电路基础范例6篇

电路基础

电路基础范文1

教师应根据学生的实际情况与所学专业的教学需要,按照大纲要求、在尊重学校教学安排的前提下,本着适用够用的原则,把握好教学内容的深度与难度,合理安排教学内容与进度,使绝大多数学生能比较轻松地掌握专业所需的知识。对部分学习能力强的同学可以适当安排一些思考题供课后探究,满足这部分学生的求知欲;对于接受能力差的同学采用多鼓励、多辅导等方法,让他们保持学习的兴趣与信心。目前高职院校电路基础课程教学还是以教师为主,学生处于被动学习的状态,缺乏主动性和创新精神,教学效果不理想。因此,教师除具备较全面的专业知识和丰富经验外,在教学过程中要善于总结教学规律,不断探索新的教学方法,来适应和引导不同层次的学生学好这门课程。比如采用设问讨论的教学方法就能有效调动同学的注意力和思维,问题通过容易让学生接受的日常生活中见到的电类现象引入,可以由教师设置或教师引导学生提出,从而引发学生探索问题的兴趣,活跃课堂气氛,使其主动、积极地投入到问题的探究之中,教师在其中起引导点拨作用。例如,在讲授自感现象前,设置提问:“日光灯电路中整流器的作用?“”闸刀开关拉下或合上的瞬间,开关的接触片之间总是产生一些电火花,如何解释这一现象?”在这种方法的调动下,学生由被动学习状态转入主动求知状态,只要在上课伊始就激发学生的兴趣,激活其思维,那么就一定能开拓学生的思路,激发学生的学习兴趣与热情,营造良好的学习氛围,在这种氛围下,绝大多数学生的主动性学习也就顺理成章了。在问题讨论过程中让学生各抒己见,畅所欲言,对提出错误观点的同学,要及时分析其错误的原因,纠正错误,这样学生的记忆会更深刻,学生的观点即使有正确的,也要征求其它同学的不同看法。教学中教师要特别注意鼓励学生大胆发言,呵护学生的自尊。总之,教学中教师要善于启发诱导,在教学中以教师为向导,全面把握好学生在学习过程中的反馈信息,及时加以调控,发挥教师的引导作用,使教师由知识的灌输者转变为学生自主学习的引导者、促进者。课堂教学要遵循由简到繁,循序渐进,深入浅出的原则,学生掌握介绍新知识,很大程度是依赖于已掌握的旧知识。所以,教师在授课时要注意新旧知识的衔接,做到以旧导新,例如在讲授电路的暂态过程时从电容器的充放电引入等等。根据高职学生的现状和培养目标的要求,在具体的授课中,对重要的概念、定律及定律的分析计算方法必须在简化繁琐的数学验算和推理的基础上精讲,重点放在对结论的理解和应用上。同时,教师在教学中应充分利用现有的仪器,设备或制作一些电路实物进行教学,这种直观形象配合理论知识来教与学,可以显著提高教学效果。由于电路基础需要掌握的知识繁多,所以在每一章节讲完之后,要对该章节的内容进行归纳总结。使学生能轻松地理解和掌握所学的知识,并能灵活运用。

二、改进实验方法,培养实际操作能力,注重培养学生的良好职业素养

电路基础是一门注重实验的学科。把理论知识的教学和实验进行结合,进行创新,能够让学生在从理论知识的学习到实践操作的过程当中达成一个质的飞跃。教师在教学中要加强直观教学,采用实物、模型、多媒体等教学手段,激发学生的学习兴趣,电路基础实验内容主要包括验证性实验、设计性实验、计算机仿真实验等。验证性实验是以电路基本理论应用和基本实验技能训练为主要目的,通过实验,使学生的实践动手能力得到提高,使学生正确掌握基本的实验操作步骤与方法,常规仪器仪表的使用与调试,实验过程中故障的分析与排除方法以及实验数据的分析处理与测量误差的分析方法。在验证性实验中,教师可以将一些验证性实验改为学生探索性实验,在实验中发现问题和寻找解决问题的方法,给学生创造独立思考的机会,适时对学生思考出来的方法给予支持和帮助,鼓励学生独立思考,并通过实验来加以验证,从而培养学生解决问题的能力。设计性实验是培养学生综合运用所学的理论知识和实际操作的能力。通过对具体项目的设计,安装调试,书写报告来锻炼学生的工程实践能力。这种项目制的实验可以充分调动学生的积极性,激发学生的创造性思维,为学生提供创新实践空间,使学生的工程实践能力得到初步的训练,为后续课程的课程设计打下良好得的基础。计算机仿真实验是利用计算机软件对电路进行辅助分析和设计,可以将仪器仪表、电路器件等直观地显示在计算机屏幕上,并灵活地改变电路结构和参数,清楚地观察实验结果并动态显示电路的相关波形,培养学生工程设计能力和创新思维能力。

电路基础范文2

关键词:软土地基;输电线路;杆塔基础

1引言

输电线路杆塔地下部分总体为基础,基础是稳固输电线路杆塔,输电线路基础施工是按设计要求进行施工,普通土坑的开挖前都必须做好复测和分坑工作。

输电线路施工复测是指线路施工前,施工单位对设计部门已测定线路中心线上各直线桩,杆塔位中心桩及转角塔位桩位置,档距和断面高程进行全面复核测量。若偏差超过允许范围时,必须查明原因并予以纠正,根据定位的中心桩位,基础类型依照设计图纸规定尺寸进行坑口放样工作为分坑测量,通常把这两步工作统称为复测分坑,分坑可用经纬仪及皮尺进行分坑。

2 软弱地基高压输电线路杆塔基础分析

软弱地基是高压输电线路建设经常遇到问题,软弱地基对输电线路影响是最明显,一旦在施工中出现差错就会造成基础的不均匀沉降导致杆塔倾斜,造成重大事故,在工程建设各个环节都必须高度重视软弱地基问题。

2.1勘测设计方面

在工程勘查阶段首先要确定线路的走向,是线路走向沿线地区具有良好地质条件,尽量避开软弱地基,如果对于路线走向无法避开软弱地基桩位,要选择合适杆塔、基础型式确保工程质量,在地形条件允许情况下首先选用拉线杆塔,当软弱土层较浅时宜选用浅埋直立柱大板式基础,挖去软土层后换填良好土进行填筑碾压,当软弱层较深可采用于木桩铺垫层办法增加地基承载力或者采用桩基础。地基承载力较低时(一般[R]≤50kPa)对于转角塔和大负荷直线塔宜选用桩基础。一般慎用主角钢插入式斜柱基础,因为基础稍有不均匀沉降,铁塔主材与主角钢很难连接造成结构性破坏。

对基底采用加固措施按设计要求进行加固,采用加石块充填加固在最后一层土挖至设计深度时抛入预先准备石块,将石块夯入土中至密实为止并清理被挤出表面的软土再铺上碎石;采用清淤加木桩按要求清去顶层淤泥后打人木桩再充填砂层,清理被挤出软土,灌水让砂层沉实,对于需要铺混凝土垫层,垫层铺好后需要停留48 h才能制模浇制基础以使垫层有充分凝固时间。

2.2工程施工方面

软弱地基杆塔基础施工关键是要做好基坑开挖和混凝土浇制过程排水措施,尽量避免基底原状土受到扰动。

测量人员用全站仪精确测量基槽平面位置,根据底面尺寸及埋置深度、地质水文条件等确定基坑开挖尺寸。基坑底平面尺寸比结构物基础设计尺寸各边加宽1.5m。由测量人员定出开挖边桩,连接边桩即为基坑开挖边线。在放样过程中适当加大基坑开口尺寸保证在基坑开挖过程中遇到不稳定土层时,能够适当加大不稳定土层坡率。

使用挖掘机开挖,顶部无静荷载。根据现场土质实际情况适当调整开挖坡度,开挖至基底以上20cm范围采用人工开挖防止超挖,施工前人工突击挖除并尽快进行下道工序施工。

开挖过程中开挖底面低于地下水位基坑时,地下水会不断渗入坑内,如果流入坑内水不及时排出,土被水泡软后会造成坑壁坍塌,地基承载力下降。因此做好基础施工过程排水工作是软弱地基基础施工基本要求,基坑排水方法很多,施工单位可根据基坑的排水量以及自身排水设备等情况确定采用何种排水方法。对于流沙坑,为防止坑壁坍塌,减少流入坑底的水量,可以采用挡土板或沉箱的方法开挖。为避免或减少对原状土的扰动,基坑不要一次挖至设计深度。当开挖至接近设计深度200-300mm时暂不开挖,而向监理部门申请验坑。验坑后从局部开挖,逐步展开,挖至设计深度后施工人员不要直接在坑底行走要铺上木板通行。

挖至设计标高后不得长时间暴露、扰动或浸泡。基底不得受水浸泡,其上淤泥须清理干净。施工过程强化质量意识教育,组织施工人员学习施工设计图纸、质量标准及验收规范。坚持岗前培训及持证上岗制度,坚持“三检、四按、五不准、六做到”。

2.3混凝土强度检查

混凝土在搅拌和浇注过程中检查混凝土组成材料质量和用量,每个工作班至少两次,在搅拌地点及浇注地点检查混凝土的坍落度,每一工作班至少两次,在每一工作班内,如混凝土配合比由于外界影响而有变动时应及时检查,混凝土搅拌时间应随时检查,试块应用钢模制作,必须在浇注地点制作,试块的尺寸应做150×150×150mm试体,每组(三块)试块应在同盘混凝土中取样制作,其强度按下述规定确定: 取三个试块试验结果的平均值,当三个试块中的过大或过小强度值与中间值相比超过15%时,以中间值代表该组试块的强度。检查混凝土质量应做抗压强度试验,试块是做抗压强度试验的,其制作数量应符合转角、耐张、终端及悬垂转角塔的基础每基应取二组,一般直线塔基础,同一施工班组每5基或不满5基应取二组,单基或连续浇筑混凝土量超过100m3时亦应取二组,按大跨越设计的直线塔基础及其拉线基础,每腿应取二组,但当基础混凝土量不超过同工程中大转角或终端塔基础时,则应每基取二组,当原材料变化、配合比变更时,应另外制作,当需要做其它强度鉴定时外加试块的组数由个工程自定。每二组试块制作后,一组与基础同条件养生,一组进行标准养护。评定基础混凝土是否达到设计混凝土强度等级的方法是将一组试块在温度为20±3℃和相对湿度为90%以上的潮湿环境或水中的标准条件,经28d养护后试验确定混凝土抗压强度。其试验结果作为评定基础混凝土是否达到设计混凝土强度等级的依据,与基础同条件养生的一组试块作为检测基础混凝土在不同龄期所达到强度的依据。

2.4 监理方面

监理单位应制订施工监理规划,认真审核施工方案,现场施工队伍是否具有相应资质,是否组织验槽程序、记录、审签手续是否正确、齐全,有关材料、设备的进场检查是否符合规定,各个工序质量、隐蔽工程是否按规定及时进行检查验收,记录是否规范,施工过程试件、试块是否进行见证检验,检验报告是否符合规范规定要求,施工中设备、工艺条件是否具备项目施工要求,是否对不利环境影响有可行处理方案,采取必要措施等等,还要按规定进行各个阶段工序质量监理,对各个主要部位和施工要点监理,施工保证资料监理,保证中间产品质量,对各主体质量保证体系和质量管理制度运行和落实进行监理。通过规范质量行为促进质量机制运行,以足够人力、物力、设备工艺、技术方法、环境投入保证投入质量和工作质量,实现规范规定工序质量。

3结束语

软弱地基基础是输电线路建设难点,只要勘测设计、施工、监理人员有高度责任感,密切配合,科学管理,就一定能使软弱地基的线路投资得到控制,质量得到保证并能安全可靠运行。

参考文献

[1]KLym TW,王钊.杆塔基础的螺旋锚板[J].土工基础,1991(2).39-45

[2]刘义建,刘勇健.深基坑支护方案最优决策方法研究[J].基建优化,2002,23

(6):46-47

[3]徐杨青.深基坑工程设计的优化原理与途径[J],岩石力学与工程学报2001

(2),248-251

电路基础范文3

关键词:送电线路;基础型式;设计,刍议

Abstract: this paper introduces the basic transmission lines design code of the foundation of the commonly used type, this paper expounds some area overhead transmission lines foundation engineering of the present situation, and from multiple aspects analysis foundation engineering problems. Points out that strengthen overhead transmission lines foundation design optimization and environmental protection measures.

Keywords: transmission lines; Basic types; Design,university

中图分类号: U463 文献标识码: A 文章编号:

1送电线路基础型式的选择原则及其常用基础型式特点

1.1 坚持环保和节约资源的原则

架空送电线路基础设计必须坚持保护环境和节约资源的原则,基础型式的选择,应结合线路沿线地质、施工条件、岩土工程勘察资料和杆塔形式等特点,对所选择的基础型式作综合考虑,选择适宜的基础型式;在安全、可靠的前提下,尽量做到经济、环保,减少施工作业对环境的破坏;对不良地基,给出特殊基础型式和处理措施。有条件时应优先采用原状土基础,一般情况下,铁塔宜采用现浇钢筋混凝土板式或混凝土台阶式基础;运输或浇制混凝土有困难的地区,可采用预制装配式基础或金属基础;地质条件较差时可采用桩基础。

1.2 常用基础型式

1.2.1 掏挖基础(属原状土基础)

适用于无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。采用全掏挖基础比用阶梯型基础节约钢材和混凝土。掏挖基础有直柱式和斜插式两种型式。

1.2.2 阶梯型基础

基础地板不配置受力钢筋的混凝土基础。该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度。

1.2.3 大板基础

主要特点是底板大、埋深浅、底板较薄,主柱计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。它广泛应用在软弱地基。对转角塔及负荷较大的直线塔进行地基沉降变形验算,施工时少扰动地基土,清除开挖浮土,做好垫层,必要时使用块石灌浆。

其他还有斜插板式基础,灌注桩基础,复合式沉井基础,直柱刚性台阶基础等。

2某地区架空送电线路基础工程现状

某地区地质状况主要以丘陵、山地为主,各个地区的地质条件相差很大,所采用的送电线路基础形式多样化。其中坡地、矮丘主要地层均为粉质粘土、砂质粘性土,丘陵地区地层主要为砂土、松砂土、残积粉质粘土地基,也存在部分岩石地基。

根据某市气象资料和现有线路运行经验,线路气象组合条件属广东省电力设计研究院编定的第I气象区,最大设计风速为25 m/s 。通常设计中,根据某地区地质状况,不同电压等级常用的铁塔基础型式选型情况略为不同,35 kV送电线路的铁塔基础型式一般采用挖孔桩基础、现浇柔性基础。110 kV送电线路的铁塔基础型式采用现浇阶梯式刚性基础。阶梯式基础是一种成熟的基础型式,它是以土重法计算,主柱配筋,底板为阶梯式,按刚性设计,不配钢筋;施工工艺简单,安全可靠,采用掏挖式基础、斜柱板式基础、挖孔桩基础。220 kV送电线路的基础型式一般采用直柱刚性台阶基础、全掏挖基础、人工挖孔桩基础、现浇柔性基础。500 kV送电线路的基础型式一般采用人工挖孔桩基础、大板式基础、插入式基础、斜插板式基础、掏挖式基础。在某些线路走廊狭窄地区的钢管杆采用灌注桩基础;部分软弱地基主要采用钻孔灌注桩。对于个别处于河床外侧地质为流沙层地区地基由于抗剪强度低,因此,要比普通基础多埋深1 m。在某些地方,出现倒塔一般不是基础原因,主要是有外界因素的作用,如滑坡、流沙、河流冲刷等。

3送电线路基础工程存在问题及原因分析

由于架空送电线路工程具有点多、线长、面广的特点,因此在勘测设计施工方面,架空送电线路基础工程存在一些问题。

3.1 勘测问题

路径选择和勘测是整个线路设计中的关键,在偏远山区,由于勘测点较多,勘测人员业务水平参差不齐,勘测较粗;有时,对塔位的地质情况的了解不是很准确,如某些地段处于高斜坡,水土流失严重,易滑坡。因此岩土鉴定的方法、手段等需要改进。根据塔基地形特点,对原有的地形地貌,缺少相应的防护措施。

3.2 设计问题

送电线路地基基础工程较长时间内沿用传统安全系数的定值设计方法是不合适的。

由风荷载引起的送电线路杆塔的破坏常带来非常严重的影响。

在软土质地带,杆塔基础设计不仅要满足一般杆塔基础的设计要求,还应满足塔基沉降量、倾斜度等要求,由于以往研究存在许多不足之处,导致软土质地带杆塔基础设计水平较低。在软弱地基中不论使用灌注桩或者大板式基础都会带来较多的问题,且造价很高,质量不易控制,施工复杂,钢筋用量多。

3.3 施工问题

在山区及软土地带山坡、沼泽、河滩等地区,现有的大型施工机具难以进入场地,施工,设备、材料运输和基础的开挖等比较困难。

架空送电线路基础工程存在上述问题的原因是送电线路沿线地区的地形、地质条件差异较大,设计和施工要考虑的条件多,在铁塔基础科研方面投入少,工作较薄弱,技术储备不足。杆塔基础有其独特的设计方法,工程教科书缺少杆塔基础方面的理论支撑,而且从事送电线路杆塔基础设计的高级技术人员则更少。

架空送电线路基础在结构设计有别于高层建筑、桥梁,因此,大量的高层建筑、桥梁地基基础研究成果并不能在架空送电线路基础工程中广泛应用。在岩土勘测上,送电线路杆塔基础比高层建筑物和桥梁精确性低。很多线路有许多相同的塔型,但它们的基础型式则因土质而不尽相同。多数线路杆塔常位于高山、荒野等人烟稀少的地方,而且除了施工、检修和维护外对人民的生命安全影响不大。

4加强某地区架空送电线路基础的设计优化

加强某地区架空送电线路基础的设计优化,合理选型,送电线路基础工程的造价、施工工期和劳动力消耗量在整个线路工程中占很大比重。通常来说送电线路基础工程施工工期约占整个工期一半时间,运输量约占整个工程65%,费用约占整个工程15%~35%。基础选型、设计及施工的优劣严重影响着线路工程的建设。现有铁塔结构设计比较合理,而基础设计较为保守,造成基础施工的费用高。同时,基础大面积开挖,会造成大面积植被的破坏和水土的流失。因此;加强某地区架空送电线路基础的设计优化很有必要。优化设计方案,进行地基处理、边坡防护加固、岩土环境保护等设计方法、施工等关键控制技术的探索与创新,降低混凝土和钢筋的用量,减小土石方的开挖量,减小对植被的破坏,加强环境保护,从而降低基础造价,节省资源。因此,地基处理及其基础型式选择与设计优化已成为电网建设的关键。

4、1设计应重视工程选线

设计应重视工程选线,要根据每项工程的实际情况,对线路沿线情况充分收集资料和调研,进行多种线路径方案比选,尽可能选择长度短、转角少、交叉跨越少,地形条件较好的方案。在勘测工作中,应考虑到转角点、交跨点等特殊地点立塔的可能性,某些地段更要反复测量比较,使杆塔位置尽量避开交通困难地区,为工程创造较好的施工条件。对不同特性地基、不同型式基础展开系统的试验研究。针对送电线路所经地区的地质状况,提出合理的基础型式。如某地区500 kV某变电站出线500 kV某个变电站至某个变电站送电线路工程采用了加高2.5 m挖孔桩基础。新型斜插式挖孔桩基础使线路更为安全、经济,具有良好的安全可靠性。

4.2 环境保护措施

在山区斜坡地面,为避免造成弃土和基础滑坡,采用全方位长短腿铁塔, 配合主柱加高基础;在地质条件适宜的情况下, 优先采用岩石基础、掏挖基础等原状土基础;特殊地质应采用特殊环境保护措施;采取在塔基周围使用必要的排水沟、挡土墙等附属设施等环境保护措施,减少破坏,防止水土流失,有利于环境保护。

图1 主柱加高基础

常用环境保护措施 ,在坡度较大的丘陵或山地上,为了避免大开挖塔基基面,在保持塔基稳定基础上,将在基础形式上配合高低立柱基础,尽量减少地面土石方开挖量,余土外运处理,最大限度地维持原有的地形地貌,具体施工如一般基础主柱露出设计基面高度Δ值通常为0.2~0.5 m。主柱加高基础的主柱即在Δ值的基础上,按照需要加高一个适当的高度Δh,Δh通常取为(0.5,1.0,1.5,2.0)m等。如图1所示。

根据现场地形需要,如单独采用主柱加高基础不能满足要求,则结合长短腿铁塔同时使用,以达到更好的效果,如图2所示。

图2 结合长短腿铁塔同时使用

5结束语

电路基础范文4

关键词 电路分析基础 课程探索 教学质量

中图分类号:G640 文献标识码:A 文章编号:1002-7661(2017)14-0035-02

电路分析基础课程是高等学校电类和非电类专业的通用基础和专业核心课程,其显著特点是量大面广,教学内容几乎涉及电气电子信息学科的各个领域,在培养学生的工程意识、实践能力和创新精神等方面具有十分重要的作用。电路分析基础课程在教学上具有定理概念多、理论内容层次复杂、实验教学环节薄弱等特点。其教学目标是使学生在掌握电路相关基本理论知识的基础上,熟悉电路的基本分析方法,培养学生科学思维能力、电路分析计算能力以及培养学生从事相关基础研究的能力和科研归纳能力。鉴于电路分析基础课程特点及其教学目标,学生对于此课程的学习具有一定的难度及强度,本文结合自身教学经验,从教学实践出发,针对目前教学过程中存在的问题与不足,针对电路分析基础课程教学质量的提高,提出一些建议与想法。

一、课程教学内容

以周围教授主编的《电路分析基础》为例,该教材具有知识体系完善,涉及知识点多、逻辑性强等特点,需要学生具备扎实的大学物理和高等数学等多门前置学科的基础知识。依据教学大纲,电路分析基础课程从内容上主要分为基础电路知识与分析方法、线性网络分析方法、交流电路及元件分析、线性电路频率响应特性等四个主要部分共七个章节教学内容。《电路分析基础》第一至三章是基础电路知识与分析方法,在介绍电路基本元件及基尔霍夫定律的基础上,进一步介绍基于单口网络的等效变换方法。第二部分是线性网络的各种分析方法,包括电路分析基础的重点,戴维南等效定理与诺顿等效定理。第三部分内容主要是动态电路瞬态分析、正弦稳态电路分析及耦合电感与变压器知识的介绍。最后第七章是线性电路的频率响应特性。课程知识点结构及层级较多,对授课教师要求较高,需要教师采用多样化的教学手段,注重新知识、新技术的引入,理论与实验相结合,才能使学生较好地理解并掌握相关知识。

二、教学方法与教学手段存在的问题

在教学过程中,传统的课堂讲述及PPT演示教学存在一定问题,原因是电路分析基础课程较多的教学内容,丰富的知识结构体系使得课程学时较为紧张。此外,课程理论性强,各种概念较为抽象,学生难于理解;而作为传统理论基础课,n程也缺乏实践实验环节支持。

为了让学生能较好地掌握电路分析基础中涉及的理论及模型,需要在传统教学内容和方法基础上进一步丰富。就教学手段而言,除了充分利用PPT等多媒体工具外,可构建交互式课程资源共享平台,使教学逻辑思维形象化,增强教学的直观性和主动性,从而达到提高课堂教学质量的目的。这样直观且形象的知识讲解有利于改变教学内容的注入方式,使学生能够牢固掌握相关知识要点。教学方法上,需要改变灌输讲授的方法,对于关键知识点,多采用引导、启发式的教学方式讲授。首先引出问题,再以问题讲解为核心,注重实践环节,注重理论分析和实际实验设计相结合的教学理念。

三、考核方式改革

教学效果和教学质量的客观评价是课程教学考核的重要环节,为了能够更加客观、科学地考核学生,获得课程教学达成度数据,针对课程特点,从关注学生解决问题实际能力、理论掌握度及平时学习达成度等多方面入手,对考核方式作如下尝试:(一)针对关键知识点,在教学过程中设计随堂小测试,进行相应课堂问题讨论,从而增强学生上课积极性及独立思考能力;(二)根据学生平时作业情况,及时分析获得相关知识点达成度结果,及时解决学生学习疑问,使学生在自学为主的基础上对课程有更深入了解;(三)建立EDA实验随堂示例教学设计,将平时学生需要完成的实验设计,例如戴维南定理验证、正弦稳态电路分析等列为随堂示例内容。引入EWB,Matlab等计算机仿真手段,使相关知识点的讲解更直观,简明,从而提高学生的学习兴趣,改善学习效果。

四、结束语

电路分析基础是电子电工、通信等专业重要的专业基础课,能够为后续专业课程的学习打下理论基础。本文针对电路分析基础课程教学质量的提高,提出一些课程教学改进的措施与建议,以期能够有助于学生对课程内容的掌握与深度理解,能够促使学生及教师将理论知识与实践实验相融结合,通过提高学生学习兴趣与工程实际素养而达到教学目的。

参考文献:

[1]邱关源.电路[M].北京:高等教育出版社,1999.

电路基础范文5

摘要:针对电路基础课程理论性强、抽象难懂和实践性强等特点,本文将Multisim10 引入电路基础教学过程,详细分析了Multisim10在电路基础教学中的应用,取得了良好的教学效果,大大激发了学生的学习兴趣,提升了学生的职业能力和职业素质,是提高电路基础教学质量的有效方法。

关键词 :电路基础Multisim10 电路仿真

1 概述

电路基础课程是高职电气自动化技术、机电一体化技术及电子信息技术等专业的一门专业基础必修课,是一系列后续课程的前导课程。学好本课程对于其他课程有着极其重要的作用。但本课程特点是定理、概念众多,理论内容抽象难懂,分析计算量大,要求学生有较高的抽象思维能力和逻辑思维能力。而当前由于扩招和单招的实施,使得高职学生整体生源质量大幅下滑,再加上高职学生普遍理论基础薄弱,学习积极性差,接受新知识的能力弱,这些无疑使得电路基础课程的教学更加雪上加霜。如何让高职学生掌握电路基础相关知识并加以应用,是摆在每一个讲授电路基础老师面前的一个新课题。

Multisim10 是美国国家仪器公司推出的一款原理电路设计、电路功能测试的虚拟仿真软件。Multisim10 具有操作界面直观、仿真能力强大、虚拟测试仪器种类丰富以及数据分析手段完善等特点。故利用Multisim10 仿真软件构建虚拟实验室,克服理论内容枯燥难懂、实验内容单一无趣等缺点,让学生在教中学,在学中做,做到“教学做一体”,使学生不再感到电路基础课程的抽象难学。

2 Multisim10 在电路基础教学中应用

2.1 加深相关基本定理定律内容的理解在讲授相关基本定理定律如基尔霍夫定律、叠加定理等时,为加深对理论内容的理解,一般会进行验证性实验。而验证性实验受实际实验台条件的限制,不利于高职学生的创造性发挥。现以基尔霍夫定律的验证实验为例,将Multisim10 软件引入后,老师和学生一起分工合作,根据定理内容,制定设计任务,学生自己根据设计任务动手设计实验方案,在仿真环境下构建虚拟电路模型。图1 为基尔霍夫定律验证实验仿真电路,每条支路上的电流值和每个元件上的电压值都一目了然。这时引导学生来分析电路图,先分析电流,如果按照流入电流为正,流出电流为负,电流的代数和为零;然后再分析左右回路各元器件的电压代数和也为零,所以可以得出结论:在任意时刻,流入流出某一个节点的电流代数和等于零;在电路中任意闭合回路内各段电压的代数和恒等于零。为了证实结论的可靠性,可以让学生修改电阻和电压源的数值,让学生自行分析。

如果学生已基本掌握相关定理定律的内容,老师可以在原验证性实验的基础上对实验进行一定延伸,设置若干故障点,例如设置短路、开路;阻值增大或减小等等,让学生通过仿真测量的数据去分析计算,从而找出故障点的位置和原因。这样做既可以让学生对所学知识有进一步的理解,更加发挥了学生的主观能动性、积极性和创造性;又不用担心对实训设备造成损坏。

2.2 辅助理论教学在某些抽象难懂的知识点的讲解过程中,以往的板书加多媒体课件的教学效果较差,学生无法直观地看到电路的物理过程。例如,在讲授一阶RC动态电路的过渡过程这部分内容时,需要分析输入信号为方波时电容C 两端电压的变化过程,以往只能用板书加PPT 课件来描述其物理过程,等到做实验时才能用示波器观察其电压波形。这无疑不能很好地满足教学需要。使用Multisim10,就可以当即取得相应波形图,并且通过图形使学生可以非常直观地看到它的变化规律及各个关键点的函数值。如图2 所示。

2.3 拓展实训内容“功率因数的提高———单相交流日光灯电路实验”是电路基础课程实验中一个典型实验项目,它既具有基础性又具有现实的广泛应用性,对学生理

解基本理论和培养实践操作能力都是极为重要的。但是交流电路实验要求电压较高,存在一定安全隐患,同时在进行实训操作时也容易造成器材损坏。因此,通过Multisim10软件来完成相应交流电路的仿真分析就成为一个相对较好的实验方法。

图3 为Multisim10 仿真环境下提高功率因数的实验电路。图中用一个电感线圈与一个电阻并联的电路模型等效代替实际的日光灯模型。通过图4 可知,日光灯是一个感性负载,此时电路功率因数较低,在未进行功率补偿的情况下,功率因数为0.6 左右。当在日光灯两端并联一个可调电容后,改变电容C 的值,电路的功率因数也随之发生变化。但需要强调的是,这种变化并不是线性变化。当电容C 增大到3μf 时,功率因数达到最大值0.99,但随着电容C 的继续增大,功率因数非增反减,当电容C 增至9μf时,功率因数减小至0.4 左右。这是因为一旦电容C 过大,发生过补偿,无功功率增加,所以在实际应用中要根据具体情况分析,选择一个大小合适的电容。

2.4 仿真作业习题传统教学方法下,每学习完一章节内容后,为了解学生对所学知识的掌握程度,会留下典型的习题。学生大都是被动地完成作业或是上交老师,或等老师课堂讲解。而现在完全可以要求学生以Multisim10仿真的形式完成相关习题。这样做一方面有利于学生对所学知识的巩固,也提高了学生的学习兴趣;另一方面有利于学生从工程实际角度来分析问题,同时也利于学生动手能力的提升。

3 结束语

实践证明,将Multisim10 引入电路基础教学取得了良好的教学效果。学生利用Multisim10,把自己变为教学过程的主体,在教中学,学中做,将理论知识通过仿真实验生动形象地展现在面前,缩短了理论到实践的过程;同时启发和扩宽了学生的思路,还锻炼了学生解决实践问题的动手能力,对提升学生的职业能力和职业素质起到了积极的作用。

参考文献:

[1]雷跃,谭永红.基于Multisim10 的电子电路可靠性研究[J].计算机仿真,2009,26(8):300-302.

电路基础范文6

关键词 电路分析基础;教学改革;探讨

中图分类号:G642.0 文献标识码:B

文章编号:1671-489X(2016)04-0122-04

1 电路分析基础课程的重要地位及教学现状

电路分析基础课程是自动化、电子信息工程、测控技术等理工科专业必修的专业基础课,在整个人才培养中占有重要的地位,具体分析如下。

1)该课程是整个大学教学中开设最早的专业基础课程,兼具理论性、实践性,是学生第一个接触到的实践课程;

2)该课程所学知识在后续开设的电机拖动、电力电子技术、自动控制原理、单片机等专业课程中都有所应用,是其他专业课程的基础课程。

由以上分析可知,电路分析基础课程在整个人才培养中属于基础性专业课程和实践课程[1],和后续专业课程联系紧密。通过该课程的学习,不仅使学生掌握电路分析的基本概念、基本定律和电路的分析方法,而且要获得必需的电工基础理论知识,为学习后续课程打下必要的理论基础。同时,注重工程意识培养、自学能力培养,使学生具有分析、解决问题和实践应用技能,树立理论联系实际观点,为培养高技能人才打下必要的基础。

该课程教学内容主要包括电路元件介绍、电路分析方法、定理等。目前该课程教学主要存在以下问题:

一是实践教学内含于理论教学中,受制于总学时限制,无法开展综合性、设计性实验,实验教学利用实验箱来完成,学生只需依照实验指导书通过实验箱连接电路即可完成实验,实验项目为验证性实验,在实验过程中学生不能将自身想法付诸实践,不利于学生创新能力培养;

二是课程知识点抽象,元器件在电路中工作特性难以理解,电路分析方法、定理众多,难以深入理解;

三是课程教学内容独立于其他专业课程之外,没有和相关其他专业课程有所联系。

2 电路分析基础课程教学改革方法

鉴于该课程在人才培养中的重要基础性地位以及目前教学存在的诸多问题,进行教学改革,具体分析如下。

修订培养方案,剥离实践教学环节 为充分体现课程在人才培养中基础性地位[2],以夯实理论基础为前提,以培养创新能力为导向,通过梳理江汉大学文理学院自动化专业人才培养方案后发现,原有课程学时包含理论课和实践课学时,即实践课属于课内教学环节。由于受制于总课时的约束,实践教学只能利用实验室实验箱开展一些验证性实验。鉴于此,将课程实践教学环节[1]从原有的理论教学中剥离出来,单独开设电路分析基础实践课程,并对实践课程采取独立的考核方式[2]。单独开设实践课程后,学生在完成验证性实验基础上有充足时间来完成设计性实验,通过验证性实验加深对理论知识的理解,进一步通过设计性实验达到感性认识,培养独立思考、创新能力。

整合理论教学知识体系,瞄准一个方向、一个定律 在该课程众多定律、定理中,基尔霍夫定律[3]是基本定律,课程后续介绍的电阻电路分析方法、动态电路分析都是基于此定律得到的。掌握了基尔霍夫定律,就掌握了电路分析方法,由此可见它在整个课程中的重要性。它包括电流定律和电压定律,这里只介绍电流定律。

基尔霍夫电流定律[3](KCL)定义:在集总电路中任何时刻,对任一结点,所有流出结点的支路电流的代数和恒等于零。定义中有几个重要的问题需要清晰。

一是电流的“代数和”。既然涉及代数和,那必然和电流的正负有关。电流的正负是根据电流是流出结点还是流入结点判断的,若流出结点的电流前面取“+”号,则流入结点的电流前面取“-”号;反之相同。

二是怎样判断电流是流出还是流入结点?电流是流出结点还是流入结点,均根据电流的参考方向判断。因此在理解基尔霍夫电流定律之前需要瞄准一个方向,即参考方向。

实际电路中电流或电压的实际方向可能是未知的,也可能是随时间变动的。为了对电路进行分析,当涉及某个元件电流或电压时,要指定电流或电压的参考方向。指定参考方向的用意在于把电流或电压看成代数量,若电流或电压的实际方向和参考方向相同,则认为其为正值;若电流或电压的实际方向和参考方向相反,则认为其为负值。下面以图1(a)的电路来分析参考方向的选取。

图1(a)中,流过电阻电流实际方向未知的情况下,分析电路时到底选择哪种参考方向?为说明问题,仿真图中根据不同参考方向连接两个电流表,如图1(b)、1(c)所示,仿真结果如图2所示。

仿真后实际电流方向如图2箭头流动方向(即顺时针方向)。在图2(a)中选择参考方向为逆时针,即和电流实际方向相反,电流表示数为-0.01 A;图2(b)中选择参考方向为顺时针,即和电流实际方向相同,电流表示数为+0.01 A。对于同一个电路选择不同参考方向后得到电流大小是相同的,只是有正负的区别,若得到电流为正值,则说明选择的参考方向和实际方向相同;反之相反。

因此,分析电路时参考方向可以任意指定,并不影响电路的实际情况。由此,在使用基尔霍夫电流定律时可简化处理,即:流入结点电流代数和等于流出结点代数和。

互动、提问式教学,透过现象看本质 电容和电感元件是交流电路里常用元件,这两种元件的电压和电流的约束关系和电阻元件的不同,它是通过导数(或积分)表达的,所以称为动态元件,又称为储能元件。对动态元件的理解、掌握将关系到一阶、二阶动态电路的分析。

通过互动、提问引出电容、电感元件的特性。给出如图3所示电路,首先提出问题:分别将开关切换到电阻、电容和电感元件所在电路时,电路中灯泡会有什么现象?让学生讨论问题。然后利用仿真软件[4]仿真,会观察到开关切换到电阻电路时,灯泡立刻点亮,亮度始终不变化;开关切换到电容电路时,灯泡点亮,但亮度逐渐变暗,最后熄灭;开关切换到电感电路时,灯泡不亮,然后逐渐变亮,最后亮度稳定下来。为什么会出现这样的现象?

对结果详细分析:由仿真图4可以看出,电阻电路电压U1始终不变,所以灯泡开始就点亮而且亮度不变;由仿真图5可以看出,电容电路开始时电压U2为零,电源电压都加在灯泡上,所以灯泡点亮,随着时间的变化,电容两端电压逐渐增大,灯泡的电压则逐渐减小,亮度逐渐变暗,最后电源电压完全给电容充电,灯泡则熄灭;由仿真图6可以看出,电感电路开始时电流为零,灯泡不亮,随着时间逐渐变化,电流逐渐增大,灯泡逐渐变亮。

最后引导学生通过观察各电路中灯泡呈现的不同现象结合仿真图进行分析,电容电压由零到最大是一个动态过程,电感电流由零到最大也有一个动态过程,所以两个电路中灯泡会出现上述现象,即它们是储能元件。

进一步引申问题:有电容元件存在的电路,当通电时间足够长后,电容两端相当于断路;有电感元件存在的电路,当通电时间足够长后,电感相当于短路。

通过以上提问、互动的过程,学生会容易理解有电容、电感元件的电路是动态电路,通过图表分析可以清晰、直观地对动态电路元件性能进行分析,明白在动态电路中电容电压、电感电流是如何变化的。

由点及面,由浅入深,理论向实际应用转化 二极管是电路设计中常用的电子元件,具有单向导电性,即在二极管两端加正向电压时二极管导通,加反向电压时二极管截止。针对这一特性,考虑在实际电路设计时,二极管的这个性质有什么用处?给出图7所示电路和电路输入电压波形图,如图8所示,让学生分析电压探针U2处电压波形。

分析可知,当输入信号处于正半周期时,二极管导通;当输入信号处于负半周期时,二极管截止。图7是利用二极管的单向导电性实现工程上常用的半波整流电路。电压探针U2处电压波形如图9所示。

通过以上对实际电路的分析,逐渐建立学生的工程意识,培养学生理论联系实际的能力。

3 结论

通过对课程进行教学改革,给予学生充分实践、创新的时间,发挥学生主动思考能动性;以参考方向和基尔霍夫定律为主线展开理论教学,降低课程学习难度,使学生容易理解、掌握电路分析的基本方法;由电路现象来分析电路本质,以及通过由点及面将理论知识转化为实际应用,启发学生工程思维,锻炼学生工程意识。

参考文献

[1]陆国栋.实验教学改革的思考与实验分类研究[J].中国大学教育,2010(9):72-74.

[2]周蕾等.“电路分析”课程的改革与探讨[J].电气电子教学学报,2014(5):32-33.