基坑变形监测范例6篇

基坑变形监测范文1

【关键词】深基坑变形监测

中图分类号:TV551.4文献标识码: A 文章编号:

基坑在施工过程中表现的各种形态实质上由其内在的力学规律所驱动,可以断定通过监测数据的挖掘分析完全能找到表象数据所隐含的规律。因此以系统收集的数据为基础,研究基坑在施工过程中的变形规律,采用先进合理的数据分析手段,发现监测数据特征和工程危险之间的联系,对于控制今后工程的施工风险,是一项十分必要的工作。

深基坑变形监测现状

随着越来越多高层建筑的深基坑施工,不断出现基坑土体开挖施工对临近建筑物造成不利影响的情况。首先由于基坑施工带来邻近土体垂直位移,引起邻近建筑物地基不均匀沉降,最终造成上部结构变形的情况;其次由于基坑施工带来邻近土体的水平位移,导致邻近基坑的各种地下管线产生应变而破坏。所以,研究深基坑变形监测对深基坑施工具有重要意义。

国外十分重视基坑开挖及地下结构施工的实时监测,有精确的电脑数据采集系统,随施工进展跟踪和反馈地质条件、土体、水位、支撑应力等的变化,以完善施工或设计方案。监测项目具体包括地下水位、水土压力、桩顶或墙顶水平和竖向位移、支撑应力与变形、坑底隆起、深层土位移、邻近建筑物和地下既有设施的沉降或裂缝等因基坑开挖和降水而可能引起的各种变化。

目前国内主要根据《建筑基坑工程监测技术规范》(GB50497-2009)进行深基坑工程监测,监测内容有基坑支护位移监测、基坑支护结构体系应力监测、孔隙水压力监测、坑内土层监测等,主要仪器有:测斜装置、钢筋计、孔隙水压力计、水准仪等。

二、深基坑变形预测与监测方案

1、地铁深基坑围护结构变形控制值的确定

地铁深基坑围护结构变形监测的控制值是深基坑施工监测的核心。确定一个合理有效适用的控制值也是深基坑设计施工的关键内容。在深基坑施工过程中,为满足支护结构及临近建筑物的安全要求,只有对基坑支护、基坑外土体及相邻的建筑物进行综合、系统的监测,才能对工程情况有全面的了解,并根据观测数据及时调整施工方案,以确保工程的顺利进行。深基坑施工过程中的变形控制是伴随着地铁施工全过程的。深基坑施工过程中的变形主要表现在两个方面:围护结构的变形和在基坑周边土体的变形。围护结构的变形直接影响着基坑施工安全,而基坑周边土体的变形对周围影响范围内的建筑物、构筑物的使用安全形成威胁。基于以上原因提出不同的基坑工程环境应有不同等级的变形控制要求。

基坑监测布置方案

(1)工程概况

宁波轨道交通2 号线为西南—东北方向的基本骨干线,线路全长28. 350 km。全线共设置车站22 座,其中地下车站18 座,高架车站4 座。其中2 号线8 标汽车市场~ 甬江北站区间是宁波市轨道交通2 号线一期工程的一个地下两层明挖区间,区间地下二层设有双列位停车线,地下一层为物业开发层。区间采用明挖顺作法施工,围护结构型式为0. 8 m厚地下连续墙。区间总长337. 132 m,宽17. 8 ~ 19. 3 m,明挖基坑开挖深度16. 2 ~ 17. 2 m。

区间基坑开挖范围内地质为: ①1填土、①2黏土、①3淤泥质黏土、②1黏土、②2b层淤泥质黏土、②3层淤泥质粉质黏土、②4层淤泥质黏土、③1层粉土、粉砂夹粉质黏土、③2层粉质黏土、④2层黏土、⑤1层黏土、⑤2层粉质黏土、⑤3层粉土、⑥2层粉质黏土、⑥2a层粉土、⑦1层粉质黏土和⑧1层粉砂、粉土等。地下水主要为第四系松散浅层孔隙潜水类型和深部松散岩类孔隙承压水。区间典型地质如图1所示。

图1 区间地质断面

(2)基坑监测布置方案

基坑监测的目的是为了及时掌握开挖过程中围护结构的位移变形情况,以及钢支撑的轴力变化情况,以便与设计相比较,通过这种信息反馈,科学合理的安排施工工序。宁波2 号线8 标地铁区间基坑开挖过程中监测内容有: 基坑外地表沉降、建筑物沉降、基坑外水位观测、钢支撑轴力和地下连续墙墙顶变形。监测点平面布置图下图所示:

图2 区间部分监测点平面布置

(1)基坑外地表沉降监测。由于基坑的开挖,使得基坑外侧土体由于应力场的改变而产生沉降,影响显著区域一般在3 倍基坑开挖深度范围内。在垂直于基坑地下连续墙边线外共布设剖面沉降监测点,每一个开挖段布设一组测量断面。每一测量断面在垂直基坑方向2 倍挖深范围内布设5 个沉降测点。每隔50 m 左右布设一个断面,与墙体测斜孔相对应,每断面点与点之间的间距为5 m 间隔,由5 点组成一个断面。

(2)建筑物监测点。基坑工程施工会引起周围建筑物产生沉降,较大的沉降或不均匀沉降都会危及周围建筑物的安全,为全面了解施工引起的对周围建筑物的影响情况,并能根据监测信息实时的调整施工参数,以确保周围建(构)筑物的安全,在施工期间内对建筑物的沉降进行观测。

(3)基坑外水位观测。地下水位观测孔沿基坑周边布设,每40 ~ 50 m 间布设一孔,保证每侧至少布设1 孔。深度为基坑开挖深度以下1 m。

(4)支撑轴力监测。支撑轴力监测是在基坑开挖及主体结构施工过程中,对支撑轴力的大小和变化情况进行观测,结合围护结构的位移情况对支撑结构的安全和稳定性做出评价。支撑轴力每24m 至少确保有一组墙体变形的监测点,每两个开挖段有一组支撑轴力监测点。在混凝土支撑上各布设钢筋应力计断面,每个断面在支撑四边中心的主筋上对称安装4 个钢筋应变计,在钢支撑上安装反力计。

(5)地下连续墙墙顶变形。监测地下连续墙顶部变形监测点对应地下连续墙垂直、水平位移监测孔布置。

深基坑变形预测与监测数据分析

监测的结果如下图图一、图二、图三、图四。

由图一、图二可以看出,基坑周围各个测点的地表累积沉降位移值以及地下连续墙墙顶累积沉降位移值均随着时间的推移逐渐增大,各个测点的累积沉降曲线基本相同,变形速率较为均匀。地表沉降位移平均速率与地下连续墙墙顶沉降位移平均速率均在一个数量级内,两种沉降位移值均随着基坑的开挖深度增大而增大。在相同时间内,距离基坑近的地表沉降大于距离基坑远的地表沉降。所以在施工过程中应时刻注意基坑附近的地表变形情况,同时较少堆载及重载机械的逗留、行驶,尽量保证一个安全距离。同时当基坑开挖进行时,沉降速率增大,当支撑架设完毕后一段时间内沉降则逐渐反弹,所以应该根据沉降的变形曲线合理安排开挖的时间及开挖断面。

由图三可以看出,所有钢支撑均受压,未出现拉力。基坑开挖采取分层、分段、放坡的开挖方式,从2 月份到3 月底,基坑一直在第一、第二层开挖,基坑的深度相对有限,未出现拉力、松脱现象。此时,钢支撑轴力的增量随着开挖深度的增大及时间的延续逐渐增大。

由图四可以看出,基坑外水位变化在2 m 内,同时从建筑沉降回弹现象也可以得知,基坑外地下水位变化较小。其中在3 月2 号至7 号一直出现大暴雨,导致水位出现上涨。

图一 地表累积沉降时间曲线

图二 地下连续墙墙顶累积沉降时间曲线

图三 钢支撑轴力增量时间曲线

图四

总结

地铁基坑工程的监测对基坑工程的设计与施工非常重要,也是实现信息化施工所必须具备的。根据监测数据的分析结果能够很好地把握基坑支护结构的变形规律以及受力特点,为安全生产提供更有效的保证。

参考文献

[1] 余志成,施文华。 深基坑支护设计与施工[M]. 北京: 中国建筑工业出版社, 2000: 71- 81.

[2] 汉,黄书秩,程丽萍。深基坑工程[M]. 北京: 机械工业出版社, 2003: 382- 404.

[3] 李东海,刘军,赵智涛,等. 盾构吊装对竖井的实时监控量测[J]. 市政技术, 2005, 23( 2) : 131- 133.

[4] 北京市城乡建设委员会。GB 50299- 1999 地下铁道工程施工及验收规范[S]. 北京: 中国计划出版社, 2004.

基坑变形监测范文2

【关键词】建筑工程;基坑;变形监测

随着我国经济的高速发展,高层、超高层建筑大量兴建,深基坑工程越来越多,而深基坑开挖和暴露期间的安全,会直接影响到周围建筑、公路、管线等的基础稳定。深基坑开挖后,由于土体平衡被打破而导致土应力发生改变,土体支护结构及本身出现变形,导致周边建筑物出现不同的沉降、位移、挠曲、倾斜和裂缝等现象,因此在基坑施工过程中,不仅要对基坑及周边建筑物进行连续的变形观测,也要对发现的问题,及时采取措施,做好预防工作,确保建(构)筑物的安全。

一、基坑变形

(一)基坑变形概述

基坑在开挖施工过程中由于受基坑土质、开挖深度及尺寸、周围荷载、支护系统及施工方法等诸多因素影响,变形将是不可避免的。尽量减少基坑开挖对周边环境的影响。加强对基坑周边建筑物、基坑土体及支护桩的位移等进行变形监测。尽可能的对它们在后续施工中的变形进行预测。了解其有无较大的不均匀沉降,以便采取有效的补救措施等,是现代建筑基坑施工中面临的必须解决的重要问题。

(二)基坑变形机理

深基坑无论是哪种形式的变形,究其原因,主要是由于基坑开挖而导致的基坑周围地层移动。基坑的开挖过程是基坑开挖面上卸载的过程,卸载会引起土体在水平或者垂直方向上原始应力的改变。随着基坑的开挖,水平方向上由于坑内外土压力的作用而使围护结构产生位移,周边地表产生沉降。垂直方向上由于基坑内外高差所形成的加载和地面各种超载的作用而使坑底产生向上的隆起。这就是基坑变形机理

二、基坑变形监测

(一)基坑变形监测的目的

在基坑施工过程中,由于地质条件、荷载条件、材料性质、施工条件等复杂因素的影响,很难单纯从理论上预测施工中遇到的问题。基坑工程的设计预测和预估只能够大致描述正常施工条件下,围护结构与相邻环境的变形规律和受力范围,仅此是不够的,还必须在基坑开挖和支护施工期间开展严密的现场监测。基坑工程施工及地下结构施工期间,应对基坑支护结构受力和变形、周边建筑物等保护对象进行系统的监测,通过监测,及时掌握基坑开挖及施工过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;同时通过监测资料与设计参数的对比,可以分析设计的正确性与合理性,科学合理的安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全,相邻建筑物不受施工的危害。在实际施工中我们经常采用信息化施工的方法,实施边施工边监测,并及时反馈监测结果。通过信息化施工,监测小组与驻地监理、设计、业主及相关各方建立良性的互动关系,积极进行资料的交流和信息的反馈,进一步优化设计,调整方案,确保工程施工的顺利进行和构筑物的安全。

(二)基坑变形监测的内容

(1)水平位移监测。围护结构顶部水平位移是围护结构变形最直观的体现,是整个监测过程的重点。围护结构变形是由于水平方向上基坑内外土体的原始应力状态改变而引起的地层移动。基坑开挖时水平方向影响范围为1.5倍开挖深度,水平位移及沉降的监测控制点一般设置在基坑边2.5~3.0倍开挖距离以外的稳定区域。变形监测点的布置和观测间隔应遵循以下原则:间隔5~8m布设一个变形监测点,在基坑阳角处、距周围建筑物较近处等重要部位适当加密布点。基坑开挖初期,可每隔2~3d观测一次;开挖深度超过5m到基坑底部的过程中,可适当增加观测次数,以1d观测一次为宜。特殊情况要继续增加监测频次,甚至实时监测。

(2)垂直沉降观测。沉降监测高程控制网测量:采用独立水准系。在远离施工影响范围以外两侧各布置一组稳固水准点。沉降变形监测基准网以上述永久水准基准点作为起算点,组成水准网进行联测。

(3)沉降监测。基坑围护结构的沉降多与地下水活动有关。地下水位的升降使基底压力产生不同的变化,造成基底的突涌或下陷。通常使用精密电子水准仪按水准测量方法对围护结构的关键部位进行沉降监测。观测的周期、时间和次数,应根据工程的性质、施工进度、地基地质情况及基础荷载的变化情况而定。

(4)倾斜监测。倾斜监测应根据监测对象的现场条件,采用垂准法或外部投点法。垂准法应在下部测点上安置光学垂准仪或激光垂准仪,在顶部监测点上安置接收靶,在靶上直接读取或量取水平位移量与位移方向。外部投点法应采用经纬仪瞄准上部观测点,在底部观测点位置安置水平读数尺直接读取倾斜量,换算成倾斜度。经纬仪正、倒镜法各观测1次取平均作为最终结果。

(5)裂缝监测。地基发生不均匀沉降后,基础产生相对位移,建筑物出现倾斜。倾斜使结构上产生附加拉力和剪力,当应力大于材料的承载能力时即会出现裂缝。裂缝多出现在房屋下部沉降变化剧烈处附近的纵墙。对裂缝的观测应统一编号,每条裂缝至少布设二组(两侧各一个标志为一组)观测标志,裂缝宽度数据应精确至0.1mm,一组在裂缝最宽处,另一组设在裂缝末端。并对裂缝观测日期、部位、长度、宽度进行详细记录

(6)道路、管线变形监测。基坑开挖过程中,应同时对邻近道路、管线等设施进行水平位移和沉降观测。尽可能以仪器观测或测试为主、目测调查为辅相结合,通过目测对仪器观测进行定性补充。例如:目测调查周围地面的超载状况,周围建(构)筑物和地面的裂缝分布,周围地下管线的变位与损坏,边坡、支护结构渗漏水状况或基坑底面流土流砂现象。

(三)基坑工程监测仪器

(1)水准仪应用于基坑围护结构的沉降观测。基坑周围地表、地下管线、四周建筑物的沉降。基坑支撑结构的差异沉降。确定分层沉降管、地下水位观测孔、测斜管的管顶标高。

(2)经纬仪可以用作周围建筑物、地下管线的水平位移测量。主要用在:围护结构的顶面及各层支撑的水平位移和测斜管顶的绝对水平位移测量上。

(3)测斜仪按其工作原理有伺服加速度式、电阻应变片式、差动电容式、钢弦式等多种。比较常用的是伺服加速度式、电阻应变片式两种,伺服加速度式测斜仪精度较高,目前用得较多。

(4)钢筋计可用于测量基坑围护结构沿深度方向的应力换算为弯矩。基坑支撑结构的轴力、平面弯矩。结构底板所受弯矩。另外还有土压力计和孔隙水压计。

三、工程案例分析

某工程地下2层,用作地下停车库。基坑开挖深度(场内地面计起)平均8.25m,平面面积约5476m2,基坑周边长约329m。基坑支护结构形式为:①为防止边坡出现较大的变形,边坡支护采用刚度较好的“人工挖孔桩+预应力锚索”支护结构;②在支护桩外侧采用单排深层搅拌桩止水,防止基坑开挖引起四周地下水位下降,导致周边建筑物开裂并危及市政管线的安全;基坑侧壁安全等级为一级。

(一)水平位移监测

水平位移监测主要采用极坐标法。本项目支护结构顶部水平位移监测点沿基坑四周布设,共设20个,根据《工程测量规范》和JGJ/T897《建筑变形测量规程》中对水平位移变形测量的有关细则和二等水平位移测量精度要求进行。采用莱卡全站仪进行观测,在被测设的点位上可以安置棱镜的条件下,用极坐标法放样观测墩中心位置并检查是否稳定。在稳定的的前提下,以观测墩为基础对监测点进行变形监测,按计算的放样数据角度和距离测设点位。采取多个测回测量取其平均值减少角度误差;用多次观测法;对全站仪进行精密检定;选择在温度稳定,湿度变化不大的天气观测等,以减少测距误差。

式中a、b分别为测距仪固定误差和比例误差。可见,位移点点位误差与观测距离和测角中误差均成正比例关系。根据上面公式和方法得表1。

观测结果表明,基坑南侧A02测点的最大变形速率达0.2mm/d,整个监测过程最大位移量为A13测点的1.6mm,均超出设计报警值。由于此期间业主、监理及施工单位根据实际情况及时采取基坑周边禁止堆放超重荷载、局部加固等有效措施,位移量及变形速率开始减小,变形量未再继续发展。在土方开挖过程中,根据监测反映的情况采取一系列相应措施,基坑变形幅度不大,变形速率变缓且趋于稳定,最终监测到的最大位移量为A13N点的1.6mm。由最后1个监测周期数据可计算出各监测点的变形速率均小于0.1mm/d,说明基坑水平变形微小,基坑已趋于稳定。由于作业员细心观测,点位中误差均在毫米级水平,达到了监测的要求。

(二)沉降观测

沉降观测采用工程测量方法,监测仪器使用精密电子水准仪,观测精度为0.3mm,观测时按照精密水准测量(国家二等水准测量)的技术要求进行。观测路线要固定,观测时要前后视距相等,采用后一前一前后的观测顺序,测站数尽可能为偶数,一个测站调焦一次,前后视距用钢尺丈量,往返观测形成闭合环线,闭合差限差为± (n为测站数)。

沉降监测基点为标准水准点(高程已知),监测时通过测得各监测点与水准点(基点)的高差h,可得到各监测点的标准高程Ht,然后与上次测得的高程值进行比较,其差值H即为该测点的沉降值。

观测结束后对观测成果进行整理,待观测数据各项限差满足《规范》要求后,采用测量平差软件进行严密平差,求得各点高程并作精度评定(表2)。

由表2可以看出监测点的最大沉降均在规范要求的限差范围内,建筑物及地表的观测点的日沉降量均小于等于0.1mm/d。一般性观测项目的日沉降量在0.1—0.104mm/d之间,可认为沉降已趋于稳定,所以可以认为该建筑物及地表的沉降处于稳定状态。

参考文献:

[1]陈必盛.某基坑变形监测与分析[J].西部探矿工程,2012(10).

基坑变形监测范文3

1城市建筑区深基坑变形监测的目的以及意义

深基坑是指开挖深度不小于5m的基坑,多年的实践经验告诉我们,要想保证基坑的施工安全就需要具有周密的设计、精心的施工以及周全的变形监测。在对一些比较复杂的大中型类型的工程或者对周围的环境要求比较严格的项目,往往在进行变形监测时很难借鉴以前的经验,需要相关人员根据已有的理论,进行对应的改造,做好基坑的支护和周边环境的监测工作,来确保深基坑能够得到安全施工。之所以进行深基坑监测,目的主要有以下4点:①能够为我国的信息化施工建设提供重要依据;②为设计实现优化提供重要依据;③是实现基坑工程的设计理论发展的重要手段之一;④能够对深基坑施工周围的建筑进行有效的保护。进行深基坑监测的意义则是主要表现在:首先,需要借助监测所得的数据对施工全过程进行对应的指导,充分了解该进行何种类型的工程方案设计;通过观察施工环境以及周边的环境,保证地下设施所受到的影响能够降低到最低程度;对即将出现的风险,进行及时的发现和解决,能够在第一时间内采取补救措施。通过以上的分析,可以知道基坑监测是保证基坑支护结构稳定性的重要手段,能够对施工全过程可能面临到的危险事件,进行有力避免,并且还能够及时调整施工方案,为基坑施工过程的安全提高了保障。

2城市建筑区深基坑变形监测内容和基本方法

城市建筑区基坑监测的主要涉及到的内容有:围护桩、水平支撑发生的应力变化;围护桩地下桩体的侧向位移、围护桩顶的沉降;基坑内坑底回弹监测、对基坑内外部地下水位的监测;对地下土体的孔隙水压力以及土压力的监测;基坑外部土层的分层沉降等。在选择基坑的监测方法时一定要综合考虑各个方面的因素,比如要结合场地的条件、设计要求、基坑的种类、周边环境等各方面因素,保证所选用的监测方法能够有利于施工现场的顺利进行,还要简单易操作。当前对深基坑的变形监测中,国内外采用的主要的方法有物理模拟法、经验公式预测法、数值模拟法、半理论版解析法以及非线性预测方法等。对于城市建筑区的深基坑工程监测工作来讲,它的工作同样也需要做好4个方面的工作,它们分别为支护结构的应力监测、支护结构的外力监测、对支护结构变形的监测、对周边环境以及外部建筑物的监测,这4个部分的内容,又分别保含若干个小的方面,比如支护结构的应力监测就包括对自身应力的监测以及支撑结构的应力监测等,这里就不一一赘述。

3工程案例

3.1工程概况

此次选取的城市建筑区基坑施工是广东省某项目的施工,该工程拟建设4栋高为25层的楼房,主要分为两个基坑,基坑之间的距离约为95m,所开挖的基坑面积为10200m2,深度为13m。在基坑中每隔40m就借助放坡土钉挂网喷混凝土进行,剩下的部分则采用支护桩进行基坑支护。经过现场勘查判定该处的施工建设属于A级建筑类型,基坑的安全性非常重要,高达一级。之所以基坑施工非常复杂是因为在基坑的周边还存在十几栋的房屋建筑,基坑的边缘距离房屋建筑的最近距离甚至都不足2m,另外在基坑的周围还埋设有很多电缆、煤气罐、水管等设施。

3.2监测的对象

监测的内容主要分为位移监测、沉降监测,其中又包括支护桩、土体、地下设施、建筑物等。

3.3监测基准网和监测点

(1)监测网。监测网又分为平面监测网和高程监测网。在铺设平面监测网时,由于建筑区周围的建筑非常密集,所以借助导线布网的方式,在保证不会受到基坑变形影响范围之内布设基准点,考虑到工作点比较容易发生变形或者破坏,所以需要多次设定工作点。在除此布设控制点,总共布设了15个点,导线网的总长约为2km,另外边长长度在25~250m左右。按单位方位角和坐标开始计算,在经过平差计算之后,测角中误差在正负1.7分,最弱点点位中误差±2.5mm。高程监测网则设置基准网点7个,其中包括1个起始点和2个结点,精度能够评定每公里测量偶然中的误差±0.5mm,全中误差±0.3mm。

(2)监测点。监测点的类型主要包括位移监测点、沉降监测点、支护桩监测点以及土体监测点等,监测点的位置一般会设置在基坑周边以及底部、周边的建筑物、基坑支护桩等位置。

3.4变形的测量

考虑到施工场地比较狭小,借助通视进行测量会比较难实现,所以在监测支护桩的监测点、房屋监测点以及土体监测点的测量时,会采用极坐标法进行测量,不过需要注意的是在进行测量的时候一定要保证按照四等导线观测的相关要求,多数要取多次测量的平均值,最终的取值要在经过红外仪改正之后的数值。沉降监测点则是需要按照二等水准的相关要求进行测量,保证所取的测量结果的误差要小于±1.3,争取将平差计算之后的所有误差均控制在±0.2mm中。

3.5对测量结果的校验

由于基坑的施工场地过于狭小,所以工作点用的基准网点受到施工的影响会比较大,发生了很大的水平位移甚至有的被破坏。另外在监测过程中还出现过几次不同程度的补点破坏,都及时得到了修复,采用基准网的点作为起始数据。在把工作点恢复之后,对计算结果的最弱点点位中误差、最大测角中误差、最大坐标闭合差进行相关检测,发现它们都符合相关要求。按照四等平面的要求对以极坐标法测量的基坑支护桩监测点进行计算,将全站仪以极坐标法测定支护桩监测点,并对基坑支护桩两两监测点之间的直线距离进行检查,发现监测点之间的平均距离约为70m,直接测量的监测点的水平角和坐标反算水平角最大的夹角差在7″之内,边长差均小于1.6mm。对高程监测点则采用二等水准进行测量,对3个一等高程基准网点进行联测,测量方法是将其中的两个点作为起算,然后借助数学的平差计算方法进行计算,将剩余的那一个一等高程基准网点的平差数据和已知数据进行比较,发现相差为0.1mm。

3.6结果探讨

通过对此次基坑施工变形的相关监测,我们知道当平面监测和沉降监测水平在达到一定的精度之后,借助沉降监测点的沉降数据是能够推算出在一定高度之内房屋建筑所发生的水平位移以及倾斜角的,并且所推算的值和直接测量的值之间存在较大的吻合性,推算结果不仅和变形有关系,而且还和两沉降监测点之间的距离有密切联系。当监测的对象比较高时,则需要考虑其它因素对它的影响,比如日照、风力、温度等因素,因为这些因素对较高观测对象的变形、扭曲有一定的影响作用。

4结语

基坑变形监测范文4

关键字 深基坑;水平位移;变形监测

Abstract: Monitoring of deep foundation pit is a key link of quality control in the engineering construction, monitoring and early warning of deep foundation pit deformation based on informatization construction is the key link of modern engineering, but also speed up the construction of the foundation pit engineering and to improve the quality, reduce project accident indispensable link. In this paper the author of their own in the foundation pit monitoring practice experience, with three kinds of deep foundation pit in common deformation monitoring as an example, deep foundation pit deformation monitoring methods are briefly analyzed, and strive to provide a peephole view for the related problems in construction of deep foundation pit crack.

Key words deep foundation pit; horizontal displacement; deformation monitoring

中图分类号:TU19 文献标识码:A文章编号:2095-2104(2013)

随着我国城市化建设的不断推进,城市工程建设呈现井喷式的发展。对空间的利用不仅表现在由地面向高空的拓展,同时也表现在由地面向地下的延伸。在城市地下空间的利用中,高层建筑的地下室、地铁交通系统、地下商场以及过江隧道等利用形式随处可见,成为缓解城市用地矛盾,提高城市土地利用效率的有效形式。而对于地下空间的开发利用,首先必须面对的就是大规模的深基坑工程施工,由于深基坑的施工理论和施工技术还都不成熟,施工中常常存在着各种不断变化的影响因素,目前,仅靠设计理论和工程经验难以解决深基坑工程的安全和质量问题,往往造成巨大的基坑安全事故,给工程建设带来巨大的人员伤亡和经济损失,给社会带来较恶劣的影响,因此,基坑监测工作的重要性不言而喻。

一、深基坑变形监测工作相关问题概述

、变形监测的目的

通过实时监测基坑周边土体和基坑支护结构内力的最新变化情况,及时准确地掌握基坑和周围建筑物以及其它构筑物的变形状况,把实时监测所得到数据和工程设计中的预期数据进行多方面、系统化的对比论证,根据对比得出的结论,对施工技术和工程参数进行重新评估,以判断施工计划是否有必要进行修改,以适应下一步的施工方案,为后续施工的开展提供实时的信息数据支持,达到信息化施工的要求。为施工方案的制定、安全和环保措施和设计方案的改进提供第一手的数据支持。

(二)、变形监测的项目

深基坑的变形监测是一个范围广泛的工程监测过程,由于深基坑施工中水文、地质、周围建筑物存在千差万别所以具体的监测项目有着很大的不同,笔者个人认为一般情况而言深基坑的变形监测项目主要如下表所示:

表1:深基坑变形监测项目表

该图表为笔者根据自身经验总结的深基坑变形监测的一般项目,实际操作中具体监测内容以实际施工条件为基础制定,本表格仅供参考之用。

二、深基坑变形监测方法简析

(一)、垂直方向(沉降)的位移监测

主要是围护墙顶部的垂直位移变化和基坑周围地表、建筑物、道路沉降监测。

1:沉降监测中基准点的埋设方法分析

在基坑外(一般离基坑50米以外)埋设三个水准基准点作为起始数据的基本控制点,要求埋设的地点要不受施工的影响,土质有相当的稳定性,为保证沉降观测结果不受水准基准点可能存在位移和沉降的影响,必须定期对水准基准点的稳定性进行检核,通常情况下是通过三个水准基点相互验证其稳定性;支撑轴力的监测一般是在支撑立柱的顶部焊接钢质构件布设监测仪;基坑周围地表、建筑物、道路沉降监测点一般布设在建筑物或者是其它构筑物的拐角处,离地面20CM高的地方,并且要尽量避开水管,窗台护栏等有碍于视线观察的物体。

2:沉降监测的要点分析

笔者认为沉降监测的要点主要有以下几点:

(一)基准点和观测点的首次观测一般为三次往返观测,以采集到最为可靠的初始值;以后每期均为单程观测即可,由所有的观测点组成闭合水准路线。

(二)根据水准控制线路,观测深基坑周围的建筑物或者构筑物的沉降点变化,支撑力柱的沉降量变化,采用闭合水准路线测量各沉降点的高程。

(三)设站和立尺要注意避开如起重机、塔吊等危险施工器械的下方,避开混凝土搅拌机、施工现场配电房等干扰源。以免对监测数据产生影响。

(四)和许多工程监测一样,在深基坑变形监测中当沉降观测外业数据采集完后,应进行数据的平差处理,以计算出各基坑监测点的高程,再计算各点在一个观测周期内的沉降量,计算各点的累积沉降总量,计算各点的沉降速率等。

(五)监测所采用的设备和仪器必须符合国家相关主管部门的规定和行业标准,并且根据实际的施工条件可采取多种监测方法和监测内容,不必局限于一定之规。

(二)水平方向的位移监测

水平位移监测主要表现在内部围护体的水平位移变化监测、围护墙的顶部水平位移变化监测、深层水平位移变化监测等几个方面。

1:水平位移监测基准点的埋设方法分析

基坑施工中,基坑从外形来说主要呈现长方形和不规则图形两种,在实际监测中为了确保观测视线的长度不大于200M,通常在基坑的拐角处布设3个或3个以上的工作基点;根据设计中关于围护墙的预期数据在支护结构顶部冠梁位置以埋设观测墩的形式布设观测点,架设的观测设备要注意避开支护结构中的安全栏等有碍视线的物体,以免造成观测失真。

2:水平位移监测的要点分析

笔者认为水平位移监测主要有如下要点值得注意:

(一)规则形状(如长方形)基坑水平位移监测,有视准线法、小角度法、投点法等多重方法可供选择;基坑形状复杂(形状不规则),需要对基坑不同方向的水平位移进行监测,有小角法、前方交会法,后方交会法、极坐标法等方法可以采用;当监测点与基准点无法通视时,还可考虑采用GPS测量法与基准线法相结合的监测观测方法。

(二)采用相同的观测方法、观测路线和监测仪器对同一项目进行监测,确保数据的连贯性和准确性。

(三)固定观测路线、观测方法和露天作业时间。

(四)采用极坐标法进行位移变化监测时,一般选取基坑水平长边为X轴,垂直长边为Y轴进行坐标计算。

(三)倾斜监测(深层水平位移监测)

1:倾斜监测的方法分析

基坑围护结构(建筑物)的倾斜监测一般有两种方法,一是直接测定其倾斜;二是通过测量建筑物基础相对沉降的方法来确定建筑物的倾斜,直接测定建筑物的倾斜要测定建筑物顶部相对于底部或各层间相对于下层的水平位移与高差,分别计算整体或分层的倾斜度、倾斜方向以及倾斜速度等;通过测定建筑物基础相对沉降的方法确定倾斜时主要是通过把斜测仪和探头组合后,采用:钻头埋设、以及预制和捆绑埋设的方法进行测量。

2:倾斜监测的要点分析

结合倾斜监测的特点和自身的实际经验笔者认为倾斜监测要注意如下几点:

(1) 测斜管应以垂直埋入;埋在桩体或者是地下连续墙中的斜测管应与钢筋笼 扎牢。

(2) 测斜管的一对导向槽和基坑方向要保持垂直。

(3) 要以测斜管中的不动点作为测量基准,一般把管底作为测斜管中的不动点。如果护坡桩、地下连续墙的插入比不大,无法保证底端不动,则应以管顶为观测点,测量该点的水平位移,计算出测斜管在不同深度的水平位移。

三、结论

深基坑变形监测是深基坑工程质量乃至整个工程质量控制的关键环节,众多地下工程建设成败的关键所在。按照基坑工程的实际情况确定监测的范围,方法以及技术手段和测量设备是做好深基坑监测工作,实现信息化施工的决定因素。以监测手段创新为突破口、高技术设备为依托是搞好深基坑变形监测的主要途径。

参考文献

[1]王进《深基坑监测技术探讨》《技术与市场》2011年04期

基坑变形监测范文5

关键词:建筑;基坑变形监测;误差;措施

中图分类号:TV551.4 文献标识码:A 文章编号:

引言

随着城市建设的高速发展,高层建筑越来越多,基坑工程施工朝着开挖深、工作面窄、周边房屋及地下管线近的特点发展。当前,基坑工程监测与设计、施工同被列为深基坑工程质量安全保证的三大基本要素。基坑工程监测已成了工程建设必不可少的重要环节,同时也是指导正确施工,避免安全事故发生的必要措施,是一种信息技术。

1.主要监测内容

深基坑工程监测应以获得定量数据的专门仪器测量或专用测试元件监测为主,以现场目测为辅。深基坑工程监测的主要内容包括:变形监测、应力监测、地下水动态监测三个方面。深基坑工程监测工作应根据设计要求、基坑周边环境状况及开挖施工方案等在基坑开挖前制定监测方案。监测方案应主要包括下列内容:

①监测目的、监测项目、监控报警值、监测方法与精度要求等;

②各监测项目的实施细则,包括监测仪器、监测点的布置、观测周期、工序管理和记录制度等;

③信息反馈体系。各种监测的具体对象、方法。

监测项目的选择应根据基坑工程的安全等级而定,可以分为必需进行的项目和有条件时宜进行项目两类。

2.支护结构的变形监测

支护结构的水平位移及沉降观测是基坑变形监测工作的重要组成部分,具有直观、操作性强等特点,所以一般的基坑变形监测都将其作为一个主要内容。它包括以下几项基本要素:

(1)基准点。观测基准点要求稳固,应设在开挖和降水影响范围以外,数量不得少于2个。

(2).观测点。在基坑周边一定间距布置的水平位移监测点间距不宜大于20m,在关键部位宜加密测点,监测点的布置应满足监控要求。

(3)观测精度。观测的基本精度要求,应根据观测对象的容许变形范围、变形速率、观测周期等多种因素综合分析确定,可分为高精度和中等精度两类。

(4)观测频率。基坑开挖施工期间,每天应有专人进行现场目测。现场检测人员应及时分析各种监测资料,捕捉险情发生前的种种前兆信息,实现险情预报。监测的时间间隔应根据施工的实际情况确定。

(5)观测资料整理。每次水平位移观测要求记录各个观测点的位移量、累计位移量、位移速率等。每次沉降观测要求计算出各观测点的高程、累计沉降量、本次沉降量、沉降速率。观测期间应根据各个勘察观测成果绘制沉降-时间关系曲线图、水平位移-时间关系曲线图、沉降-水平位移-距离关系展开曲线图等,方便对数据进行科学分析。

3.全站仪直接坐标监测

目前水平位移及沉降观测通常采用全站仪直接坐标法,全站仪直接坐标法采用的仪器一般是采用双轴补偿器的170m免棱镜测距的Leica TCR402 power,该仪器测距精度为2mm+2ppm,测角精度(水平角和垂直角)为2";性能相对其他仪器较稳定。该仪器测高程的精度略高于S3型施工用水准仪,在安全等级要求“一般”的工程项目中完全可以用该全站仪测高程以取代S3型水准仪。当然沉降观测精度要求比较高的工程项目,该仪器测高程就无法达到其精度要求了。

水平位移变形观测点的设置采用贴上述(4cm×4cm)Leica棱镜反光片于(100mm×50mm×500mm)木桩侧面上,木桩用C20混凝土固定于桩顶梁或基坑边坡坡顶处(在桩顶梁上预留锚固钢筋或钎入锚固钢筋于坡顶土体里,使该处桩顶梁或坡顶土体的位移变形与棱镜反光片变形观测点同步);所有位移变形观测点棱镜反光片对准方向均为仪器测站,每一项目均只设一站仪器测站。仪器站的设置必须能同时与该项目所有位移变形观测点和两个以上的首级控制点通视。

4.全站仪直接坐标法监测的误差分析

(1)控制点间的点位误差;

(2)测站仪器的误差(仪器的测距精度、测角精度,仪器对中误差,气压及温度的影响);

(3)变形观测点处来源于棱镜反光片、手持棱镜杆(或架)、手持Mini棱镜杆的误差。

仔细分析这三方面的误差来源,控制点点位误差一般可以控制在±3mm;(6cm×6cm) Leica棱镜反光片若采用激光对中器对中、每次观测前设置好仪器的气压和温度改正,仪器站误差可以控制在+2mm内。上述第三项误差才是最主要的误差来源,采用棱镜反光片和采用上述固定棱镜反光片的方法误差可控制在+2mm。若控制点也采用(6cm×6cm)Leica棱镜反光片和使用方向、距离后方交会时,前三项误差可控制在±3mm。第三项误差在使用Mini手持棱镜杆时误差有时可大到±20mm,因为该棱镜杆在长期的使用过程中会弯曲变形。

5.结论

全站仪直接坐标法是目前位移变形观测的首选,使用(6 ×6cm) Leica棱镜反光片作为首级控制点和变形观测点,能较有效地提高位移变形观测的精度,避免了许多因转仪器站控制点和设置反光前视棱镜的人为的误差来源,使测量成果更真实可靠。

参考文献:

基坑变形监测范文6

关键词:水平位移测量;视准线法;小角法;前方交会;后方交会;极坐标

Abstract: With the rapid development of the city's economic construction, urban land is more and more tense, which makes the urban development had to go upward or downward, such as the deeper and deeper excavation of foundation pit. In order to ensure the safety of the excavation support system, no matter the primary, secondary, or third pit, according to the requirements of Building Foundation Pit Project Monitoring Technical Regulation GB50497-2009, the horizontal displacement of the pit top are required to be monitored. Hereby, this paper will expounds the several methods for the current horizontal displacement monitoring.

Key words: horizontal displacement measurement; collimation line measurement; small-angle measurement; forward intersection; resection; polar coordinates

中图分类号:TV551.4文献标识码:A 文章编号:2095-2104(2012)

视准线法

视准线法,主要应用在场地比较开阔,基坑比较规整的长方形或正方形基坑。

(1)基准点的布设:在基坑的四个边上分别布设一对基准点。基准点应离开基坑的距离不小于开挖深度的3倍。一对基准点应与被监测点基本在一条直线上,误差不大于5cm。见附图:

(2)观测方法:在一个基准点架设仪器,另一个基准点定向。利用经纬仪或激光准直仪直接观测一个强制对中装置的觇牌上的标尺读数。根据精度要求观测多个测回,求平均数计算位移增量,计算基坑坡顶监测点的本次位移量及累计位移量。

视准线法的优点和缺点:优点是观测数据直观,对仪器精度要求不高,方法简便。缺点是受场地影响较大,只适用于规则的基坑,幷且距离不宜太远。

2.小角度法:

小角度法主要是适应基坑相对比较规则,个别点监测点与一对基准点不在同一直线上,但与两基准点角度不大的基坑。

(1)基准点的布设:采用小角度法观测水平位移的基准点的布设与视准线法要求基本一致。也是沿基坑的每一周建立一条轴线(即一个固定方向)。

⑵观测方法:在一个基准点加设仪器,另一个基准点定向利用经纬仪直接观测一个强制队中的觇牌。读取监测点的角度。根据精度要求观测多个测回求平均角度值。用固定方向与测站位移点方向的小角变化β"(偏离视轴线的小角一般不大于30")。

按公式:

s= β" /p*s

(s的测量精度不小于1/2000,可以只观测一次)计算增量,比较每次的变化值,计算水平位移量。

⑶小角度的优缺点:小角度对距离测量精度不高,但对角度测量精度要求较高,并且距离不宜太远,工程量较大,效率低。

3.前方交会法

前方交会法适用变形点上不便于架设仪器的基坑,精度要求较高的基坑作业。

(1)采用前方交会法基准点布设:为了满足监测要求在基坑的四周布设高精度的控制网,控制网应满足将来前方交会60°~120°要求。基准点应采用观测墩、强制对中装置。

(2)前方交会的观测:前方交会的观测采用的仪器精度应不小于1",采用DJ1型仪器应观测6个测回,求角度平均值α、β(α、β角度不小于30°),按公式:

求P点的坐标。每次观测的坐标值与首期观测值比值,计算每期的位移量和累计位移量。

P点位中误差的估算公式为:

为测角中误差,D为两已知点距离。

前方交会的优缺点:精度高,但作业复杂,劳动效率不高。

后方交会法:适用于变形监测点上可以架设仪器,且与3个基准点通视的基坑监测。

(3)采用后方交会法基准点布设:为了满足监测要求在基坑的四周布设高精度的控制网,基准点应采用强制对中装置。

(4)后方交会的观测:后方交会的观测采用的仪器精度应不小于1",采用DJ1型仪器应观测6个测回,求角度平均值α、β(α、β角度不小于30°),按公式:

其中:

后方交会的优缺点:设站在监测点上对基准点的位置可以进行选择,精度高,单作业效率低。

4.极坐标法:

随着测绘仪器向高精度、自动化的发展,特别是测量精度0.5"、1"测量机器人的出现,极坐标法越来越多的在基坑监测中被广泛应用,这里重点介绍一下极坐标法。

(1)极坐标法基准点的布设:基准点的布设主要采用两种方法。第一种方法就是在基坑四周大于基挖开挖深度3倍的地方布一个平面控制网,设置强制对中的观测土墩。强制对中误差不要大于0.5mm。

第二种方法是在基坑四周已有建筑物上利用反射片作为控制点,要求反射片的高度不要太高,相互的高度角差不大于3o。两点间与未来设站点的夹角不小于30 o。

(2)基准点的观测方法:采用第一种方法的控制点观测就是利用高精度全站仪观测各基准点组成的多边形角度、距离。假设一个点坐标为已知坐标,平行基坑的一对基准点的方位角为起算方位角。方位角最好为0 o或90 o进行平差计算,计算整个基准点控制网的坐标。

采用第二种方法的控制点观测采用高精度全站仪,在平行基坑的一侧做两个临时点A1、A2,假定两点坐标,方位角最好为0 o或90 o,利用A1点设站,A2定向,精确测量反射片各点的坐标,再采用A2 点设站,A1点定向,精确测量反射片各点的坐标。根据前方交会的计算公式,求取反射片各点坐标,作为基准点的坐标。

(3)监测点的观测:采用第一种方法,直接在一点设站,一点定向,一点检核,根据精度要求设置仪器,自动观测监测点的坐标。采用第二种方法,首先在基坑附近选择一点,此点应在将来施工过程中不受到很大影响。利用仪器本身的后方交会方法,进行观测求算设站点的坐标,计算精度不低于1/√2的监测点坐标中误差要求,设站点作为一个工作基点,利用反射片基准点定向,另一个点进行检核,按精度要求对监测点进行观测,监测点应强制对中观测各点坐标。

(4)数据的处理:观测数据按公式:

计算P点坐标,采用极坐标观测的成果每次观测成果与首次观测和前次观测成果进行比较。计算本次变化值和累计变化值,计算成果的变化量应为相对基坑坡顶的垂直增量,而不是整体增量。这样才能反应出基坑向量或反射片的真实变化。

极坐标法的优缺点:优点是作业方便,大大提高了工作效率,便于自动化成果处理,成果提交及时。缺点是对仪器精度要求高,精度相对低。

结束语: