及学生理论结合实践能力和创新意识的培养,从而影响到课堂的整体气氛,同时教师教学的主动性也得不到有效发挥。

二、提高学生学习概率论与数理统计兴趣的途径

1.将数学史内容融入到概率论与数理统计教学中概率论与数理统计是研究随机现象的统计规律的学科,与学生长期学习的数学知识有很大的区别,学生的思维难免会出现不适应。为了加深学生对课程的了解,我们在教学中可以适当融入数学史的知识,提高学生的学习兴趣,同时学习数学家们的优秀事迹,也能激发学生克服困难的决心和动力。比如在引入“概率的定义”时,我们可以给学生介绍,历史上许多数学家做过频率稳定性的试验:摩根、蒲丰、皮尔逊等人都做过大量投掷硬币的试验,发现正面出现的频率稳定在0.5左右。法国数学家拉普拉斯对柏林、彼得堡、伦敦和法国的人口资料进行了研究,得出男孩的出生频率接近0.5。还有人统计某国多年无法投递的信件数在全部信件中的比例几乎不变,在百万分之五十左右。这些历史典故的讲解可以让学生充分认识频率和概率的关系,加强对概率的定义的理解,提高教学效果。

2.将案例教学法融入到概率论与数理统计教学中概率论与数理统计来源于生活,又有着很强的应用背景。教学中,我们应该将重要的概念和理论与应用实例结合起来,激发学生的学习兴趣,让学生在乐学中更好地掌握基本概念、基本思想和基本方法。比如运用古典概率知识解决“生日巧合问题”、“问题”和“商场抽奖问题”;用全概率公式解决“医学疾病的诊断问题”;用数字特征理论解决“的中奖率问题”和“投资组合问题”;用二项分布解决“公交大巴车车门高度问题”;用指数分布讲解“排队论问题”;用中心极限定理解决“保险公司盈利与亏损的问题”和“工厂用电问题”。以概率论和数理统计知识为背景的实际案例随处可见,教师要立足专业特点,适当延伸知识,关注生活、社会和经济热点问题,让课堂教学与时俱进,切实提高学生理论和实际相结合的能力和水平。

3.引导和帮助学生建立合理的知识结构体系教学中利用类比的方法,让学生认识到相关知识点的平行关系。比如在离散型随机变量中分布律的地位与连续型随机变量中密度函数的地位完全相同,学生对于离散型随机变量问题比较容易理解,于是在讲授密度函数时,我们要引导学生建立分布律和密度函数的关系,帮助学生形成从分布律到密度函数性质的自然过渡。同时,我们在教学中要注重知识的归纳总结。比如:在数字特征知识学习结束后,可以将离散型与连续型变量所涉及的定义、性质、分布、数字特征的计算及常见分布类型进行总结,将前后知识一一对照,利用知识网络让学生对所学内容更深入的理解和记忆。

4.让课后作业成为课堂教学的补充与延伸传统的教学考核模式中,平时作业以书上课后的理论习题为主,这样的方式并不利于学生兴趣的培养以及实践能力的提高。我们可以在一个教学单元结束后,提供些难度适当的实际问题让学生讨论练习,以课程小论文的方式予以呈现,并纳入平时成绩的考评体系。比如伯努利概型是概率论中一个经典模型,课堂上我们教会学生理解其理论和方法,但是学生在解决实际问题方面,却不容易利用其加以解决。因此我们可以提供一些实例比如球类比赛的赛制问题让学生课后讨论,让学生课后查阅资料,从定性分析、定量描述到建立模型、求解模型,更深刻地理解所学的知识和方法。

5.注重师生交流,建立良好的师生关系在第一堂课上,我会给学生留下我的所有基本联系方式,包括电话、电子邮箱和qq号等。对于学生课堂外的疑问,和教师网上互动交流是一个很好的补充,这种方式会明显增强学生对教师的喜爱和信任感。网络上,学生可以大胆地为教师提供好的教学建议,同时也帮助教师了解学生的学习状态,解决学习疑惑,甚至为有些学生的专业规划和人生观提供良好的引导和意见参考。在课间休息时间,我会走下讲台,询问学生的学习情况,学习中的疑问,对于老师教学方法的意见和黑板板书设计的问题,让学生认识到自己的教学主体地位,认识到自身在教师心中的重要作用,从而增进师生感情,加强学习动力。综上所述,概率论与数理统计作为各专业的重要基础课程,在未来的专业学习中起着至关重要的作用。数学教师一定要把握好课程知识体系和教学方法,在教学中以学生学习兴趣为导向,努力让学生以更大的热情投入概率论与数理统计的学习,切实提高概率论与数理统计的教学效果。

参考文献:

[1]吴传生.经济数学———概率论与数理统计(第二版)[M].北京:高等教育出版社,2009.

[2]盛骤.概率论与数理统计(第四版)[M].北京:高等教育出版社,2010.

[3]王翠香.概率论与数理统计教学的几点体会[J].高等理科教育,2006(5):35-37.

[4]贺素香.在概率论与数理统计教学中激发学生兴趣的若干方法[J].大学教育,2013(3):58-59.

概率论与数理统计心得体会范文3

关键词: 概率统计 数学教学 文化性

数学的文化性特征应该具有多元性、开放性和动态性等特点。概率论是研究大量随机现象规律性的一门数学分支。而随机现象的两个重要特征即不确定性和规律性,却经常使得学生在直觉与科学之间无所适从,给学习与教学带来一定的困难。正是因为如此,从文化的角度重新审视概率统计的教学,既能促进教学,又符合新课程的理念。

1.概率统计理论的发展史略

纵观历史,自文艺复兴时期的数学家,医学教授Cardan在其热衷的游戏中开始思考获得7点和在一副牌中获得“A”的概率开始,数学的一个新的分支――概率论,便在对游戏的思考中展开了它的宏伟画卷。我们知道,在自然界和现实生活中,随机现象十分普遍,它表面上杂乱无章,但在多次实验后却隐藏着规律性。续Cardan之后大约100年,另一位赌徒Mere继续研究了上述问题,但是由于他数学知识的局限性,不得不求助当时数学奇才Pascal,而Pascal在与Fermat的通讯讨论中逐步明确了概率值的确定方法等理论问题,从而将游戏问题上升到了数学问题。而十七、十八世纪之后,由于商业保险、产品检验,以及军事、选举、审判调查和天气预报等大量随机问题的涌现,概率论逐步从最初为给赌徒提供咨询,转变成为急需解决的数学理论问题。自1713年Bernouli到1917年Kolmogorov,以及十九世纪二三十年代的凯特勒更是将概率统计理论不断系统化、公理化,从而确立了概率统计成为数学的一个逻辑严谨的分支。

在教学中,特别是讲授概率统计概念的教学中,还原它的文化性,将历史再现出来,既能够让学生在有趣的游戏中了解概率统计的源头,也可以让学生体验到概率统计源于生活,服务于生活的科学本质,并了解人类在认识这一问题的过程中所付出的巨大努力,从而在学习知识的同时潜移默化地感受到数学文化的存在性。

2.概率统计教学文化性的外部表现

2.1丰富有趣的生活问题,为概率统计教学的文化性增加了多元性元素。

概率统计的生活背景可谓丰富多彩,这为课堂教学提供了十分丰富的情景基础。

在概率定义理解教学中,游戏的下注问题、赎金分配问题、比赛优先权问题、无法投递信件比例问题、商场结账快慢问题等。

古典概型教学中,抛硬币问题、生日问题、天气预报问题、男女出生比例问题等。

几何概型教学中,有转盘中奖问题、蒲风投针实验问题、会面问题等。

随机变量及分布教学中,有中奖问题、银行卡密码问题、感冒指数问题等。

正态分布教学中,智力分布问题、线段测量误差问题、一天的气温平均值问题等。

这些问题来自我们生活的方方面面,而且许多问题都是历史经典问题,因此问题本身的数学思维性加上历史背景性,其文化的气息更加浓厚,甚至童年故事“狼来了”问题,成语故事“三个臭皮匠顶个诸葛亮”问题,评分术语“去掉一个最高分,去掉一个最低分”问题,等等,都渗透着概率统计的思想,这无不体现着数学来源于生活,服务于生活的文化思想。

2.2大量动手操作性的实验学习活动,是概率统计教学文化性的又一体现。

在抛硬币实验中,学生在抛掷中收集数据,通过操作方式学习数学的结论。

在义务教育阶段,通过收集同学的体质健康情况,年龄,身高数据进行数据学习。

在变量的相关关系教学中,收集同学使用计算机时间,物理成绩与数学成绩等,学习变量的相关性。

在随机抽样教学中,设计调查问卷等。

可以看到,以上这些实验性学习方式,是其他数学学习中较少出现的,然而正是这些带有操作性的学习方式,丰富着学生的思维,增加着他们的心理感受,认识到所学的东西有用,能解决现实问题,学习热情高涨,从情感上丰富着他们对数学的感受。

3.概率统计教学文化性的内部表现

3.1科学思维的深刻提升。

概率统计的核心是认识隐藏在随机现象背后的统计规律性,强调随机现象的个别观察的偶然性与大量观察中的统计规律性之间的联系。必然性通过偶然性表现出来,偶然性背后总是隐藏着必然性。通过这种必然性去认识和把握随机现象,而不确定与确定,可能与不可能的集中体现,更是辩证思想的体现,是人类思维成熟的体现。因此概率统计的学习实际上是对学生过去习惯的确定性思维的一次挑战,是一次思维文化的碰创。例如抛一次硬币的结果是无法确定的,学生可以理解,但是大量抛掷的结果却是一个概率确定值,这里具有辩证统一的思想,为了让学生能够理解这样的事实,实验是必不可少的,这又使得学生经历了从具体到抽象及归纳的逻辑思维形式。在学生使用概率模型解决问题的同时,归纳思维、合情推理等思想方法与随机思想方法的交融,都是数学化意识的体现,它深入到内部,不断完善他们的思维,使其日趋成熟,这正是数学的学科特征。

3.2人文精神的不断升华。

概率统计的产生就像它的理论那样带着大量的偶然因素,但是因为有众多优秀数学家的钻研,其产生与发展又是一个必然的结果,并不断系统化、条理化。如今,概率统计已经渗透到了自然科学和社会科学的方方面面,而对于大量来源于生活的概率统计问题,必将教会学生主动利用所学的知识去认识世界、改造世界,有助于培养学生将数学理论应用于解决实际问题的能力和创新意识。

参考文献:

[1]人民教育出版,课程教材研究所,中学数学课程教材研究开发中心.高中数学必修3[M].人民教育出版社,2004.

[2]人民教育出版,课程教材研究所,中学数学课程教材研究开发中心.高中数学选修系列(2-3)[M].人民教育出版社,2004.

[3]大连理工大学应用数学系.大学数学文化[M].大连理工大学出版社,2008,(182-212).

[4]施业琼.在概率统计教学中渗透人文精神培养[J].教育研究,2009.7.

概率论与数理统计心得体会范文4

关键词:课堂教学;概率论与数理统计;应用能力;教学模式

概率与数理统计是实际应用性很强的一门数学学科,它在经济管理、金融投资、保险精算、企业管理、投入产出分析、经济预测等众多经济领域都有广泛的应用。概率与数理统计是高等院校财经类专业的公共基础课,它既有理论又有实践,既讲方法又讲动手能力。然而,在该课程的具体教学过程中,由于其思维方式与以往数学课程不同、概念难以理解、习题比较难做、方法不宜掌握且涉及数学基础知识广等特点,许多学生难以掌握其内容与方法,面对实际问题时更是无所适从,尤其是财经类专业学生,高等数学的底子相对薄弱,且不同生源的学生数理基础有较大的差异,因此,概率统计成为一部分学生的学习障碍。如何根据学生的数学基础调整教学方法,以适应学生基础,培养其能力,并与其后续课程及专业应用结合,便成为任课教师面临的首要任务。作为我校教学改革的一个重点课题,在近几年的教学实践中,我们结合该课程的特点及培养目标,对课程教学进行了改革和探讨,做了一些尝试性的工作,取得了较好的成效。

1与实际结合,激发学生对概率统计课程的兴趣

概率论与数理统计从内容到方法与以往的数学课程都有本质的不同,因此其基本概念的引入就显得更为重要。为了激发学生的兴趣,在教学中,可结合教材插入一些概率论与数理统计发展史的内容或背景资料。如概率论的直观背景是充满机遇性的,其最初用到的数学工具也仅是排列组合,它提供了一个比较简单而非常典型(等可能性、有限性)的随机模型,即古典概型;在介绍大数定律与中心极限定理时可插入贝努里的《推测术》以及拉普拉斯将概率论应用于天文学的研究,既拓广了学生的视野,又激发了学生的兴趣,缓解了学生对于一个全新的概念与理论的恐惧,有助于学生对基本概念和理论的理解。此外,还可以适当地作一些小试验,以使概念形象化,如在引入条件概率前,首先计算著名的“生日问题”,从中可以看到:每四十人中至少有两人生日相同的概率为0.882,然后在各班学生中当场调查学生的生日,查找与前述结论不吻合的原因,引入条件概率的概念,有了前面的感性认识后学生就比较主动地去接受这个概念了。

在概率统计中,众多的概率模型让学生望而生威,学生常常记不住公式,更不会应用。而概率统计又是数学中与现实世界联系最紧密、应用最广泛的学科之一。不少概念和模型都是实际问题的抽象,因此,在课堂教学中,必须坚持理论联系实际的原则来开展,将概念和模型再回归到实际背景。例如:二项分布的直观背景为n重贝努里试验,由此直观再利用概率与频率的关系,我们易知二项分布的最可能值及数学期望等,这样易于学生理解,更重要的是让其看到如何从实际问题抽象出概念和模型,引导学生领悟事物内部联系的直觉思维。同时在介绍各种分布模型时可以有针对性地引入一些实际问题,向学生展示本课程在工农业、经济管理、医药、教育等领域中的应用,突出概率统计与社会的紧密联系。如将二项分布与新药的有效率、射击命中、机器故障等问题结合起来讲;将正态分布与学生考试成绩、产品寿命、测量误差等问题结合起来讲;将指数分布与元件寿命、放射性粒子等问题结合起来讲,使学生能在讨论实际问题的解决过程中提高兴趣,理解各数学模型,并初步了解利用概率论解决实际问题的一些方法。

2运用案例教学法,培养学生分析问题和解决问题的能力

案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与互相讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法。它是连接理论与实践的桥梁。我们结合概率与数理统计应用性较强的特点,在课堂教学中,注意收集经济生活中的实例,并根据各章节的内容选择适当的案例服务于教学,利用多媒设备及真实材料再现实际经济活动,将理论教学与实际案例有机的结合起来,使得课堂讲解生动清晰,收到了良好的教学效果。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。通过案例教学可以促进学生全面看问题,从数量的角度分析事物的变化规律,使概率与数理统计的思想和方法在现实经济生活中得到更好的应用,发挥其应有的作用。

在介绍分布函数的概念时,我们首先给出一组成年女子的身高数据,要学生找出规律,学生很快就由前面所学的离散型随机变量的分布知识得到分组资料,然后引导他们计算累积频率,描出图形,并及时抽象出分布函数的概念。紧接着仍以此为例,进一步分析:身高本是连续型随机变量,可是当我们把它们分组后,统计每组的频数和频率时却是用离散型随机变量的研究方法,如果在每一组中取一个代表值后,它其实就是离散型的,所以在研究连续型随机变量的概率分布时,我们可以用离散化的方法,反过来离散型随机变量的分布在一定的条件下又以连续型分布为极限,服装的型号、鞋子的尺码等问题就成为我们理解“离散”和“连续”两个对立概念关系的范例,其中体现了对立统一的哲学内涵,而分布函数正是这种哲学统一的数学表现形式。尽管在这里花费了一些时间,但是当学生理解了这些概念及其关系之后,随后的许多概念和内容都可以很轻松地掌握,而且使学生能够对数学概念有更深层次上的理解和感悟,同时也调动了学生的学习积极性和主动性,培养了他们再学习的能力。

3运用讨论式教学法,增强学生积极向上的参与和竞争意识

讨论课是由师生共同完成教学任务的一种教学形式,是在课堂教学的平等讨论中进行的,它打破了老师满堂灌的传统教学模式。师生互相讨论与问答,甚至可以提供机会让学生走上讲台自己讲述。如,在讲授区间估计方法时,就单双边估计问题我们安排了一次讨论课,引导学生各抒己见,鼓励学生大胆的发表意见,提出质疑,进行自由辩论。通过问答与辩驳,使学生开动脑筋,积极思考,激发了学生学习热情及科研兴趣,培养了学生综合分析能力与口头表达能力,增强了学生主动参与课堂教学的意识。学生的创新研究能力得到了充分的体现。这种教学模式是教与学两方面的双向互动过程,教师与学生的经常性的交流促使教师不断学习,更新知识,提高讲课技能,同时也调动了学生学习的积极性,增进师生之间的思想与情感的沟通,提高了教学效果。教学相长,相得益彰。

保险是最早运用概率论的学科之一,也是我们日常谈论的一个热门话题。因此,在介绍二项分布时,例如一家保险公司有1000人参保,每人、每年12元保险费,一年内一人死亡的概率为0.006。死亡时,其家属可向保险公司领得1000元,问:①保险公司亏本的概率为多大?②保险公司一年利润不少于40000元、60000元、80000元的概率各为多少?保险这一类型题目的引入,通过讨论课使学生对概率在经济中的应用有了初步的了解。

4运用多媒体教学手段,提高课堂教学效率

传统上一本教材、一支粉笔、一块黑板从事数学教学的情景在信息社会里应有所改变,计算机对数学教育的渗透与联系日益紧密,特别是概率论与数理统计课,它是研究随机现象统计规律性的一门学科,而要想获得随机现象的统计规律性,就必须进行大量重复试验,这在有限的课堂时间内是难以实现的,传统教学内容的深度与广度都无法满足实际应用的需要。在教学中我们可以采用了多媒体辅助手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,形成了一个全新的图文并茂、声像结合、数形结合的生动直观的教学环境,从而大大增加了教学信息量,以提高学习效率,并有效地刺激学生的形象思维。另外,利用多媒体对随机试验的动态过程进行了演示和模拟,如:全概率公式应用演示、正态分布、随机变量函数的分布、数学期望的统计意义、二维正态分布、中心极限定理的直观演示实验等,再现抽象理论的研究过程,能加深学生对理论的理解及方法的运用。让学生在获得理论知识的过程中还能体会到现代信息技术的魅力,达到了传统教学无法实现的教学效果教育向素质教育的转变,是我国教育改革的基本目标。财经类专业的概率与数理统计教学,除了在教学方法上应深入改革外,在考试环节上也需要进行改革。

考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于数学基础课程概率与数理统计的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育,特别是应有利于学生的创造能力的培养之目的相差甚远。在过去的概率与数理统计教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习概率与数理统计课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类培养跨世纪高素质的经济管理人才是格格不入的。为此,我们对概率与数理统计课程考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出概率与数理统计课程的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不具一格,除了普遍采用的闭卷考试外,还在教学中用互动方式进行考核,采取灵活多样的考核形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中掌握程度和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。

实践表明,运用教改实践创新的教学模式,可以使原本抽象、枯燥难懂的数学理论变得有血有肉、有滋有味,可以激发学生的求知欲望,提高学生对课程的学习兴趣。在概率统计的教学模式上,我们尽管做了一些探讨,但这仍是一个需要继续付出努力的研究课题,也希望与更多的同行进行交流,以提高教学水平。

参考文献

[1]陈善林,张浙.统计发展史[M].上海:立信会计图书用品社,1987:119-151.

[2]姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.

[3]肖柏荣.数学教学艺术概论[M].合肥:安徽教育出版社,1996.

概率论与数理统计心得体会范文5

【关键词】概率与数理统计;数学建模;教学改革

《概率论与数理统计》是一门实践性很强的基础课程[1],高等学校的大部分本科专业都开设此课程,同时概率统计方法的应用几乎遍及科学技术的各个领域,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有着广泛的应用。因此,学生应该掌握这门课程的基本知识和理论,并会把它们应用到社会实践当中。而在以往的概率论与数理统计课程的教学中,教师大多偏重于基本概念理论和各种题型的讲解,以提讲题,忽视了该学科的实践性,使得学生迫于应付考试,为做题而做题,没有实践的训练,会认为该学科比较难学,在遇到实际问题的时候,无法运用学过的数学理论,建立概率统计模型,以数学方法解决实际问题。

伴随着计算机在各个领域的普遍应用,概率统计方法应用领域逐步进入了定量化与精确化的阶段。在这些不同的领域中, 越来越多的现实问题的研究和处理, 经历着建立数学模型, 选用恰当的数学方法, 然后借助计算机加以解决的过程。这样的情况下,如何进行非数学专业的大学公共数学教育,如何提高学生的综合能力、实践能力,如何培养学生的数学思维,是高等院校数学教师面临的一项具体而复杂的工作,如何加强实践教学环节,充分调动学生学习的主动性、积极性,提高学生综合分析处理问题的能力,是值得思考和探索的问题[2]。本文根据自己的教学经验,通过对概率论与数理统计课程引入数学建模思想,加入实验课教学,浅谈几点关于该课程教学改革的看法。

1 传统教学现状

高等院校是我们国家的人才培养基地,数学教育在人才教育中占有特殊的重要地位。概率论与数理统计是研究随机现象客观规律性的数学学科,在教学计划中是一门重要的基础理论课。教授概率论与数理统计课程应具备三个层面的功能[3],第一是,传授基础的概率论与数理统计理论知识,使学生掌握其基本概念,了解基本理论和方法。第二是,使学生得到统计思想及方法的培养,初步掌握处理随机现象的基本思想和方法。第三是,使学生有机会将其所掌握的概率和统计方法运用到实际问题的解决,以培养学生综合分析处理问题的能力。

由于历来数学教学要为后继课程提供基础,在课堂上更多地是侧重讲授知识内容,概念理论和计算, 对数学思想与方法的介绍和训练欠缺甚多。导致目前概率论与数理统计课程的教育大多能实现第一个和第二个层面的功能,但是对第三个层面的训练相对来说比较薄弱。学生只为考试而学习,没有经过实际问题转化成数学问题的训练,学后不用,遇到问题联想不到概率与统计思想方法,缺乏应用性和实践性。传统教学重理论轻实践,致使学生学习过程中更多关注概念定理,计算技巧和习题的求解。讲课以题讲题,考试以题考题,忽视了学以致用,学生会认为该学科比较难学没有什么用处,以后的毕业论文等也不会想到概率与统计方法。这种现象的发生,并非是很多要解决的实际问题无法与数学联系起来,而是缺乏了有效的联系与沟通的途径。故而在概率论与数理统计课程中有必要开设数学实验课,实现软件教学,引入数学建模思想,通过实际问题的分析解决体现概率与统计的思想和方法,引导学生用数学的眼光和方法去解决实际问题,以提高学生的学习积极性,培养学生的综合处理问题能力,体现学以致用,实现概率论与数理统计教学的第三个功能。

2 引入数学建模思想,开展数学建模活动

所谓数学建模就是把实际生活中的问题转化为数学模型,即用字母、数字及其他数学符号建立起来的等式或不等式、图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式,然后利用我们所学的数学知识对数学模型进行求解。学习数学建模,就是要学会怎样用自己学到的数学和计算机知识去解决实际问题。一个完整的数学建模过程主要由三个部分组成:用适当的数学方法对实际问题进行描述;采用各种数学和计算机手段求解模型;从实际的角度分析模型的结果,考察其是否具有实际意义。

引入数学建模,侧重实践性的教学环节,注重实际问题与理论问题的转换,注意培养学生的应用能力,使学生自觉地应用数学知识、方法去观察和分析要解决的实际问题,增强学生的应用意识,培养学生的应用能力。

3 开设数学实验课,融入数学建模思想,实施案例教学

数学实验是指以数据、图形等为思想材料,以计算机为手段,以数学软件为实验平台,通过对数学问题和实际问题的探索,得到相应问题的解,并进行计算机模拟。在数学实验课中使用软件解决统计问题,常见的统计计算机软件有Matlab和SPSS。实验课教学过程中既有理论学习又有实践学习,既有教师讲解又有学生讨论和自己动手,利用软件教学,对一些学生的浮躁心态也是一个很好的疏解。这样的教学效果是适应社会需要的,也是学生乐于接受的,也是单纯的课堂教学所达不到的。这一教学过程,至少可以说是课堂教学的一种重要的和必须的补充。

经过数学实验课,学生能够掌握一种统计软件的基础操作,能够把已有的数据通过软件得出统计结果,再结合已经学过的概率论与数理统计理论知识,对统计结果给与专业的解释,体现了理论联系实际,为后续的统计知识在其他学科的使用打下了基础。教师在讲实验课的时候,就要结合实际问题,引入适当的统计方法,介绍软件的基础操作,并对结果给出实际意义的解释。

这就要求教师在实验课上融入数学建模思想,选取具有代表性的有关概率统计的相应案例,指导学生去思考、讨论、解答。教师应与学生共同探讨,让学生逐渐学习、掌握解决问题的方法,并使学生充分认识到概率论与数理统计这门课的实用性,培养学生的实际操作能力及建模能力,鼓励学生通过建立相应的模型来解决一般性的问题。

比如在讲到正态分布这个知识点时,可以让学生测量本年级男、女同学的身高,或者统计某学科的期末成绩,看是否符合正态分布。讲到相关性的时候,可以让学生思考并验证学生的入学成绩与在校成绩之间是否有相关性。这些概率统计的理论知识都可以实际情况为背景,对客观现象进行深入的分析,应用所学的理论,策划出解决问题的方案,从而有利于培养学生的学习兴趣。教师还可以用一些相应的全国大学生数学建模题让学生探讨研究,比如2000年基因分类问题用到贝叶斯判别,2012年葡萄酒评价问题用到配对比较、方差的意义以及相关性等统计知识。这样做更能够增强学生的应用意识,培养学生的应用能力。

从知识的掌握到应用不是一件简单的事情,学生应用能力的培养是一项艰巨的任务。对于概率论与数理统计的教学改革,我们更应该注重实践性的教学环节,体现学以致用,重实践轻理论,注意加强培养学生的应用能力,使学生自觉地应用数学知识方法去观察和分析要解决的实际问题。

【参考文献】

[1]施庆生,陈晓龙,等.《概率论与数理统计》课程的教学改革与实践[J].南京工业大学学报,2004,6(3):94-96.

概率论与数理统计心得体会范文6

“概率论与数理统计”课程是很多专业课程的基础,不仅数学专业要开设,理、工、农、医、经济和管理等学科门类大多开设。结合我院的办学定位、人才培养目标和生源情况来制定“概率论与数理统计”课程的教学内容,使学生懂得该课程是解决数学应用问题的重要理论工具,是学生形成“创新意识、创新精神”及“数学建模能力”的主要理论载体。通过该课程的学习,为今后学习者应用于社会,解决社会经济、技术问题打下基础,同时对培养学习者的逻辑思维能力,分析解决问题能力、数学建模能力尤为重要。还有,对于我院的师范类学生,更有助于他们今后的数学教学工作,可以居高临下的处理中学教材中有关概率、统计的内容。

2课程教学改革的主要理论基础

2.1建构主义理论建构主义理论是“概率论与数理统计”课程教学改革的重要理论依据,它对于培养学习者的自主探究意识和数学创新能力具有重要意义。建构主义的教学设计有两大模块:一是创设学习情境,实际上是要求设计出有利于学生自主建构知识的良好环境(例如创设与学习主题相关的情境、提供必要的信息资源以及组织合作学习等)。二是自主学习策略的设计,建构主义的核心内容是学习者的“自主建构”,要求学习者应具有高度的学习主动性、积极性。

2.2“主导—主体相结合”理论主导—主体相结合理论是现代教育教学策略研究与课程建设、改革比较热门的重要研究课题之一,主导—主体相结合理论强调教学的主导性与学习的主体性,要求教师由原来的教学者转变成为学习的指导者,学生在教师的指导下自主完成课程的学习。它为“概率论与数理统计”课程教学改革提供重要的理论依据。建构主义所提倡的以学为主或以学生为中心的教学设计中,教师主导作用的发挥和学生主体地位的体现,二者在建构主义学习环境下完全可以统一起来的,并且每一个环节要真正落到实处都离不开教师的主导作用,教师的主导作用如果发挥得越充分,学生的主体地位也就必然会体现得越充分。在这种教学结构下,教师根据学生的兴趣和生活经验,通过信息技术设置一定的场景,激发学生探索、解决问题的兴趣,使学生学会学习、学会实践、学会合作,达到培养学习型、研究型、探索型、创新型人才的目的。

3课程教学改革的实践研究为了方便对教学过程设计的要素及其相互关系有一个整体把握,通过借助于以下“概率论与数理统计”课程教学改革教学设计模式图来说明。如图1。

3.1教学条件分析

3.1.1学习者信息分析1)学习者知识背景与技能分析:学生已会上网、已经学习过高等数学等课程的基础上开展的后续课程。2)学习者需求分析:对动手能力相对薄弱的学生来说,他们的反应也许并不象我们想象的那么强烈。性格外向的学生社会活动能力要强一些,但自制能力往往要差一些,工作也相对要浮躁一些;而性格内向的学生虽然拙于言辞,不善交际,但却非常沉稳。3)学习者特征分析:大学生在智力上日趋成熟,思维上更具抽象性、独立性和开拓性。首先,大学生在学习上有各自的目标,自学能力、探究能力,并有主动参与教学的意识和能力。其次,大学生在爱好、情感、认知等方面的风格差异很明显[1]。

3.1.2学科课程信息分析1)学科历史分析:“概率论与数理统计”课程理论诞生于19世纪中叶,它的理论研究是由赌徒向数学家提出的,起初它是数学专业作为选修课开设,以后逐渐成为必修课。当时,苏联、印度等国家在理论研究上处于领先地位。二十世纪初西方国家逐渐在理、工、农、医科开设“概率论与数理统计”课程。二十世纪中叶该课程被引入中国,在理工科专业开设,由于计算机技术的突飞猛进发展,使现代数理统计方法的使用成为可能,二十世纪七十年代该课程首次在包括经济管理类的绝大多数本科专业作为必修课开设。2)学科特征分析:“概率论与数理统计”课程是一门有特色的数学分支,通过该课程的学习,学生除了熟练掌握基本理论和分析方法外,还能熟练运用基本原理解决实际应用问题。

3.1.3教学媒体条件分析我院“概率论与数理统计”课程教学改革的教学资源已部分上网,并且有固定的IP和网址,实现了网上教学和学习的目的。学生通过网络连接对该课程进行自由、有效的访问,有利于重复学习,保证学习效果。网络资源的优势就在于信息共享,使学习者能够最大限度地占有课程教学信息,有利于开阔他们的视野,也有利于学习者正确地理解和整合各种教学信息。同时,网络资源环境的上传下载也为教师提供了一个教学平台,每位教师可根据自己的教学特点进行再设计,加以修改与补充,形成教师的个人授课风格。

3.2课程教学过程设计

3.2.1教学内容我院以浙江大学盛骤等编的《概率论与数理统计》(第三版)为蓝本,以魏宗舒等编写的《概率论与数理统计教程》和谢国瑞、汪国强等编写的《概率论与数理统计》等教材为参考资料,并配置满足课程教学改革需要的教学参考资料(包括教学软件与工具软件等),制作完善的“概率论与数理统计”课程课件。

3.2.2教学设计教学设计理论主要有“以教为主”教学设计和“以学为主”教学设计两大类型,这两种教学设计理论均有其各自的优势与不足,将二者结合起来,互相取长补短,形成优势互补的“学教并重”教学设计理论,不仅发挥教师主导作用,又要充分体现学生学习主体作用教学体系[2]。在“概率论与数理统计”课程教学中,灵活而恰当地选用教学方法,注意教学系统五个要素(教师、学生、教材、教学媒体、网络)的地位与作用。由于教学媒体、计算机软件、网络应用于教学,所以教学方法的表述方式也发生相应的变化,知识的呈现形式和生成方式发生相应的变化。例如:复杂的运算结果可以用计算机软件(如Matlab软件)作为辅助进行近似计算,抽象的几何图形可以用工具软件来生成等。总之,在“概率论与数理统计”课程教学中主要运用“学教并重”的教学方法。以上教学设计的变化主要得益于“构建主义”和“主导—主体相结合”的教学理论支撑。

3.2.3教学方法与手段传统媒体(黑板、粉笔、传统教具等)和现代多媒体、网络等教学手段的灵活运用,是开展教学活动的重要辅助工具,现代多媒体技术具有代数计算、数据处理、几何作图、视频、音频及媒体流播放等多种功能[3]。在以下几方面发挥了传统教学手段无法替代的作用:1)现代多媒体用于教学内容的呈现,以便达到创设问题情境快速便捷、清晰醒目(例如背景介绍、概念引入、定理呈现及时详尽,改变黑板板书的只言片语、提纲挈领);2)用于数学思想的动画播放、模拟演示直观形象(例如概念理解、定理领会与应用,近似计算等);3)网上学习实时便利,资源丰富,在线讨论交互进行(例如辅导答疑、在线讨论、自测评价、问卷调查、网上考试等)。4)实验课、数学建模课中,计算机软件应用于数据处理、程序编写及图像生成等。但是,由于“概率论与数理统计”课程自身的特点、以及数学学习的特殊规律,传统的黑板推演过程更能展现思维的发展轨迹,洞察活生生思考的来龙去脉,有利于发展学生的逻辑思维、发散思维以及抽象思维能力,空间想象力。因此,我院在“概率论与数理统计”课程教学改革中主要的教学方法与手段是将传统媒体、现代多媒体和网络三者有机结合,互相取长补短,灵活运用。

3.2.4教学模式教学模式一般属于教学方法、教学策略的范畴,但又不等同于教学方法或策略。我们通常所说的教学方法或策略往往只是指某种单一的教学方法或策略,而教学模式则要涉及若干种教学方法与策略。例如:在教学过程中,为了达到某种教学目的或取得某种教学效果,教师们往往将多种教学方法、策略结合在一起,加以综合运用,如果这种运用方式趋于相对稳定,这就变成一种模式。换言之,教学模式是指两种以上教学方法与策略的稳定结合。我院在“概率论与数理统计”课程教学改革中采取课堂讲授、小组讨论、专题研讨、计算机教学、网络教学等多种形式相结合的教学模式。与此同时,我们还加强基础知识教学,强化应用环节,渗透数学建模思想,注重从实际背景引入,抽象出其数学模型,回到实践中去。在对学生开展专题研究课题讨论的同时还要求学生以专题研究报告或小论文的作业形式来完成等多种补助教学模式。在这种教学模式中,使学生经历由具体思维到抽象思维,再由抽象思维到具体思维的过程,从而完成对“概率论与数理统计”课程知识的建构,以达到培养学生的独立探究兴趣和独立研究问题、解决问题的能力。总之,我院通过对“概率论与数理统计”课程教学改革,使学生的逻辑思维能力,分析解决问题能力、数学建模能力都有了明显的提高,并能熟练运用基本原理解决实际应用问题。