逆向思维能力的培养方法范例6篇

前言:中文期刊网精心挑选了逆向思维能力的培养方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

逆向思维能力的培养方法

逆向思维能力的培养方法范文1

关键词: 高中 数学 逆向 思维 培养

俄罗斯著名教育家加里宁说:“数学是思维的体操。”正如体操锻炼可以改变人的体质一样,通过数学思维的恰当训练,逐步掌握数学思维方法与规律,既可以改变人的智力和能力,也可以培养学生的创新精神和创新意识。学生的思维能力一般是指正向思维,即由因到果,分析顺理成章,而逆向思维是指由果索因,知本求源,从原问题的相反方向着手的一种思维。加强从正向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识。因此,我们在课堂教学中必须加强学生逆向思维能力的培养。传统的教学模式往往注重正向思维而淡化了逆向思维能力的培养。课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神。为全面推进素质教育,加强对学生的各方面能力的培养,打破传统的教育理念,在此我从以下几方面谈谈学生的逆向思维的培养。

一、逆向思维在数学概念教学中的思考与训练

高中数学中的概念、定义总是双向的,不少教师在平时的教学中,只注意了从左到右的运用,于是形成了思维定势,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:集合A是集合B的子集时,A交B就等于A,如果反过来,已知A交B等于A时,就可以知道A是B的子集了。因此,在教学中应注意这方面的训练,以培养学生逆向应用概念的基本功。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时训练学生。

二、逆向思维在数学公式逆用的教学

一般数学公式从左到右运用的,而有时也会从右到左运用,这样的转换正是由正向思维转到逆向思维的能力的体现。在不少数学习题的解决过程中,都需要将公式变形或将公式、法则逆过来用,而学生往往在解题时缺乏这种自觉性和基本功。因此,在教学中应注意这方面的训练,以培养学生逆向应用公式、法则的基本功。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在三角公式中,逆向应用比比皆是。如两角和与差公式的逆应用,倍角公式的逆应用,诱导公式的逆应用,同角三角函数间的关系公式的逆应用等。又如同底数幂的乘法的逆应用,这些公式若正向思考只能解决部分问题,但解答不了全部问题,如果灵活逆用公式,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、逆向思维在数学逆定理的教学

高中数学中每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理

的重要途径。在立体几何中,许多的性质与判定都有逆定理。如:三垂线定理及其逆定理的应用,直线与平面平行的性质与判定,平面与平面的平行的性质与判定,直线与平行垂直的性质与判定等。注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维是非常有益的。

四、强化学生的逆向思维训练

一组逆向思维题的训练,即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。在研究、解决问题的过程中,经常引导学生去做与习惯性思维方向相反的探索。其主要的思路是:顺推不行就考虑逆推;直接解决不了就考虑间接解决;从正面入手解决不了就考虑从问题的反面入手;探求问题的可能性有困难就考虑探求其不可能性;用一种命题无法解决就考虑转换成另一种等价的命题……总之,正确而又巧妙地运用逆向转换的思维方法解数学题,常常能使人茅塞顿开,突破思维的定势,使思维进入新的境界,这是逆向思维的主要形式。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。

五、通过逆向思维的培养进一步加强灵活的教学方法

高中数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),教师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。通过这些数学基本方法的训练,使学生认识到,当一个问题用一种方法解决不了时,常转换思维方向,可进行反面思考,从而提高逆向思维能力。

六、加强举反例训练,培养逆向思维

逆向思维能力的培养方法范文2

一、培养逆向思维能力是数学教学的重要任务

逆向思维是科学发现的重要方法之一,许多数学结论都是通过这种方法得到的。在数学科学发展史上,不乏运用逆向思维取得成功的事例。如《 几何原本 》问世后,证明欧氏第五公设的难题曾烦恼数学家达两千年之久,后来还是罗巴切夫斯基与鲍耶大胆引用一条与第五公设完全相反的命题,各自独立地发现了非欧几何的广阔天地。由于逆向思维的结果具有不确定性和多值性,也就是发散性,所以这种结果更广泛,更深刻,更具有创造性。

另外现在社会的各个领域也处处存在着逆向思维过程。比如在人际关系上,在处理人和人之间矛盾的时候,提倡换位思考,这可以加强人和人之间的相互理解,这其实就是把逆向思维用到处理人事关系上。在商业界,公司都比较保守,它们向消费者提品,却从来不透露这些产品是怎么做出来的。竞争者需要根据其产品,研究出其制造方式。具有逆向思维能力的人,能够根据一种产品比如一粒药片,研究出其中的成分和配方,并经过改进可以造出更好的药。

因此,一个不具备逆向思维能力的人是很难适应当今社会发展需要的。数学教学担负着培养学生思维能力的重要任务,要学好数学学科,无论是学习理论,还是掌握数学知识,解答习题,应用知识,自始至终都存在着积极的思维活动。而逆向思维是思维的一种方式,所以,在数学的教学过程中应努力培养学生掌握各种逆向思维的方法,提高逆向思维的能力,这对学生当前的学习和今后适应社会的需要都具有十分重要的意义,因此,培养逆向思维能力是数学教学的重要任务。

二、挖掘数学基础知识中的逆向思维素材,培养逆向思维能力

在数学教学过程中要善于挖掘数学基础知识中的逆向思维训练素材,并充分利用这些素材,创设问题情境来培养学生的逆向思维能力。

1.定义教学中逆向思维能力的培养

数学概念都是充要条件,均为可逆的。它是通过揭示其本质属性来定义的。如果说由本质属性引出概念的思维过程是正向思维,那么由概念得出其本质属性的思维过程就是逆向思维。因此数学中的定义都有双向性,许多学生习惯于定义的正向应用,而忽视定义的逆向应用。在教学中,为了使学生深刻理解定义,使定义发挥更大的作用,就必须强化定义的逆用,这不仅会达到使问题解答简捷的目的,而且对培养学生的逆向思维能力也是很有好处的。

例1:已知奇函数f(x)在定义域(-1,1)内单调递减,且f(1-a)+f(1-a2)<0,求a的值集。

分析:由f(x)的定义域,可得:

-1<1-a<1

-1<1-a2<1

解得:0<a<■ ①

逆用奇函数的定义得:f (1-a2)=-f (a2-1)

又由已知不等式得:f (1-a)<-f (1-a2)

从而:f (1-a)<f (a2-1),

于是逆用减函数的定义得:1-a>a2-1

解得:-2<a<1 ②

故由①②可得a的值集为:{a|0<a<1}

例2:设f (x)=8x-22x+1,求f-1(0)。

分析:常见的方法是,先求出反函数f-1(x),然后再求f-1(0)的值。但只要我们逆用反函数的定义,令f(x) = 0,解出x的值为1,即为f-1(0)的值。所以f-1(0)=1。

2.公式教学中逆向思维能力的培养

数学公式是揭示相关数量之间关系的等式。数学公式本身是双向的,但由于学生首先学习正用公式,更多的问题也是用正用公式解决的,因此运用公式时易遵循正用这样的习惯顺序。学生对公式的逆向运用不敏感,存在一定的困难。而在不少数学习题的解决过程中,都需要将公式逆过来用,而学生往往在解题时缺乏这种自觉性和基本功。因此,需要在教学中有意识地加强这方面的训练,以提高学生的逆向思维能力,达到灵活运用公式的目的。

例3:计算sin14°cos16°+cos14°sin16°的值。

分析:因为14°、16°都不是特殊角,显然直接计算是较繁的,如果引导学生逆向应用公式sin(α+β)=sinαcos β+cosαsin β,问题便得到解决。

原式=sin(14°+16°)=sin30°=■

例4:求证:2csc2α=■。

分析:可从右边出发逆用有关公式逐步推到左边。右边=■(逆用公式1+tan2α=sec2α)

=■(逆用公式tanαcotα=1)

=■=tanα+cotα

=■+■=■

=■=■=2csc2α=左边

3.定理教学中逆向思维能力的培养

定理是已经证明具有正确性、可以作为原则或规律的命题,因此,任一定理都有逆命题。不是所有的定理的逆命题都是正确的,引导学生探究定理的逆命题的正确性,既能使学生正确理解数学命题结构之间的关系,又培养了学生善于从相反方向去观察、分析问题的逆向思维能力,并且能使学生学到的知识更加完备,而且还能激发学生去探索新的知识。如在立体几何中,许多性质与判定都有逆定理。例如,平行平面的性质与判定、三垂线定理和三垂线的逆定理等,注意它的条件与结论的关系,加深对定理的理解和应用。又如求证Cn0+Cn1+Cn2+…+Cnn=2n,可思考是否与二项式定理有关?如何使n项变为一项?很快发现逆用二项式定理便可得Cn0+Cn1+Cn2+…+Cnn=(1+1)n=2n。另外重视逆定理的教学对开阔学生的思维视野,活跃思维都大有益处。

三、运用解证数学题的几种典型思维方法,培养逆向思维能力

数学题的解证方法有多种,在数学教学过程中要充分利用其中的几种典型思维方法,不失时机地对学生进行训练来培养学生的逆向思维能力。

1.分析法教学中逆向思维能力的培养

数学中的许多问题,要得到的结论是很明显的,但困难往往是不知道从哪里起步,如何达到这个结论。这时最好的办法就是逆向思考,从结论出发,逐步追溯充分条件,直追溯到题目所给条件为止,其实质是“由果寻因”,这就是分析法。这是一种非常典型的逆向思维过程,也是数学解题中一种常用的方法。

例5:某市有100名学生参加围棋比赛,采用输一场即被淘汰的单淘汰赛,轮空者为当然胜者,每场比赛都得定出胜负,请问:共需要进行多少场比赛,才能选出冠军?

分析:本题从目标正面直接求解,计算繁难,容易出错,但如果改从目标反面入手,即去计算产生99名被淘汰者的比赛场数就比较容易求解。因为按比赛规则,每比赛一场就产生一名被淘汰者,100人参赛,选出冠军一人,就相当于要产生99名被淘汰者,所以共需要比赛99场。

例6:已知正数a、b、c成等差数列,求证:a2-bc、b2-ac、c2-ab也成等差数列。

分析:要证原结论成立,只需证2(b2-ac)=a2-bc+c2-ab,即证2b2+(a+c)b=(a+c)2。又2b=a+c,所以上式成立,于是原结论成立。

2.反证法教学中逆向思维能力的培养

中国古代有一个很著名的“道旁苦李”的故事,蕴含着反证法的思想。故事说王戎小时候爱和小朋友在路上玩耍。一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,并说李子是苦的。等到小朋友摘了李子一尝,原来真是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这则故事中王戎的论述,也正是运用了反证法。

反证法是数学中很重要的一种证题法,它首先假设命题的结论不成立,即假设结论的反面成立,然后从这个假设出发,通过正确的逻辑推理推导出一个错误结果,从而导致矛盾,最后判定其矛盾的产生是假设不成立所致,最终肯定命题的结论正确。实际上,反证法是先证明原命题的否定为假,所以其思维方法可以说是双重的逆向思维。适当地运用反证法,既能提高解题的灵活性,又能培养思维的活跃性,促进思维的发展。

例7:求证■是无理数。

分析:假设■是有理数,则不妨设■=■(m、n为互质正整数),从而:(■)2=3,m2=3n2,可见m是3的倍数。

设m=3p(p是正整数),则3n2=m2=9p2,

可见n也是3的倍数。这样,m、n就不是互质的正整数(矛盾)。

■=■不可能成立,■是无理数。

3.反例教学中逆向思维能力的培养

在数学中,肯定一个命题需要严格的逻辑推理来证明,否定一个命题,则只需举出一个例子予以否定,这种例子就是反例。反例在数学发展中和证明一样占着同样重要的地位,这是因为在数学问题的探索中,猜想的结论未必正确,要说明正确则需要严格证明,要说明错误只需举一个反例。数学史上著名的尺规作图的三大难题,即三等分角问题、立方倍积问题、化圆为方问题,就是通过反例证明其不可能的。利用举反例可以判定一个命题是假命题。反例不仅能够帮助学生深入地理解定理的条件与结论,而且还能培养学生的逆向思维能力。因此在数学教学中必须重视反例的构造,反例必须具备命题的条件,却不具备命题的结论,从而说明命题是错误的。

例如,对于有理数和无理数这两个概念的区别,学生往往根据表面现象来判定一个数是有理数还是无理数,认为一个含有无理数的式子的组合就是一个无理数。这样的错误,可通过应用反例加以纠正。比如(■+■)(■-■)就不是一个无理数,因为它的值为1。又如,函数y=f(x)在点x有导数,则必在点x连续,但反之未必成立。可举反例,如函数y=|x|,它在x=0点连续,但在该点却没有导数,用此例简洁而明确地说明了函数在一点连续是在该点有导数的必要条件,而不是充分条件。

4.排除法教学中逆向思维能力的培养

对于那些正面情况比较复杂、较难入手而反面却比较简单的问题,可逆向考虑其反面,从反面入手解决问题,这种解决问题的方法就是排除法。排除法不仅是一种有效的解题方法,而且还能培养学生的逆向思维能力。

例8:15件产品中有3件次品,从中任取5件,至少有1件是次品的取法有多少种?

分析:此题从正面着手,分类进行,问题可解决,但比较繁琐。但若逆向考虑,用排除法从取出的总种数中减去不符合条件的种数,剩余的就是符合条件的种数,则较为简便。即C155-C125=3003-792=2211。

例9:若方程x2-ax+4=0,x2+(a-1)x+16=0,x2+2ax+3a+10=0中至少有一个方程有实根,求a的取值范围。

分析:若从正面着手,非常繁琐,但若从反面入手,考虑其否定的命题“三个方程都没有实数根”,则可得:

Δ1=a2-16<0Δ2=(a-1)2-64<0Δ3=4a2-4(3a+10)<0

解得:-2<a<5

即当且仅当-2<a<5时,三个方程均无实根。

因此,a≤-2或a≥5时,三个方程中至少一个有实根。

逆向思维能力的培养方法范文3

数学 逆向思维

培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是可以改善学生学习数学的思维方式,激发学生的创新精神,培养良好的思维品性,提高思维能力和整体素质。那么,如何在初中数学教学中培养学生的逆向思维能力呢?

一、什么是逆向思维?

所谓逆向思维,就是从与常规思维相反的方向去认识问题,从对立的角度去思考问题,寻求解题途径,解决问题的一种数学思想方法。利用逆向思维可以加深对概念、定义、定理、公式、法则、性质的正确、深刻的理解和应用,可以形成反思和换位思考的思维素质,利于学生分析思维能力的培养和提高,发展学生的智力,有效地解决复杂的问题。

二、初中数学教学中学生逆向思维能力的培养策略

1、帮助学生理顺教材的逻辑顺序。

(一)重视定义的再认与逆用,加深对定义内涵的认识。

许多数学问题实质上是要求学生能对定义进行再认或逆用。在教学实践中,有的学生能把书上的定义背得滚瓜烂熟,但当改变一下定义的叙述方式或通过一个具体的问题来表述时,他们就不知所措了。因此在教学中教师应加强这方面的训练。逆用定义思考问题,往往能挖掘题中的隐蔽条件,使问题迎刃而解。

(二)从公式的互逆找灵感。

1)、公式的互逆记忆。

数学公式是数学问题的精华之一,学习数学公式是锻炼学生思维能力的一个好好的形式之一。许多的数学公式之间联系都很紧密,很多数学问题是逆用公式的问题,要更好地解决这类问题,首先应该让学生知道公式的互逆形式,学会公式的互逆记忆。只有先记住这些公式,才有可能来解决相关的实际问题。

2)、逆用公式。

这样做往往可以使问题简化,经常性地注意这方面的训练可以培养学生思维的灵活性,变通性,使学生养成善于逆向思维的习惯,提高灵活应用知识的能力。公式逆用是学生常感到困惑的一个问题,也是教学中的一个难点,教师必须强化这方面的训练。

(三)从定理,性质,法则的互逆悟规律。

1)、让学生学会构作已知命题的逆命题和否命题,掌握可逆定理,性质和法则的互逆表述。交换原命题的条件和结论,所得的命题是逆命题;同时否定命题的条件和结论,所得命题是否命题。在教学中,教师要用一定的时间,适当地加强学生这方面的训练,打好基础。

2)、掌握四种命题之间的关系。互逆命题和互否命题都不是等价命题,而互为逆否关系的命题是等价命题。学生搞清四种命题之间的关系,不仅能掌握可逆的互逆定理、性质、法则,而且能增强思维的严谨性和灵活性,培养创造性思维能力,这也是科学发现的途径之一。

3)、掌握反证法及其思想。反证法是一种间接证法,它是通过证明一个命题的逆否命题来证明原命题正确的一种方法,是应用逆向思维的一个范例。一些问题应用反证法后就显得非常简单,还有一些问题只能用反证法来解决,反证法是学生必须掌握的一种方法。

2、强调某些基本教学方法,促进逆向思维。

数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),老师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。

在平面几何定义、定理的教学中,渗透一定量的逆向思考问题,强调其可逆性与相互性,对培养学生推理证明的能力大有裨益。于许多定理、法则等都是可逆的,因此许多题表面看起来不同,但其实质上是互相有紧密地联系。这就要求教师要教会学生在平时的学习中学会整理,包括公式的整理,习题的整理等。教师在分析习题时要抓住时机,有意识地培养学生把某些具有可逆关系的题对照起来解,有助于加强学生的逆向思维能力。

3、在解题中注意逆向思维能力的训练

我们知道,解数学题最重要的是寻求解题思路,这就需要我们解题之前,综合运用分析和综合或先顺推,后逆推;或者先逆推,后顺推;或者边顺推边逆推,以求在某个环节达到统一,从而找到解题途径。由此可见,探求解题思路的过程也存在着思维的可逆性,它们相辅相成,互相补充,以达到此路不通彼路通的效果。中学数学课本中的逆运算、否命题、反证法、分析法、充要条件等都涉及到思维的逆向性,在数学解题中,通常是从已知到结论的思维方式,然而有些数学总是按照这种思维方式则比较困难,而且常常伴随有较大的运算量,有时甚至无法解决,在这种情况下,只要我们多注意定理、公式、规律性例题的逆用,正难则反,往往可以使问题简化,经常性地注意这方面的训练可以培养学生思维的敏捷性。

4、作业辅导及考查以巩固对逆向思维的理解和掌握

逆向思维能力的培养方法范文4

关键词: 初中数学教学 逆向思维能力 培养方法

引言

初中教育的关键是拓展学生的思维能力。人类思维形式包括正向思维和逆向思维两种形式,一般而言,正向思维就是根据人们的习惯性思考形式思考问题,逆向思维则是背逆常规的思考路线,另辟蹊径地思考问题。我们在解决问题时,应用常规的思考形式,有时候能够找到解决问题的方法,收到令人满意的效果。但是,实践中的许多实例告诉我们,运用正向思维是很难找到答案的,而逆向思维的运用却常能取得意想不到的效果。这就表明逆向思维是一种能够摆脱常规思维羁绊具有创造性的思维方式,它是重要的思考能力[1]。因此,加强对学生逆向思维能力的培养有助于提高其解决问题的能力和创造力。那么教师应该怎样培养学生的逆向思维能力呢?我认为有以下几种方法。

1.提高学生运用逆向思维思考问题的兴趣

兴趣是最好的老师,所以在数学教学中老师要想方设法提高学生的学习兴趣,调动学生逆向思维的积极性。第一,把学生作为教学活动的主体,让学生积极主动地参与教学活动,使学生的主观能动性得到充分发挥,激发学生探究知识的欲望。第二,教师应该提高自身的教学素质。具有超凡人格魅力和渊博知识的教师能激发学生进行逆向思维的主动性和积极性。第三,教师在教学过程中应该有意识地采取逆向思维分析方法,并演示一些经典的题型,让学生看到逆向思维的魅力,从而发掘数学的美。逆向思维来源于生活又回归于生活。生活是一本书,里面有无穷的智慧。在日常生活中也有很多逆向思维的例子,不经意地运用,便把困扰已久的难题解决了,甚至创造出令人受益匪浅的成果,比如:某一时装店的员工不小心把一条高档裙子烧了一个小洞,裙子的价格一落千丈。假如用织补法补救,也只能蒙混过关,对顾客造成欺骗。这位员工运用逆向思维突发奇想,干脆在小洞的旁边又挖出更多的小洞,并进行修饰,并命名为“凤尾裙”。这样一来,“凤尾裙”一下热销,这个时装商店不仅出了名,而且获得了可观的经济效益。所以,教师在课堂教学中把这些实例穿插其中,使学生感受到逆向思维的重要性和益处,体会到了运用逆向思维进行思考的乐趣,从而使学生运用逆向思维的积极性和主动性逐渐增强。

2.从概念入手,通过设逆提出问题

首先教师要从概念入手,在教学中通过设逆进而提出问题,从而使学生养成全方位考虑问题的习惯[2]。在数学教学中,很多概念都能提出逆向问题。比如分母有理化、幂的运算法则、乘法公式等,均能正向、逆向运用。在对这些概念进行讲解时,教师应该多举一些逆向应用的例子,从而让学生灵活地掌握概念,只有这样,学生遇到实际问题的时候,才会改变思考问题的角度,从反面入手,增强解决问题的能力。例如在学习相反数的时候,教师既可以问学生5的相反数是什么,又可以问-2是哪个数的相反数,-3和哪个数互为相反数,两个互为相反数的数有什么特征。只有这样,学生才能够真正理解相反数的概念,增强解决问题的能力。教师在教学中还应注意加强学生对一些概念之间的互逆关系的理解,比如乘和除、多和少、大和小、加和减、正数和负数、长和短等,只有这样不断从概念入手,才能使学生的逆向思维能力逐步提高。

3.在解题过程中培养学生的逆向思维能力

正是学生薄弱的逆向思维能力,才使他们处于低层次的学习水平。教师可以针对一些思维能力迟钝的学生,引导他们运用逆向思维,从问题的反面寻找突破口。在这个过程中,不仅使学生的顺向思维有所加强,还使逆向思维得到培养。在数学教学中,用于培养学生逆向思维的有效途径包括反证法和分析法。反证法常常被用到几何中。在某些立体几何习题中,对于直接证明比较困难的题目,可以采取逆向思维方法——反证法来证。也就是先假设结论是正确的,再根据假设一步一步向前推理,从而得出题目中的已知条件,这样就完成了证明。平面几何教学中,教师可以根据问题的相互性和可逆性,对学生的证明反推能力进行培养。教师还应该教会学生在学习过程中整理各种应用逆向思维的例子,从而能够做到举一反三。教师在对习题进行分析时要抓住契机,把具有顺向思维与逆向思维特点的题目通过对照解答,增强学生的逆向思维能力。这与课堂上的只说不练相比,会起到事半功倍的作用。

结语

大量的课堂教学实践表明,加强学生逆向思维能力的培养,既能改变学生的思维结构,又能锻炼学生思维的深刻性和灵活性,使学生分析解决问题的能力得到提高[3]。随着思维能力的进一步拓展,学生能够自然迅速地转化两种思维能力,这就表明学生在数学方面上的能力不断增强。因此,教师应该在教学过程中对培养学生逆向思维能力的方法不断探索、精心设计,只有这样,才能使学生的创造性思维能力不断发展,才能收到事半功倍的教学效果。

参考文献:

[1]王蔷.转换思维角度,学会逆向思维——初中数学课堂教学中学生逆向思维的培养[J].考试周刊,2011(46):95.

逆向思维能力的培养方法范文5

一、 幂的运算法则的逆用

这两例就逆用积的乘方运算法则,逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学的兴趣性。

二、用“逆向变式”训练,强化学生的逆向思维。

例如:已知,直线AB经过0上的点C,且OA=OB,CA=CB,求证:直线AB是O的切线。

可改变为:已知:直线AB切O于C,且OA=OB,求证:AC=BC。

已知:直线AB切O于C,且AC=BC,求证:AC=BC。

再如:不解方程,请判断方程2x2-6x+3=0的根的情况。

可变式为:已知关于x的方程2x2-6x+k=0,当K取何值时?方程有两个不相等的实数根。进行这些有针对性的“逆向变式”训练,对逆向思维的形成起着很大作用。

三、强调某些基本教学方法,促进逆向思维。

数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),老师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。

在平面几何定义、定理的教学中,渗透一定量的逆向思考问题,强调其可逆性与相互性,对培养学生推理证明的能力大有裨益。于许多定理、法则等都是可逆的,因此许多题表面看起来不同,但其实质上是互相有紧密地联系。这就要求教师要教会学生在平时的学习中学会整理,包括公式的整理,习题的整理等。教师在分析习题时要抓住时机,有意识地培养学生把某些具有可逆关系的题对照起来解,有助于加强学生的逆向思维能力。

例如:1、“互为余角”的定义教学中,可采用以下形式:

∠A+∠B=90°,

∴∠A、∠B互为余角(正向思维)。

∠A、∠B互为余角。

∴∠A+∠B=90°(逆向思维)

2、在ABC中,D、E分别是CA、CB上的点,DE∥AB,且 ,AE、BD相交于点O,如果CDE的面积为2,那么ABO的面积为 。

解此题时,学生习惯从已知条件DE∥AB,且 出发,由SCDE=2,得出SABC=18,从而得出S四边形ABED=16,

按此思路分析下去思维陷入了僵局不妨先让学生思考另一题:DE是ABC的中位线,用S1、S2、S3、S4分别来表示ADE、DEF、CEF、BCF的面积,那么S1∶S2∶S3∶S4 = 。

这道题目的很明确,

要求的是各个小三角形的面积之比,因此学生容易联想到利用等高不等底等性质来求出各三角形面积之比为S1∶S2∶S3∶S4=3∶1∶2∶4。解完此题,让学生回过头去解刚才一题,就会想到:既然从四边形ABED去求小三角形ABO的面积不行,那为何不逆向思考利用后一题的方法,由小三角形的面积去表示四边形的面积呢?即设SDOE=X,则SBOE=3X=SADO,SABO=9X,SDOE+SBOE+SADO+SABO= S四边形ABED,∴X+3X+3X+9X=16,∴X=1,∴SABO=9。这样不但使问题得以解决,且做到题目间的融汇贯通,又不失时机地对学生进行了逆向思维能力的培养。

逆向思维能力的培养方法范文6

关键词:逆向思维;数学教学;数学思维

逆向思维是数学思维的一个重要形式,是创造性思维的一个组成部分,也是进行思维训练的载体,培养学生逆向思维过程是培养学生思维敏捷性的过程,拓展学生思维视野的过程。本人在多年教学实践中注重以下几个方面的尝试,获得了一定的成效。

一、在概念教学中注意培养反方向的思考与训练

数学概念、定义总是双向的,我们在平时的教学中,只秉承了从左到右的运用,于是形成了定向思维,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规的应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如,解|x+1|+|x+2|>4这个不等式,解:在数轴上标出-1,-2这两个点。(并分为三个区域:即x小于等于-2,x大于-2且小于-1,x大于等于-1注意要做到不重不漏!)从绝对值概念的反向考虑其条件,所以(1)当x≤-2时,(x+1为负,所以取相反数,x+2也一样)。-(x+1)-(x+2)>4解得x0.5。综合(1)(2)(3)得解集为x大于0.5或x小于-3.5。渗透一定量的逆向思考问题,强调其可逆性与相互性,对培养学生推理证明的能力大有裨益。例如,在“互为补角”的定义教学中,可采用以下形式:∠A+∠B=180°,

∠A、∠B互为补角(正向思维)。∠A、∠B互为补角。∠A+∠B=180°(逆向思维)。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。

二、重视公式逆用的教学

公式从左到右及从右到左,这样的转换正是由正向思维转到逆向思维能力的体现。在教学中,注重这方面的训练,不仅能使学生思维活跃,拓宽思维,有益于学生思维能力的培养和提高。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在代数中公式的逆向应用比比皆是。多项式的乘法公式的逆用,用于因式分解、同底数幂的运算法则的逆用可轻而易举地帮助我们解答一些问题,如,若有关x的方程3x2-5x+a=0的一个根在(-2,0)内,另一个在(1,3)内,则a的取值范围是不用解答呢?比如这类题目的解决思想是什么?

首先,逆向思维因为有两个根,所以判别式大于零。因为二次项系数大于0,开口向上。

令f(x)=3x2-5x+a,则f(-2)>0,f(0)

解以上五个不等式得-12

用数形结合的方法,二元一次方程根的问题可以看作二次函数与x轴交点的问题。二次项系数a大于0,开口向上,由根的范围知二次函数与x轴的交点范围,模拟出图像。知道以上四个不等式。特别注意,别忘了判别式b2-4ac大于0这个条件。因为有两个根,这个条件必须成立。解题时容易漏掉这组题目,若正向思考,不但繁琐复杂,甚至解答不了,灵活逆用所学的幂的运算法则,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、多用逆向变式训练,强化学生的逆向思维

逆向变式即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相识的新题型。

再如,解方程,请判断方程x2-5x+6=0的根的情况。可变式为:已知关于x的方程x2-5x+k=0,当k取何值时,方程有两个不相等的实数根。经常进行这些有针对性的逆向变式训练,创设问题情境,对逆向思维的形成起着很大的作用。

四、强调某些基本数学方法,促进逆向思维

数学的基本方法是教学的重点内容。其中的几个重要方法:如,逆推分析法、反证法等都可看作是培养学生逆向思维的主要途径。比如,在证明一道几何命题时(当然代数中也常用),教师常要求学生从所证的结论着手,通过观察图形,分析已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。

总之,培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是能够改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维品性,提高学习效果、学习兴趣及提高思维能力和整体素质。

参考文献: