遥感的原理范例6篇

遥感的原理

遥感的原理范文1

一、遥感的基本原理

(一)基本概念

遥感一词来源于英语“remote sensing”,其直译为“遥远的感知”,时间长了人们将它简译为遥感。遥感是20世纪60年展起来的一门对地观测综合性技术。自20世纪80年代以来,遥感技术得到了长足的发展,遥感技术的应用也日趋广泛。随着遥感技术的不断进步和遥感技术应用的不断深入,未来的遥感技术将在我国国民经济建设中发挥越来越重要的作用。 关于遥感的科学含义通常有广义和狭义两种解释: 广义的解释: 一切与目标物不接触的远距离探测。 狭义的解释: 运用现代光学、电子学探测仪器,不与目标物相接触,从远距离把目标物的电磁波特性记录下来,通过分析、解译揭示出目标物本身的特征、性质及其变化规律。

(二)系统的组成

遥感是一门对地观测综合性技术,它的实现既需要一整套的技术装备,又需要多种学科的参与和配合,因此实施遥感是一项复杂的系统工程。根据遥感的定义,遥感系统主要由以下四大部分组成(参见下图): 1、信息源 信息源是遥感需要对其进行探测的目标物。任何目标物都具有反射、吸收、透射及辐射电磁波的特性,当目标物与电磁波发生相互作用时会形成目标物的电磁波特性,这就为遥感探测提供了获取信息的依据。 2、信息获取 信息获取是指运用遥感技术装备接受、记录目标物电磁波特性的探测过程。信息获取所采用的遥感技术装备主要包括遥感平台和传感器。其中遥感平台是用来搭载传感器的运载工具,常用的有气球、飞机和人造卫星等; 传感器是用来探测目标物电磁波特性的仪器设备,常用的有照相机、扫描仪和成像雷达等。 3、信息处理 信息处理是指运用光学仪器和计算机设备对所获取的遥感信息进行校正、分析和解译处理的技术过程。信息处理的作用是通过对遥感信息的校正、分析和解译处理,掌握或清除遥感原始信息的误差,梳理、归纳出被探测目标物的影像特征,然后依据特征从遥感信息中识别并提取所需的有用信息。 4、信息应用 信息应用是指专业人员按不同的目的将遥感信息应用于各业务领域的使用过程。信息应用的基本方法是将遥感信息作为地理信息系统的数据源,供人们对其进行查询、统计和分析利用。遥感的应用领域十分广泛,最主要的应用有: 军事、地质矿产勘探、自然资源调查、地图测绘、环境监测以及城市建设和管理等。

(三)遥感原理

振动的传播称为波。电磁振动的传播是电磁波。电磁波的波段按波长由短至长可依次分为: γ-射线、x-射线、紫外线、可见光、红外线、微波和无线电波。电磁波的波长越短其穿透性越强。遥感探测所使用的电磁波波段是从紫外线、可见光、红外线到微波的光谱段。 太阳作为电磁辐射源,它所发出的光也是一种电磁波。太阳光从宇宙空间到达地球表面须穿过地球的大气层。太阳光在穿过大气层时,会受到大气层对太阳光的吸收和散射影响,因而使透过大气层的太阳光能量受到衰减。但是大气层对太阳光的吸收和散射影响随太阳光的波长而变化。通常把太阳光透过大气层时透过率较高的光谱段称为大气窗口。大气窗口的光谱段主要有: 紫外、可见光和近红外波段。 地面上的任何物体(即目标物),如大气、土地、水体、植被和人工构筑物等,在温度高于绝对零度(即0°k=-273.16℃)的条件下,它们都具有反射、吸收、透射及辐射电磁波的特性。当太阳光从宇宙空间经大气层照射到地球表面时,地面上的物体就会对由太阳光所构成的电磁波产生反射和吸收。由于每一种物体的物理和化学特性以及入射光的波长不同,因此它们对入射光的反射率也不同。各种物体对入射光反射的规律叫做物体的反射光谱。遥感探测正是将遥感仪器所接受到的目标物的电磁波信息与物体的反射光谱相比较,从而可以对地面的物体进行识别和分类。这就是遥感所采用的基本原理。

(四)遥感的分类

为了便于专业人员研究和应用遥感技术,人们从不同的角度对遥感作如下分类: 1、按搭载传感器的遥感平台分类 根据遥感探测所采用的遥感平台不同可以将遥感分类为: 地面遥感,即把传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等;航空遥感,即把传感器设置在航空器上,如气球、航模、飞机及其它航空器等; 航天遥感,即把传感器设置在航天器上,如人造卫星、宇宙飞船、空间实验室等。 2、按遥感探测的工作方式分类 根据遥感探测的工作方式不同可以将遥感分类为: 主动式遥感,即由传感器主动地向被探测的目标物发射一定波长的电磁波,然后接受并记录从目标物反射回来的电磁波; 被动式遥感,即传感器不向被探测的目标物发射电磁波,而是直接接受并记录目标物反射太阳辐射或目标物自身发射的电磁波。 3、按遥感探测的工作波段分类 根据遥感探测的工作波段不同可以将遥感分类为: 紫外遥感,其探测波段在0.3~0.38um之间; 可见光,其探测波段在0.38~0.76um之间; 红外遥感,其探测波段在0.76~14um之间; 微波遥感,其探测波段在1mm~1m之间; 多光谱遥感,其探测波段在可见光与红外波段范围之内,但又将这一波段范围划分成若干个窄波段来进行探测。高光谱遥感是在紫外到中红外波段范围内,并且也将这一波段范围划分成许多非常窄且光谱连续的波段来进行探测。 4、按遥感探测的应用领域分类 根据遥感探测的应用领域,从宏观研究角度可以将遥感分类为: 外层空间遥感、大气层遥感、陆地遥感、海洋遥感等; 从微观应用角度可以将遥感分类为: 军事遥感、地质遥感、资源遥感、环境遥感、测绘遥感、气象遥感、水文遥感、农业遥感、林业遥感、渔业遥感、灾害遥感及城市遥感等。

(五)遥感技术的特点

遥感作为一门对地观测综合性技术,它的出现和发展既是人们认识和探索自然界的客观需要,更有其它技术手段与之无法比拟的特点。遥感技术的特点归结起来主要有以下三个方面: 1、探测范围广、采集数据快 遥感探测能在较短的时间内,从空中乃至宇宙空间对大范围地区进行对地观测,并从中获取有价值的遥感数据。这些数据拓展了人们的视觉空间,为宏观地掌握地面事物的现状情况创造了极为有利的条件,同时也为宏观地研究自然现象和规律提供了宝贵的第一手资料。这种先进的技术手段与传统的手工作业相比是不可替代的。 2、能动态反映地面事物的变化 遥感探测能周期性、重复地对同一地区进行对地观测,这有助于人们通过所获取的遥感数据,发现并动态地跟踪地球上许多事物的变化。同时,研究自然界的变化规律。尤其是在监视天气状况、自然灾害、环境污染甚至军事目标等方面,遥感的运用就显得格外重要。 3、获取的数据具有综合性 遥感探测所获取的是同一时段、覆盖大范围地区的遥感数据,这些数据综合地展现了地球上许多自然与人文现象,宏观地反映了地球上各种事物的形态与分布,真实地体现了地质、地貌、土壤、植被、水文、人工构筑物等地物的特征,全面地揭示了地理事物之间的关联性。并且这些数据在时间上具有相同的现势性。

二、遥感的调查实践

(一)资料获取

上海市第三轮航空遥感调查采用1: 10000和1: 50000两种航摄比例尺,以彩红外的成像方式对上海全市范围展开调查。航空遥感调查的第一步是资料获取。资料获取是整个航空遥感调查的基础性工作,其进行的好坏将直接影响以后各项工作的质量与效果。资料获取的工作大致可分成四个阶段来进行:

1、第一阶段为前期工作,前期工作主要有:确定调查的时间、拟定调查的航线和完成航摄任务的招投标。

(1)确定调查的时间 城市航空遥感调查的时间一般选择在秋季或冬季。因为秋季或冬季这段时间,我国大部分地区通常晴好天气较多,空气能见度较高,地面植被的遮挡较少,因而所获取的影像资料也就较为清晰。在航空遥感调查中,针对大区域的大比例尺、完整覆盖的航摄飞行来说,其很难在一个较短的时期内完成。因此需要结合当地的气象情况,选择一个合适的时间段,来实施针对大区域的大比例尺、完整覆盖的航摄飞行。根据气象部门提供的气象资料,表明调查当时上海地区正值暖冬和春寒,在此期间晴好天气为多,空气能见度也高,经过反复斟酌,我们把调查的时间段定在1999年12月至2000年5月。

(2)拟定调查的航线 拟定调查的航线首先要确定飞行的航向,其次要在有经纬度的地图上画出详细的飞行路线。飞行的航向一般是根据被调查地域的形状来确定。通常地域形状呈南北向延伸,其航向定为南北向; 地域形状呈东西向延伸,其航向定为东西向。画详细的飞行路线应充分考虑航片的纵向重叠和旁向重叠。一般说来纵向重叠按40-60%左右考虑,旁向重叠按25-30%左右考虑。本次航空遥感调查按照市有关部门的要求,结合上海的实际情况,我们把1: 10000比例尺的飞行航向定为东西向飞行,1: 50000比例尺的飞行航向定为南北向飞行,飞行的详细路线与上海市地形图图幅的中心线相一致,航片的纵向重叠按60%设计,旁向重叠按30%设计。这样做不仅有利于航片的后期处理,也有利于测绘部门用航片来修测地形图。

(3)完成航摄任务的招投标 资料获取的实质性工作是要完成航摄任务。但作为遥感调查的业主单位,一般不具备这方面的条件和能力来承担这项任务。因此,必须通过市场招投标,选择一家有仪器设备、有技术经验的专业化企业来完成此项任务。我们在开展航摄任务招投标的过程中,首先是编制好航摄任务的招标书。编制招标书的关键是要明确航摄任务的技术要求,其中应包括: 航摄的时间、区域,航摄的比例尺、摄影种类,航摄的飞行路线、飞行姿态,航摄的纵向和旁向重叠率,航摄相机的规格,航摄胶片的规格,飞行器(飞机)上的必要装备等。其次是进行航摄任务的投标、开标、评标和商务谈判。其中评标是由我们业主选定的专家们对各投标方的投标书进行技术评价,主要是评价各投标书中提出的航摄实施方案是否真正满足招标方的航摄技术要求。在投标方的实施方案能够真正满足招标方的技术要求的前提下,再根据开标时投标方的商务报价,按最低价中标的原则确定中标单位,然后业主和中标单位通过商务谈判最终签订项目合同。

2、第二阶段为航摄准备,航摄准备的主要工作有:检查仪器设备及采购材料、召开航空遥感飞行协调会和进行航摄试飞。

(1)检查仪器设备及采购材料 航摄准备首先要对航摄的各种仪器设备作严格的检查。检查的内容主要包括: 飞行器及飞行器上的通讯与导航设备,航摄相机和航摄平台。检查的目的是要确保这些仪器设备能正常工作,并达到仪器设备本身所规定的性能指标。其次是采购有关的材料,主要有航摄的胶片和胶片冲洗液。为了获得大面积、高质量的遥感影像资料,目前这些材料仍需从国外进口。要注意的是:由于从国外进口这些材料得有一个周期,因此必须提前一段时间预先订购,并确保这些被订购的材料在正式实施航摄之前到货。

(2)召开航空遥感飞行协调会 召开航空遥感飞行协调会是航摄准备一项很重要的工作。召开这个协调会就是把负责上海地区空中管制及参加本次航摄任务的各有关单位请来,围绕本次遥感调查的航摄任务进行充分地讨论和协商,在参加会议的各方达成共识的基础上,确定航摄飞行的管制方案,明确各自的保障任务和责任,最后将会议结果形成航空遥感飞行协调会会议纪要。该会议纪要应就飞机的地面保障、飞行的空中保障、航摄区域与飞行高度、航摄飞行的调配和航摄飞行的管制等内容作出具体规定,明确业务要求。会议纪要一旦形成,便成为各方执行任务的行动规范,参加会议的所有单位都必须严格遵守。

(3)进行航摄试飞 航摄试飞也是航摄准备的一项必要工作。在上述两项工作均已顺利完成的基础上,便可开始进行航摄试飞。航摄试飞的主要任务是检验航摄飞行的协调与配合、熟悉航摄区域的地理环境、校正航摄仪器和进行航摄的试拍。其中检验航摄飞行的协调与配合是检验航摄人员在航摄飞行过程中,与气象部门、空中管制部门和地面指挥塔的协调与配合;熟悉航摄区域的地理环境是熟悉被摄地区地物基本要素的分布情况; 校正航摄仪器是校正装载航摄相机平台的基准; 进行航摄的试拍是选择具有明显地形地物特征的小范围区域进行试拍。在结束航摄试飞后,要立即对以上的试验结果进行分析和总结,发现问题及时解决,以便为正式实施航摄创造良好的条件。

3、第三阶段为实施航摄,主要工作有: 收集气象资料、执行航摄任务和监控航摄质量。

(1)收集气象资料 收集气象资料对实施航摄来说至关重要。为了确保航摄任务的顺利实施,航摄人员必须与气象部门保持密切联络,及时收集每一天、每一周的气象预报,随时掌握航摄期间的天气情况及变化趋势。同时,要根据所收集到的气象资料,设计好具体的航摄飞行方案,主要是确定每次航摄飞行的具体时间和区域。由于天气状况变幻莫测,因此在设计航摄飞行方案时,往往要同时拟定几套方案以供备用。一旦天气发生突变,首选方案无法实施时,便可选择备用方案付诸实施,这样就不会耽搁执行航摄任务的进度。

(2)执行航摄任务 执行航摄任务就是对航空遥感被调查区域进行正式拍摄。在每次执行航摄任务之前,仍需对飞机的机务状况作常规检查,如飞机的仪表是否正常、机械是否有故障、燃料是否充足等。另外还要检查是否携带了本次航摄的飞行路线图。若飞机的常规检查未发现异常情况,便可开始进行航摄飞行。当飞机起飞升空后,飞行员要及时校准飞行航线,注意保持飞行高度,并控制好飞机的飞行姿态。航摄人员要注意控制好航摄平台的基准,监视航摄相机工作是否正常,并认真作好航摄记录。在航摄飞行的过程中,飞行员要听从机场塔台的指挥,服从指挥人员的调度,一旦遇到特殊情况,应按命令及时返航。

(3)监控航摄质量 在每次执行完航摄任务之后,应及时把航摄胶卷从航摄相机中取出,并立即送交承担航摄任务单位的洗印中心进行处理。处理的过程主要有:显影、定影、水洗、晾干和晒印像片。在冲洗胶卷时,须控制好冲洗液的浓度、温度和冲洗的时间,要尽可能使胶片的色饱和度达到最佳处理效果。待冲洗完胶卷并晾干后便可晒印成像片。监控航摄质量主要是通过晒印出来的航摄像片,对航摄的质量进行技术评定,着重是评定航摄像片的覆盖区域与航摄路线的基线是否有偏差,航摄像片的纵向与旁向重叠是否满足设计要求。若发现有这两种问题造成的“航摄漏洞” ,必须做好有关的记录,另行拟定补飞的航摄计划,安排航摄补飞。

4、第四阶段为资料验收,资料验收的主要工作有: 检查航摄成果和接收航摄资料。

(1)检查航摄成果 在接收航摄资料之前,必须对航摄成果进行严格的检查,检查主要是通过阅读航摄胶片、像片来进行。首先是检查航摄像片的覆盖区域是否涵盖了本次遥感调查的全部区域。其次是检查航摄胶片的清晰度与色饱和度是否达到业主规定的要求。再则是检查航摄像片是否存在倾斜角偏大,旋转角突变、渐变等造成的航摄漏洞以及补正航摄质量检查等。待完成上述检查内容,未发现任何重大问题,并航摄的质量完全达到技术考核的标准,方可进行资料的接收。

(2)接受航摄资料 接收航摄资料,应先列出接收内容的详细清单。接收的内容主要包括: 航摄胶卷、航摄像片和航摄记录。在接收航摄资料时,要根据清单的内容一一核对查收。若在接收航摄资料的过程中,没有发现航摄资料有任何缺漏,接收人便可在资料验收书上签字。至此航空遥感调查资料获取的整个工作就告一段落。

(二)数据处理

航空遥感调查的第一步--资料获取,仅仅是完成了遥感数据的采集工作。此时的遥感数据还是未作数字化加工的原始数据,这样的数据还不能直接被计算机来加以分析利用。因此,在完成了航空遥感调查的第一步即资料获取之后,还须进行航空遥感调查的第二步--数据处理。数据处理的主要任务是: 运用摄影测量专业扫描仪及计算机软硬件,在有经验的技术人员的人工干预下,对原始的遥感数据进行扫描、校正及拼接等加工处理,最后建立相应的遥感影像资料数据库。数据处理的工作大致分为四个方面,这四个方面的工作可以交叉进行。

第一个方面的工作为数字化扫描。数字化扫描是航空遥感调查中数据处理的首要工作。数字化扫描的任务是把记录在胶片上的遥感数据转换成计算机可储存与处理的数字化形式。

开展数字化扫描的工作,实施单位必须具备必要的电子设备,其中最重要的设备是摄影测量专业扫描仪和计算机。摄影测量专业扫描仪要求其扫描的分辨率范围至少要在100~5000dpi,并且要既能扫描大幅面(23cm×23cm以上)的底片,又能扫描大幅面的像片。而计算机则要求cpu芯片的处理速度越快越好,内存至少要512mb,硬盘至少要75gb。另外扫描软件在采购摄影测量专业扫描仪时也会随机提供。

在开始数字化扫描之前,操作人员必须先确定航片的扫描分辨率。对于一幅航片究竟采用什么样的分辨率来进行扫描非常重要。因为扫描分辨率定得太高,由扫描所得的数据其冗余就太多;而扫描分辨率定得太低,由扫描所得的数据其损失又太大。因此,选择合适的扫描分辨率就成了执行数字化扫描任务的关键。所谓选择合适的扫描分辨率,就是要寻找一种能使扫描所得的数据既不产生较多冗余又不造成较大损失的扫描分辨率。那么扫描一幅航片其扫描的分辨率到底取决于什么呢? 经过分析发现: 它只取决于航摄胶卷的解像力。本次航空遥感调查,我们选用柯达2443彩红外反转片,其解像力为63线/mm,换算成线密度为15.87u。这就是说胶片感光本身的分辨率为每隔15.87微米的距离能显现1个像素点,距离再小它就无法分辨。由此我们可以得出,航片扫描分辨率的线密度应大于15.87u,而不能小于15.87u,否则由扫描所得的数据就会产生冗余。然而,航片扫描分辨率的线密度应大于15.87u多少呢?如果大得太多,反过来也会对扫描所得的数据造成信息损失,对此只有通过做试验来确定。经过若干次的试验,我们觉得把航片扫描分辨率的线密度定在17u比较合适,换算成扫描分辨率接近于1500dpi。按这样的分辨率来进行扫描,虽说会有少许的信息损失,但其影响微不足道。所以最终我们把航片的扫描分辨率定在了1500dpi。

当确定了航片的扫描分辨率之后,即可进行数字化扫描的工作。在扫描的过程中,对每条航线图像质量相近的航片必须进行预扫。为了尽量减少扫描过程中的信息损失,预扫时应在充分尊重航摄底片原始信息的前提下,不断地调整扫描的亮度、色彩饱和度和对比度等参数,力求使扫描的结果达到地物成像清晰、色调区域平衡、反差均衡适中。待预扫的亮度、色彩度和对比度等参数确定以后,便可对每条航线图像质量相近的航片进行批量扫描。按此程序周而复始地重复,直至完成整个数字化扫描的任务。

第二个方面的工作为几何校正。航空遥感调查是通过航空摄影来获取遥感影像资料的。由于航空摄影采用的是中心投影,即空间任意一点均通过某一固定点(投影中心)被投射到一平面(投影面)上而构成其影像。因此,当被摄地区地面起伏较大或航摄的飞行姿态出现较大倾斜时,均会使航片上的像素点产生像点位移,从而造成遥感影像的几何畸变,同时也造成航片上各处的比例尺不尽相同。由被摄地区地面起伏较大所引起的遥感影像几何畸变称为投影误差,由航摄的飞行姿态出现较大倾斜所引起的遥感影像几何畸变称为倾斜误差。对于这两种误差,包括比例尺的差异,我们都要予以消除。这样中心投影的航片才能被当作正射投影的平面图来使用。

鉴于上海地区地面较为平坦,基本没有地势起伏,所以对因地势起伏较大而产生的投影误差我们可以忽略不计。然而,上海的地面上有许多高楼,这些高楼的高低起伏也会引起投影误差,但是对因这种情况造成的投影误差,无须消除也无法消除。另外,由于空中存在着气流的缘故,航摄的飞行姿态较难控制,航摄时其飞行姿态难免会出现较大的倾斜。所以,本次航空遥感调查所获得的航片存在着一定程度的倾斜误差,同时也存在着航片各处的比例尺不同。为此,对已经完成数字化扫描的航片,我们还须对其影像所含的倾斜误差和比例尺的不同进行几何校正,拟通过几何校正来消除该影像的几何畸变和比例尺差异。

所谓几何校正,就是将一幅含有几何畸变和比例尺差异的原始遥感影像,通过一种数学变换,生成一幅符合数字化地图实际的新的遥感影像。几何校正的具体方法为: 先在每幅原始遥感影像上选取若干个控制点,再求出这些控制点在数字化地图上对应点的真实坐标,然后把这些已知坐标的控制点代入计算机的校正软件进行运算。校正运算实际上包含着两个基本的运算过程: 一是将每个原始像素点的行列值换算成它在新生成的遥感影像中的坐标值,二是重新计算出每个原始像素点在新生成的遥感影像中的像元亮度值。当所有的控制点被选好后,其校正运算的过程由计算机校正软件自动完成。而控制点的选取则需要人工干预,其选择的准确性与合理性将直接影响到校正的处理效果。

在几何校正的过程中,我们需要着重把握好两个关键环节。一是选取什么样的像素点作为控制点。根据以往几何校正的经验,通常选择原始遥感影像上地面的突变点来作为控制点,比如道路的交叉口、河流的分叉或拐弯处等。另外像小河的桥梁、建筑物的房基等也适合选作控制点。这样选择的好处是: 作为控制点的地物标志明显,易于识别。二是在每幅原始遥感影像上选取多少数目的控制点。从理论上讲被选择的控制点的数目应越多越好,但选择得太多会使几何校正的工作量太大,反过来选择得太少又达不到几何校正所需的精度。这个问题究竟应该如何把握,目前还没有很好的解决办法,仍需通过几何校正的具体实践,视每幅原始遥感影像的几何畸变程度来逐一确定。按照我们的实践经验,对几何畸变程度较小的原始遥感影像来说,被选择的控制点的数目可以少一些,通常不少于15个; 对几何畸变程度较大的原始遥感影像来说,被选择的控制点的数目可以多一些,通常要在30个以上。在同一幅原始遥感影像中,不同的区域其几何畸变的程度也不同。原则上也是几何畸变较大的区域,被选择的控制点的数目多一些; 而几何畸变较小的区域,被选择的控制点的数目少一些。另外在选取控制点时,每幅原始遥感影像的中心区域应少选一些,四周区域应多选一些,因为中心区域的几何畸变要比四周区域的几何畸变来得小。但是控制点的分布应尽量地均匀,尤其是在几何畸变程度相近的同一区域要均匀地分布。这样所获得的校正影像其精度才能满足要求,并且整体性也好。

第三个方面的工作为图像拼接。经过数字化扫描及几何校正后的数字化遥感影像,均为一幅幅具有相同比例尺的影像图。这些影像图互相之间都存在着部分的重叠。所谓图像拼接就是通过对相邻影像图的无缝拼接处理,把这些影像图相互间的重叠部分去掉,从而为在逻辑上将这些影像图整合成覆盖上海全市的一幅影像图创造条件。图像拼接的具体工作步骤为: 首先是进行色差处理,借助photoshop软件中的色彩调整功能,将需要拼接的两幅相邻影像图的色彩调整到尽可能和谐。其次是选择拼接线,在两幅相邻的影像图上,用彩色线把需要进行拼接的界线勾画出来。再则是拼接影像图,当选好拼接线后,由i/ras c软件沿着拼接线的轨迹自动进行拼接处理。最后是拼接后的检查,着重检查沿拼接线的接缝处是否存在着错位,若存在错位,还需要对拼接后的影像作进一步的修补。

在进行图像拼接时,必须注意以下三个问题: 一是拼接线要尽可能沿着道路、河流、田埂、空地、阴影等延伸,尽量将拼接线选择在两旁无高楼的区域。二是注意两幅相邻影像图在拼接处的高楼单中心投影倾向,要尽可能使拼接线两侧的楼房保持相似的倾向,同时也要防止在拼接后将某一侧楼房切掉一部分的情况。三是拼接线要尽可能避免穿越高架、桥梁、铁路等地物,假如必须要穿越高架、桥梁、铁路时,应尽量从衔接较好的地方或阴影区内穿过。

在进行错位修补时,必须遵循以下四个原则: 一要遵循客观性的原则,即在尊重原始影像的基础上,经过对影像错位的修补,使修补后的影像能客观地体现地物的原有面貌。二要遵循准确性的原则,即只对几何校正不准的影像部分作错位修补处理,而对几何校正准确的影像部分保持其原状不动。三要遵循整体性的原则,即无论是大尺度地物还是小尺度地物,只要拼接时在它的拼接处呈现错位,就要对整个地物作整体性地修补。四要遵循连锁性的原则,即对原有的影像错位作了锁定修补后,不要在其它地方再产生新的错位。

第四个方面的工作为影像建库。当所有的影像图都被拼接完后,此时的影像图在物理上均为一个个覆盖一定区域的图块,要将这些图块从物理上整合成覆盖上海全市的一幅影像图几乎是不可能的。原因很简单,因为若要整合的话,其数据量太大,现有的软、硬件技术均难以支撑。另外,即使有某种软、硬件技术能够给予支撑,但其影像图的调用和浏览也是极慢的,以致使用者不堪忍受。为了今后使用的方便,较好的选择是通过影像建库,将这些图块从逻辑上整合成覆盖上海全市的一幅影像图。影像建库最主要的工作是选择合适的软硬件、确定数据库的结构及进行影像图的切割。 在着手进行影像建库时,首先要选择合适的软、硬件。其中对硬件的选择,要求服务器内cpu芯片的处理速度越快越好,最好选用含最新一代cpu芯片的服务器; 服务器中内存和硬盘的容量也要越大越好,内存容量的配置至少在1gb以上,硬盘须采用磁盘阵列,其容量的配置也至少在3tb以上。对软件的选择,着重是选择gis开发平台和数据库软件。gis开发平台是被用来建立对遥感影像数据进行调用和浏览的运行环境,这一环境是重要的数据处理和加工过程,要备有足够的缓冲空间,将大大提高工作效率。而数据库软件则被用来储存和管理遥感影像数据。选择gis开发平台和数据库软件应尽可能选用市场上较流行、应用较成熟且功能强大的商用软件,如gis开发平台方面的arcinfo、intergraph等软件以及数据库方面的oracle、sql server等软件。选用这样的软、硬件才能保证影像建库获得较满意的效果。

其次要确定数据库的结构。这里讲的确定数据库的结构是指对遥感影像数据究竟是采用一个数据文件的集中存取方式还是采用多个数据文件的分散存取方式。显然如前面所叙,由于拼接后的影像图块不可能在物理上被整合成覆盖上海全市的一幅影像图,即这些影像图块不可能被拼接成一个数据文件,所以采用集中存取的方式不可取,只能采用分散存取的方式。所谓分散存取就是将拼接后的影像图块在物理上分割成许多个拥有合适数据量的数据文件分别进行存储;但在访问时,又将以许多个数据文件分散存储的遥感影像数据视作逻辑上覆盖上海全市的一幅影像图来加以管理和使用。

最后还要进行影像图的切割。其实现方法为: 先根据上海市地形图的分幅标准,按照上海市的边界范围,对遥感影像图进行图形分幅并建立相应的索引文件。其中1: 50000比例尺的影像图按1: 10000地形图的图幅标准进行分幅,1: 10000比例尺的影像图按1: 2000地形图的图幅标准进行分幅。这样进行分幅的好处是: 每幅影像图的数据量大小适中,便于使用者的调用和浏览。然后根据索引文件中的分幅图,运用i/ras c软件对这两种比例尺被拼接过的影像图块进行影像切割,切割的过程由计算机软件自动完成。当每幅影像图被切割完后,还需建立它的数据文件并输入到数据库中储存。待所有的影像图块都被切割完,并建立其数据文件及输入到数据库中储存后,技术人员还得利用数据库软件提供的开发工具,编制相应的数据库管理程序,以便使用者按索引文件对库内的遥感影像数据进行调用和浏览。至此航空遥感调查数据处理的整个工作就告一段落。

(三)信息提取

综上所述,此时所生成的遥感影像数据已是人们可对其进行应用的数字化遥感影像数据。遥感影像数据的应用按应用方式可分为两种: 一种是将遥感影像数据作为现状或背景资料直接加以利用,如用于地形图的修测、城市规划设计以及工程项目的详细设计等; 另一种是通过对遥感影像数据的分析、解译,从中提取某些专题地物要素的信息来加以利用。对于第一种应用,由于我们只是向有关的部门提供数据,并未就其进行深入地研究,因此在这里将不作陈述。本节着重是讨论如何通过对遥感影像数据的分析、解译,从中提取某些专题地物要素的信息。信息提取的真正意义在于将内容丰富的遥感影像数据转化为具有各种专题的有用信息,以便管理人员利用这些信息更好地为领导决策提供服务。信息提取的工作大致可分为三步来进行:

1、影像特征分析

要进行影像特征的分析,必须首先确定从遥感影像数据中提取哪些专题地物要素的信息。遥感影像数据的信息内容十分丰富,它几乎涵盖了人的肉眼可以识别的所有地物要素。然而要把所有这些地物要素的专题信息都提取出来,这几乎是不可能的,也没有必要。根据上海城市建设和管理的需要,从本次航空遥感调查的影像数据中提取了绿化、水体、道路、建筑物四类基本地物要素的专题信息。

当信息提取的地物要素被确定之后,即可开始对这些地物要素进行影像特征分析。任何可视地物要素在其遥感影像上都具有一定的光谱特征、几何特征及其它辅助特征。其中光谱特征在视觉上最直观的反映就是色调,几何特征在视觉上最直观的反映就是形状,其它辅助特征在视觉上的直观反映有: 阴影、纹理及影像结构。所谓影像特征分析就是从色调、形状、阴影、纹理及影像结构等方面对拟被提取的可视地物要素进行影像的定性分析。通过对这些地物要素其影像的定性分析,总结、归纳出这些地物要素各自所具有的影像特征,并以此作为技术人员解译这些地物要素的标志和依据。

我们从色调、形状、阴影、纹理及影像结构等方面,对被提取的绿化、水体、道路、建筑物四类基本地物要素进行了认真地影像定性分析,总结、归纳出这些地物要素具有如下的影像特征:

绿化: 健康生长的绿化类地物要素其色调通常呈饱和度不同的红色。绿化还可细分为乔木、灌木和草地。其中乔木、灌木的影像形状多为尖状、冠状、团簇状或绒球状,草地则为块状。乔木一般都有明显的阴影; 灌木也有阴影,但不太明显,且长度较短; 草地则无阴影。人工构筑的公园、苗圃其几何形状常为矩形或不规则的多边形。

水体: 陆上水体由于光线反射角度及水体深度的不同,其色调也往往有所不同,但大多都呈青蓝色、蓝色和深蓝色。陆上水体还可细分为河流、湖泊和池塘。其中河流的几何形状为条带状,且常有弯曲。湖泊的几何形状为不规则的面状。池塘的几何形状为长方型的面状,且分布较集中,排列较规则。

道路: 城市道路分水泥路和沥青路。其中水泥路的色调呈灰白色,沥青路的色调呈灰黑色。城市道路的几何形状通常为条带状。城市道路的边缘比较清楚,道路上一般能看到汽车,路上还常常有明显的车道分隔线,市区道路的两旁往往伴有建筑物和行道树,郊区的高等级公路一般中间设有隔离带或两侧配有绿化带。

建筑物: 建筑物有多种类型。城市中常见的建筑物有: 高层建筑、新工房、花园式住宅、里弄式住宅和简屋。从遥感影像上看,高层建筑带有狭长的阴影; 新工房一般为平顶,排列较整齐,且屋顶设有水箱; 花园式住宅为一幢幢排列整齐的单体建筑,且每幢建筑拥有自己的花园; 里弄式住宅为一排排排列整齐的连体建筑,且屋顶为坡面,较多的屋顶还开有天窗,房屋的北面设有晒台; 简屋的单体建筑占地面积很小,互相犬牙交错联接,形状散乱,无规则。

2、专题信息提取

当绿化、水体、道路、建筑物四类基本地物要素的影像特征被总结、归纳出来之后,技术人员便可依据它们的影像特征来提取这些专题地物要素的信息。提取专题信息的具体过程如下:

首先是对参加信息提取的工作人员进行技术培训。培训的主要内容有: 熟悉和掌握被提取的绿化、水体、道路、建筑物四类基本地物要素的影像特征。培训时要在绿化、水体、道路、建筑物四类基本地物要素中,选取各种具有代表性的地物对其影像特征作逐一讲解。待每位学员比较熟悉这些地物要素的影像特征之后,还要尝试让每位学员依据这些影像特征,去独立地解译绿化、水体、道路、建筑物四类基本地物要素中的各种地物。这样的训练要反复多次,直到他们完全掌握这些地物要素的影像特征为止。

其次是由受过良好培训的技术人员,依据绿化、水体、道路、建筑物四类基本地物要素的影像特征,在本次航空遥感调查的影像数据上对这些专题地物要素进行解译。这里讲的解译指目视解译。所谓目视解译就是技术人员根据一定的影像特征,在计算机屏幕上通过肉眼的直接观察,对遥感影像中的目标地物进行辨认及确定。解译时,技术人员先要依据以上四类基本地物要素的影像特征,在遥感影像上辨认出这些专题地物要素中的各种地物; 然后借助gis平台软件提供的绘图工具,用彩色线把已被确认的各种地物的边界勾画出来。

再则是对已被确认的各种地物进行定性和定量描述。进行定性描述就是对已被确认的地物赋予它本身所固有的性质。如当某一地物经解译被确认之后,我们应将该地物在绿化、水体、道路、建筑物四类基本地物要素中的详细分类作为它本身所固有的性质赋予该地物。进行定量描述就是对已被确认地物的占地面积或长度及其它定量指标进行量化计算。如在被提取的绿化、水体、道路、建筑物四类基本地物要素中,我们应对每个已被确认的地物进行其占地面积或长度及其它定量指标的量化计算,并将量化计算的结果连同前面地物本身所固有的性质均作为该地物的属性保存起来。

3、建立地理数据库

经过对绿化、水体、道路、建筑物四类基本地物要素的分析、解译,我们从中已提取出这些专题地物要素的有用信息。在已被提取的专题信息中既有图形数据又有属性数据,其中图形数据是以坐标集合的矢量形式来描述,属性数据是以文字与数值的表格形式来描述,并且这些图形数据和属性数据之间还存在着关联性。为了更好地保存和利用这些已被提取的专题地物要素的有用信息,我们有必要运用gis软件来建立含有这些图形数据和属性数据的地理数据库。

建立地理数据库首先也要选择合适的软、硬件,但该软、硬件的选择可以和前面所述的遥感影像建库的软、硬件选择结合起来统筹考虑,不需要另外再单独选择。其次要确定地理数据库拟采用的背景图。实际上地理数据库中的图形数据又细分为地形图、遥感图和专题图等数据,其中地形图和专题图都是矢量数据,而遥感图则是栅格数据,即数据是以像元阵列的形式来描述。地形图与遥感图在地理数据库中均作为背景起地理位置的参照作用。已被提取的专题地物要素的图形数据属于专题图,专题图要被叠加到背景图上才能加以应用。因此,我们把本次航空遥感调查的影像数据即遥感图作为拟建地理数据库的背景图之一。影像数据的建库在数据处理这一节已作阐述,这里就不作重复。另外,由于上海市的测绘部门已经生产出成系列的数字化地形图,所以我们就将该部门生产的1: 2000比例尺的框架要素地形图作为拟建地理数据库的背景图之二。

接下来就可着手建立地理数据库。建立地理数据库的主要工作是利用gis软件提供的命令,进行数据库定义及输入和编辑图形数据与属性数据,其具体工作步骤如下: 首先是对数据库进行定义,其中包括定义数据库的名称、组织结构, 定义数据项、数据类型和数据长度。其次是将作为背景图的地形图和遥感图输入到地理数据库中。其实遥感图在数据处理时就已经被输入到地理数据库中,此项工作可以省略,这里只需要把地形图输入到地理数据库中即可。然后是将已被提取的专题地物要素的图形数据和属性数据分别生成专题图和属性表,并也输入到地理数据库中。再则是建立专题图的拓朴关系即图中各几何图形元素之间的链接关系,以便gis对这些图形元素进行查找与分析。最后是在专题图和属性表之间构筑一一对应的关联标识符,以此作为实现专题图和属性表相互链接的关键字。

遥感的原理范文2

关键字:激光成像 大气校正 激光雷达 城市建设

The thinking of using laser radar equation principle in city construction theory in surveying mapping and remote sensing

Zhang Miao

( State Key Laboratory of Information and Engineering in Surveying,mapping and remote sensing ( Wuhan University ), 430079)

Abstract: This paper focuses on some theoretical basis for some summary description and generalization of laser radar in atmospheric correction and imaging . The stratospheric aerosol detection, middle atmosphere density profiles and temperature profile measurement, Raman scattering laser radar meteorological parameter measurement, differential absorption radar principle, sodium fluorescence radar detection are discussed in some theory summary to play a guiding role in the theory of the city construction and the application of geographic information. Radiation correction for remote sensing mapping and geographic information imaging areas of research and practice are be done some analysis, for more widely application in the city construction.

Keywords: laser imaging ; atmospheric correction; laser radar;city construction翻译结果重试

抱歉,系统响应超时,请稍后再试

支持中文、英文免费在线翻译

支持网页翻译,在输入框输入网页地址即可

提供一键清空、复制功能、支持双语对照查看,使您体验更加流畅

近几年来,激光雷达作为一种新的技术越来越多的应用在了测绘遥感科学领域,同时间接地对成像技术和大气校正起到了很大的作用,这就为城市建设理论的基础有了更深入的分析和理解。由于激光具有的单色性、方向性、相干性,具有很高的单光子辐射能量,在大气传输中很少发生绕射,所以在激光测距方面得到了极大的应用,而激光测距又是激光成像的基础。又由于激光波长短、相应能量子的能量大,可与目标发生生化作用,不像一般的雷达微波,波长较长,相应的能量子的能量小,不足以与目标发生生化作用,无法探测目标的生化特性,所以,这又为激光雷达在探测大气方面开辟了新的道路,而大气探测在遥感大气校正中也是很重要的环节。

激光雷达在成像和大气探测方面的原理,最根本的是激光雷达方程。而在许多书籍和文献期刊中,对激光雷达方程的描述和具体变量的解释中,没有统一的标准和规范的说明。常常让人们似懂非懂,而许多书本中也只是把激光雷达方程割裂开来,具体情况下具体对待分析,没有一种一般性的总结。所以,基于这些原因,笔者将对激光雷达方程在成像和大气探测中的各个具体公式进行总括和一般性概述。

一、激光成像中的激光雷达方程

《激光成像》的第93页公式(6-2-11)是最本质的:

这里,激光雷达主要只是起到测距的作用,测得机载发射位置G(Xg ,Yg ,Zg )到地面点P(Xp ,Yp ,Zp )的距离S;而 、 、这三个姿态角由姿态测量装置提供, 角数值按测点序号与瞬时视场的乘积计算出来。G(Xg ,Yg ,Zg )由GPS给出。至此,公式得以求解。而此公式的来源不难,用高中立体几何的知识可推知。所以,最基本问题得以解决。

测出地面目标点的三维坐标P(Xp ,Yp ,Zp )是激光成像中最主要的内容。之后,可由此生成DEM,或与多光谱影像数据相结合,得到影像上地物可见的图像信息,并运用数字图像处理技术,根据具体想要达到的效果与目的,生成想要研究并利于研究的数据(如城市建筑物提取、三维虚拟现实等)。

还存在如下问题:

激光器的构造。多光谱扫描仪的构造,及GPS与姿态测量装置的构造原理。

以上这些最主要的装置如何组合,使数据能恰当辨别。

误差的控制。

激光测距点的数据与多光谱数据的结合与应用。

这些问题超出本文的范畴,但以上问题的理解和解决是很重要的,是我们科研工作者日后要不懈努力认识和达到的。当对激光雷达的各个方面的本质理解得到加深,就会更利于其应用。

激光雷达方程在大气探测中的应用

关于大气激光雷达探测,我最初的感觉认为最本质的是要得到时刻t,距离地面高R的大气中,物质的种类、密度、温度。但事实上问题没有那么理想化,是比较复杂的。主要是针对不同大气层的散射原理,用不同性质的激光雷达,测得很局限的指标量。如,对于均匀分布的气溶胶,只是用公式求得它的后向散射系数和消光系数 ;平流层气溶胶探测只得到其散射比;从中层大气的密度N(R)和温度T(Ri)和温度的相对扰动廓线看出重力波的变化;大气中的湿度M(R)和温度T;被探测组分的平均密度 ;钠层原子密度(绝对值)NNa(R)等等。

以上所列举的是大气激光雷达能定量求得的指标量。下面一一说明:

气溶胶散射很强且均匀分布的情况下的消光系数:

需要知道高度修正后的对数回波功率S(R),已知;所以,S(R) 的斜率只要知道即可。

平流层气溶胶探测时,定量信息为气溶胶散射与分子散射之比,并与激光雷达方程结合,有:

因为雷达回波是光子信号,可由光电探测器接收,就可利用软件得知回波的强度,式中Tm(R)为大气分子透射系数,为大气分子散射系数, K为雷达常数,我们知道Tm(R)和可从标准大气参数或从实际的大气探空数据得到,而K为雷达常数,用归一化常数K的值可在激光雷达回波曲线气溶胶散射最小高度R。处,令散射比值 Ks(R。)为1求得。如果P(R),,Tm(R)都可以得到,则Ks(R)可以得到。这个Ks(R)说明了大气分子Rayleigh散射与气溶胶Mie散射的多与少,关键还是探测仪器怎么区分这两种散射。

也就是说,由、的问题,转化为了、Tm(R)与P(R)的问题。这里,有必要对激光雷达方程P(R)进行分析:

中我们知道,通用的激光雷达方程:

式中,C为激光雷达的校正常数,P。为发射激光束的功率,即激光发射器的重复频率乘以每脉冲的能量,而这两个量是人工控制得到的。A为接收望远镜的收光面积,这个在设计接收望远镜时可以知道。 为大气中某种被探测组分的后向散射系数,前面知道,大气的后向散射系数可以查表得到,是某种气溶胶的散射系数, 为大气总的消光系数, 为大气分子的消光系数,可以查表得到。又 为高度分辨率,,为脉冲宽度。而校正常数,为光电探测器的效率,可以试验得到;q为接收光学系统的透射率,可以试验得到;g为重叠因子,为发射激光属于接收望远镜的重合程度,可以实验测得。又,为被探测大气组分的密度。 为后向散射截面。也就是说,最终,与的数据很关键,如果这个问题抓住和解决了,基本上最本质的问题就抓住了,后面的问题也就顺风顺水了。

中层大气的密度廓线和温度廓线的探测:

我们知道,N(R)是由前面的激光雷达方程转化的,现实中,P(R)可由激光雷达直接探测,因为,激光探测接收的是光子,所以光电探测器转化为电子后,可以测得实际数据。这里告诉我们,激光雷达方程并不是仅仅是由前面种种变量而求得P(R),而可以是由P(R)而推求出和,已得到更广泛的应用。所以,继续往下看:

我们又知道,

式中,K表示所有与激光雷达参量有关的常数,定量表示为,又因为C很难测定,且。是大气分子的Rayleigh散射截面。我们知道在小粒子吸收和散射中,,其中,粒子的尺度,可近似看做半径的小球, 为相对介电常数的虚数部分, 为相对介电常数,T(R)为激光在高度0~R间单次传输的透射率,而在计算时,给出了归一化高度,并得到:

其中,为参考高度处的大气密度,由标准大气模式计算或实际测量的办法确定,那么,求N(R)就与激光雷达的技术参数无关了。也就是N(R)的比值与的比值一致(相等)。

再讨论温度廓线的测定,我们知道,公式:

由理想气体定律和静力学方程得来。

好了,再看T(Ri)这个公式,K为波尔兹曼常数;m为大气的平均质量,g(R)为重力加速度,而和为第i层顶部和底部的大气压力,又有公式:

首先,这两个公式是由静力学方程和激光雷达测量的大气密度值得来的,主要是和的测定问题,而由激光雷达测得,由标准大气模式得到。这样,基本上问题得到了解决。

(4)Raman散射激光雷达的气象参数探测

在此部分,主要对湿度和温度廓线的探测。

先看对湿度廓线,主要是的Raman散射。给出定量指标大气中水气混合比M(R)。,这个没什么疑问。然后,又给出,

这个式子是由和的Raman散射激光雷达得到的,分别为:

这里,激光雷达方程也按简化的形式。被代换了。式 中,,而、不说了,、已知,、为密度,、为散射截面,、为激光雷达常数,前面已知,C校正常数不易确定,故整体K不易知道,需在探测过程中由气球探空数据定标得到。和由模型或激光雷达探测给出的气溶胶随高度分布计算,以上,这个M(R)基本解决了。

现在再看温度廓线,我们知道,T对应K,只知道强度比确定,又T有一个确定值。

按之前的方法,若知道N(R),也可求温度,又知:,按之前的公式,可以计算。至此,问题得以解决。

(5)差分吸收激光雷达原理

首先,给出专门针对差分吸收的激光雷达方程,为以后的推导带来了方便,公式如下:

我们联想到,之前的中层大气探测时激光雷达方程也有相应的改变,可见,对于具体情况,激光雷达方程是要随时变化的,但是怎样变化是个关键,以后的计算取决于变化的形式,使计算顺畅,所以,每一个具体应用下的激光雷达方程很重要,且都是通过最基本的原始的通用激光雷达方程得到的。

以后就很顺利了,由此推导出的:

这里有一个问题,在求之前,要把两个激光雷达方程相除,才求得,从理论上,只需一个激光雷达就可,但相除之后,消去了和项,这样就简便多了。

又令,即K相同,那么推导出的公式: ,以下就简单了,和和、、、只要知道就行了。而只有这时,没有用到归一化高度。

(6)钠层荧光激光雷达技术

激光雷达方程又作了相应的推导变化变,与中层大气探测时相似,即,故,但此处又用到归一化高度,把K消去了,令=,得,,与前面求中层大气密度廓线时如出一辙。

,通过计算得到,太不清楚了,)可从标准大气模式或探空实测数据得到,和激光雷达可直接探测。到此,基本没有什么了。

所以,通过以上叙述,我们可以知道:

激光雷达公式中,探测每层不同性质的散射时,公式都会根据具体情况作出相应的推导变化,以利于研究和计算。

所有的公式中,都有,回波强度之比,可见这在计算时是很重要的一个方面,要重视。

对在城市建设方面,测绘遥感领域已经有无穷无尽的方法和理论的提出,并很好的应用在了实践中。激光雷达也在近几年很好的发展了起来,并很广泛的应用在建筑、地理信息系统、大气校正、地图成像、城市建设、测绘等方方面面。相信,在不久的将来,随着科学技术的深入发展,应用领域的更加开阔,激光雷达的前景将会更加广阔,在城市建设中也会越来越起到很关键的作用。

参考文献:

《环境监测激光雷达》 阎吉祥等 著 科学出版社 2001

《激光成像》 舒宁 著 武汉大学出版社2005

《遥感数字影像处理导论》[美]John R.Jensen 著陈晓玲龚威 等译机械工业出版社2007

《激光原理技术与应用》 阎吉祥等 编 北京理工大学出版社 2006

遥感的原理范文3

关键词遥感估产;类型;现状;展望

遥感起源于20世纪60年代,这是一种在一定距离上,应用探测仪器不直接接触目标物体,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。随着遥感技术的发展,宏观大尺度的估产越来越多地使用遥感方法,并结合地理信息系统和全球定位系统等技术,可以构建出不同条件下植被的生长模型和估产模型[2]。遥感技术估产与传统的估产方式相比,前者的工作量少,精准性更强,在实际应用中显示出了独有的优越性。前人做了大量有关运用遥感技术对作物、草地、森林及海洋生态系统的植被估产的研究。遥感估产已从试验研究阶段逐步进入到实际业务使用阶段。现探讨有关遥感估产的原理及估产模型的基本类型。

1遥感估产的原理及建模基础

任何物体都具有吸收和反射不同波长电磁波的特性,这是物体的基本特性。相同的物体具有相同的波谱特征,不同的物体,其波谱特征也不同,遥感技术就是基于该原理,利用搭载在各种遥感平台上的传感器接收电磁波,根据地面上物体的波谱反射和辐射特性,识别地物的类型和状态[1]。卫星遥感数据具有高度的概括性,卫星获取的光谱植被指数反映了植物叶绿素和形体的变化[3]。大量的研究也表明,植物的叶面积系数、生物量、干物重与光谱植被指数间存在着较好的相关关系[4]。因此,利用从卫星获取的植被光谱信息估测产量成为了可能。用于区域植物生物量估测的遥感模型基础是从光合作用即植被生产力形成的生理过程出发,在建立模型的过程中,根据植物对太阳辐射的吸收、反射、透射及其辐射在植被冠层内及大气中的传输,结合植被生产力的生态影响因子,最后在卫星接收到的信息之间建立完整的数学模型及其解析式[5]。

2遥感估产模型的类型

20世纪70年代后期估产模型将遥感信息作为变量加入到模型中,建立了大量的遥感估产模型。理论上探讨植物光合作用与植物光谱特征间的内在联系以及植物的生物学特性与产量形成的复杂关系等,方法上从单纯建立光谱参数与产量间的统计关系,发展到考虑植物生长的全过程,将光谱的遥感物理机理与植物生理过程统一起来,建立基于成分分析的遥感估测模型,使估算精度不断提高[6]。由于研究对象的不同,选用的估产参数也不尽相同,模型种类也较多,基本上可以分为2类[7-8],即统计模型和综合模型。

2.1遥感统计模型

目前,基于统计的遥感估产有3种技术路线:一是遥感光谱绿度值(植被指数)-生物量关系模式。在对作物、草原、森林的估产中,这是一种常用的思路,但是该方法得到的遥感估产等级图只反映卫星摄影时的植物长势和生物量的空间分布状况;二是遥感光谱绿度值-地物光谱绿度值-生物量关系模式,即先分析实测地物光谱绿度值与生物量之间的关系,建立相应模型,再分析卫星遥感植被指数与地物光谱绿度值的关系,建立卫星遥感植被指数与生物量之间的关系模型,最后利用光谱监测模型和卫星遥感监测模型进行监测与估产;三是遥感-地学综合模式。该方法将气温、降水等环境因子引入模型,与遥感-生物量模型互相补充,克服各自存在的缺陷,可进一步提高估产精度。建立的统计模型有线性、幂函数、指数、对数等,回归的方法也有一元回归、多元回归、逐步回归等,得到的系数差别较大,并且应用也局限于建模的时间和地点,在很多情况下地面资料的数也影响模型的精度。

2.2遥感综合模型

综合模型借助遥感信息和植被信息、气象因子等来建立,其包含了更多的信息量,可以更加精确地反映植被的生物物理参数。尽管这类方法前景广阔,但受到模型中大量的参数和变量获取的限制(例如呼吸、衰老、光合作用、碳分配、凋落物的分解等),以及当物种的组成在时空上变化较大时出现复杂的、异质性的、冠层的描述问题的影响,部分模型只适用于当时的研究区域,如何通过“尺度扩大”来改进模式中的区域限制,更好地适应遥感信息的同化需要,也是亟需解决的一个关键问题。

3展望

遥感技术经过几十年的发展,已经日趋成熟,遥感估产的优点是可以得到长时间尺度和大空间尺度的生产力资料,因而它仍是未来生产力探测方法的发展方向。目前国际上对各类生态系统的估产模型有很多,建立的模型和所选择的数据源并不是任何时期、任何区域都适用,应该根据研究区域的实际情况来改进生物量模型和选择合适的遥感数据源。基于遥感技术的生物量估算需要运用多种技术,综合多种方法,使估算模型达到最优。新的数学方法的不断探索和试验是充分发挥遥感信息作用的前提和途径,数量化理论、神经网络方法、cwsi理论、灰色系统理论、数值模拟等

理论的尝试将可能实现高精度定量估测。

4参考文献

[1] 梅安新,彭望?,秦其明,等.遥感导论[m].北京:高等教育出版社,2001.

[2] 李海亮,赵军.草地遥感估产的原理与方法[j].草业科学,2009,26(3):34-38.

[3] 冯奇,吴胜辉.我国农作物遥感估产研究进展[j].世界科技研究与发展,2006,28(3):32-36,6.

[4] 申广荣,王人潮.植被光遥感数据的研究现状及其展望[j].浙江大学学报,2001,27(6):682-690.

[5] 张佳华.生物量估测模型中遥感信息与植被光合参数的关系研究[j].测绘学报,1999,28(2):128-132.

[6] 赵英时.遥感应用分析原理与方法[m].北京:科学出版社,2003.

[7] 陶伟国,徐斌,杨秀春.草原产草量遥感估算方法发展趋势及影响因素[j].草业学报,2007,16(2):1-8.

遥感的原理范文4

遥感是湖北大学地理科学、资源环境与城乡规划专业的必修课,通过近几年的本科及研究生教学实践及学术反馈意见,发现学生对于遥感在本专业的应用认识不足,突出表现在对于解决实际问题存在困难,无从下手。主要存在如下原因:

1.1 学生基础知识背景不一致

湖北大学地理科学专业、城乡规划专业有悠久历史,但是本科专业招收学生不分文理科,每个学生基础不同,而遥感导论采用的教材是梅安新的《遥感导论》[1],内容以理工为基础设定的,着重于遥感基本原理和方法的介绍,文科背景的学生对于遥感原理中涉及的数学和物理知识基础薄弱,在学习过程中存在困难。

1.2 其它课程不能有效衔接密切

遥感在多个行业学科中都有较广泛的应用,如地质、水文、植被、土壤等方面,学生提前具备这些相关知识对于了解遥感的应用非常重要。但在很多教学计划中将遥感设置为早期专业基础课,而其它相关课程要么同时开设,要么安排得更晚,这种时间安排上的错位,导致学生无法理解遥感的具体应用,加上对理论知识无法深入领会,导致学习遥感课程缺乏兴趣,教学达不到效果。

1.3 课程实践安排不够多

目前的遥感课程设置仍主要以基本原理理解为主[2,3],教材中对实际应用方面缺乏具体指导,导致大部分学生无法将理论与实践衔接,从而在实际问题解决上存在困难,难以培养学生对遥感的认知和动手能力。

1.4 实践教学无法与专业挂钩

学院专业任课老师主要是地理信息系统专业背景,缺乏地理科学实际应用项目的支撑[4],无法从专业角度上给予更加生动丰富的例子进行说明遥感的重要性。从目前教育现状来看,高校遥感老师对各行业的应用知识体系并不完备,要清楚介绍遥感在其它学科中的具体应用,是存在难度的。

1.5 教学方式互动性不足

教学中主要以教师讲授为主,虽然配合使用了多媒体教学[5],但缺乏相关学科的融会贯通和实际项目的操作,并缺乏学生的主动参与过程,导致多数学生认为该专业较难,学习兴趣和积极性不高。从而在衔接研究生课程阶段,无法正常使用遥感、GIS工具,动手能力不强,不足以支撑自主创新性研究,不利于科研人才培养。

2 实践教学改革的基本内容与途径

根据目前教学中存在的问题,结合遥感和地理科学专业的特点,提出了一系列的教学改革方法:

2.1 构建以学生为本的遥感教学体系

遥感原理中大量的数学、物理基础对于文科学生是相当困难的。课堂教学中,学生无法在短时间内迅速掌握所有的数学及物理基础[6],因此针对文理学生兼有情况,简化遥感基础的描述,规避大量数学、物理公式,把主要精力放在重点上,让学生通过实践操作体会遥感原理。在实践操作中,适时补充说明原理及用途,结合软件教学,说明书中的知识难点。

2.2 构建实践型学习的遥感实践课程

实践课程重点是对遥感图像进行基本处理,结合书本重点,让学生熟练掌握基本操作,主要内容包括数据前期处理、数据图像处理、影像分类。加大实践课程的比重,规避大量文字及语言、公式的学习过程,能在较短时间让学生理解遥感课程的内容。

2.3 拓展学生思维,增强空间科学相关的理解

地理科学及城乡规划专业是认知性和实践性都非常强的专业。地理概念和地理要素的理解对学生的抽象思维和认知能力要求较高,传统的理论知识讲授方式都难以真实、形象的展现在学生面前,因而使教学效果受到一定程度的影响。目前地理科学课程教学的实践机会不多,难以经常性的外出认知真实的地理要素。结合GIS和三维遥感技术[7-8],利用arcgis软件,实现三维,从三维角度,提高学生兴趣,让学生从现实角度理解遥感和GIS空间科学专业。

2.4 丰富完善互动式教学手段

教学手段的丰富能够提升学生的兴趣。实际教学中,结合学生感兴趣区域,引导学生掌握不同遥感数据类型,查阅资料及掌握网上数据下载方式,如自己的家乡为分析区,从数据理解到处理及应用,逐步完成遥感教学课程内容。引导学生在课堂外通过多种途径,查阅参考资料,培养学生自主学习的能动性,调动学习的积极性,拓宽学生的知识面,提高综合素质。

2.5 结合丰富的实际项目,提高学生的综合能力

笔者所在的资源环境学院能有机会参加自然地理及城乡规划相关项目,因此结合实际项目经验,分专业进行综合操作:

(1)地理科学专业,更加关注自然环境、生态环境,因此实习中侧重对地物的理解,例如植被类型图的制作,水系图的制作等应用。通过这个过程,使学生对遥感图像的前期数据准备、数据几何纠正,影像分类过程有较好理解。

(2)城乡规划专业,更加关注土地利用现状和城市格局变化。因此在实习中,为加强对规划相关内容的理解,如要求其土地利用现状图的制作,结合GIS统计各项土地利用情况及现状分析;或者以某项目布局进行设计,结合高分遥感影像和GIS,完成功能布局以及一些统计量,或对城市景观格局变化结合遥感高分影像及分析数据进行总结。

3 教改效果分析

近学期年来,通过一系列的遥感实践教学探索,已取得了一些阶段性成果,主要表现在:

(1)学生已经能够独立解决一些跟遥感相结合的专业操作,提高了动手能力及解决问题的能力,为他们今后的工作打下坚实的基础。

(2)有一部分学生对遥感产生了浓厚的兴趣,在研究生期间选择以此为研究方向进行继续攻读地理/规划方面的研究生。

遥感的原理范文5

遥感(RemoteSensing)即遥远的感知,指在一定距离上,应用探测仪器不直接接触目标物体,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。摄影照相便是一种最常见的遥感,照相机并不接触被摄目标,而是相隔一定的距离,通过镜头把被摄目标的影像记录在底片上,经过化学处理,相片便重现被摄目标的图像。从拍摄目标到再现目标所用的手段,便是一种遥感技术。遥感与其他技术结合,在农业应用中具有科学、快速、及时的特点。这对于充分利用农业资源、指导农业生产、农产品供需平衡等方面有着重要的意义。

2遥感估产的原理及农作物估产方法

2.1遥感估产的基本原理[2]

任何物体都具有吸收和反射不同波长电磁波的特性,这是物体的基本特性。人眼正是利用这一特性,在可见光范围内识别各种物体的。遥感技术也是基于同样的原理,利用搭载在各种遥感平台(地面、气球、飞机、卫星等)上的传感器(照相机、扫描仪等)接收电磁波,根据地面上物体的波谱反射和辐射特性,识别地物的类型和状态。农作物估产则是指根据生物学原理,在收集分析各种农作物不同生育期不同光谱特征的基础上,通过平台上的传感器记录的地表信息,辨别作物类型,监测作物长势,并在作物收获前,预测作物的产量的一系列方法。它包括作物识别和播种面积提取、长势监测和产量预报两项重要内容。

2.2农作物估产的方法

农作物估产在方法上可分为传统的作物估产和遥感估产两类。传统的作物估产基本上是农学模式和气象模式,采用人工区域调查方法。它们把作物生长与主要制约和影响产量的农学因子或气候因子之间用统计分析的方式建立起关系。这类模式计算繁杂、速度慢、工作量大、成本高,某些因子种类往往难以定量化,不易推广应用。遥感估产则是建立作物光谱与产量之间联系的一种技术,它是通过光谱来获取作物的生长信息。在实际工作中,常常用绿度或植被指数(由多光谱数据,经线性或非线性组合构成的对植被有一定指示意义的各种数值)作为评价作物生长状况的标准。植被指数中包括了作物长势和面积两方面的信息,各种估产模式,尤其是光谱模式中植被指数是一个极为重要的参数。根据传感器从地物中获得的光谱特征进行估产具有宏观、快速、准确、动态的优点[3,4]。

农作物估产中所应用的遥感资料大致可分为3类:一是气象卫星资料,主要为美国第三代业务极轨气象卫星(NOAA系列)装载的甚高分辨率辐射仪(AVHRR)资料,其资料特点是周期短、覆盖面积大、资料易获取、实时性强、价格低廉,空间分辨率低但时间分辨率较高;二是陆地卫星(Landsat)资料,应用较多功能是专题制图仪(TM)资料,它重复周期长、价格高,但其空间分辨率高[5];三是航空遥感和地面遥感资料,主要用于光谱特征及估产农学机理的研究中,其中高光谱数据可提供连续光谱,可消除一些外部条件的影响而成为遥感数据处理、地面测量、光谱模型和应用的强有力的工具[6]。在遥感估产中农作物面积提取是最重要的内容。用遥感方法测算一种农作物的种植面积主要有以下几种方法[5]。1)航天遥感方法。包括卫星影像磁带数字图象处理方法(一般精度较高)和绿度———面积模式。2)航空遥感方法。可进行总面积的测量、作物分类及测算分类面积。3)遥感与统计相结合的方法。此方法是由美国农业部统计局在原面积抽样统计估产的基础上发展起来的,其原理是利用遥感影像分层,再实行统计学方法抽样。4)地理信息系统(GIS)与遥感相结合方法。此方法是在地理信息系统的支持下,利用遥感信息,对不同农作物的种植面积进行获取。

3国内外遥感估产的研究进展状况

3.1国外遥感估产研究的进展状况

美国首先开了农作物遥感估产之先河,美国农业部、国家海洋大气管理局、宇航局和商业部合作制定了“大面积农作物估产实验(1974~1978)计划”,组织实施了小麦估产计划,应用先后发射入轨的陆地卫星1~3接收处理出的MSS图像,首先对美国大平原9个小麦生产州的面积、单产和产量做出估算;尔后对包括美国本土、加拿大和前苏联部分地区小麦面积、单产和产量做出估算;接着是对世界其它地区小麦面积、总产量进行估算。调查分析美国、原苏联、加拿大等主要产粮国的小麦播种面积、出苗状况和长势,并利用气象卫星获得的气象要素信息,结合历年统计数据进行综合分析,建立的小麦估产模型精度高达90%以上。1980~1986年,美国又制定了“农业和资源的空间遥感调查”计划,其核心内容仍是主要作物的种植面积与单产模型的研究。进行国内、世界多种粮食作物长势评估和产量预报。中国科学院自然资源综合考查委员会的陈沈斌于1992年8月在美国农业部外国农业局(负责美国以外国家的农作物估产,并建成运行系统)曾见到当月估计的中国小麦、玉米、水稻总产量与后来1993年国家统计局公布的数字差-3.53%、+0.65%和-0.66%。

该项工作,为美国在世界农产品贸易中获得巨大的经济利益[2,4,7,8,9,10,11]。此后,欧共体、俄罗斯、法国、日本和印度等国也都应用卫星遥感技术进行农作物长势监测和产量测算,均取得了一定的成果。例如,欧共体用10年的时间(从1983年开始),建成用于农业的遥感应用系统,1995年在欧共体15个国家用180景SPOT影像,结合NOAA影像在60个试验点进行了作物估产,可精确到地块和作物种类。2002年美国航空航天局与美国农业部合作在贝兹维尔、马里兰用MODIS数据代替NOAA-AVHRR进行遥感估产,MODIS搭载的TERRA卫星是1999年由美国(国家航空航天局)、日本(国际贸易与工业厅)和加拿大(空间局、多伦多大学)共同合作发射的,MODIS数据涉及波段范围广(36个波段)、分辨率(250,500,1000m)比NOAA-AVHRR(5个波段,分辨率为1100m)有较大的进步,这些数据均对农业资源遥感监测有较高的实用价值。ldso等曾运用500~600nm和600~700nm两个光谱区得到的反射值的转换植被指数(TV16)来估计小麦与大麦的单产,获得小麦单产与TV16之间的相关系数为0.78。同年,日本科技公司完成了“遥感估产”项目,可提高平原农业估产的精度,并着眼于对全球进行估产。

而美国已经将遥感技术用于精细农业,对农作物进行区域水分分布评估、病虫害预测等,直接指导农业生产。用卫星遥感方法进行长势监测和产量估算已进行多年,方法已趋于成熟[2,4,7,8,.9,10,11,12,13]。水稻遥感估产以亚洲水稻主要生产国为先行和先进。中国、印度、日本等国家都进行过遥感估产研究且取得较好的效果。Patel和Dash等[14]建立水稻产量和RVI的关系,试验区预报精度达到96.14%。Miller等[15]在分蘖或出穗阶段时,运用比值植被指数通过干物质和单产的关系来估计单产。但在作物灌浆与成熟阶段,由于反射率与总生物量之间并不相关,比值植被指数无法预测水稻的冠层生物量。Wiegand,SSRay认为借助于归一化植被指数NDVI{(NIR-R)/(NIR+R)}可以很好地预测产量[16,17]。

3.2国内遥感估产研究进展情况

从“六五”开始,我国试用卫星遥感进行农作物产量预报的研究,并在局部地区开展产量估算试验。“七五”期间,国家气象局于1987年开展了北方11省市小麦气象卫星综合测产,探索运用周期短、价格低的卫星进行农作物估产的新方法。该项目中,主要是以长期的气象资料为基础,以遥感信息为检验手段,建立了不同地区的遥感参数-作物产量的一阶回归模型。1985~1989年,此项目为中央和地方提供了165次不同时空尺度的产量预报,为国家减少粮食损失达33万t以上,累计经济效益达20亿元。“八五”期间,国家将遥感估产列为攻关课题,由中国科学院主持,联合农业部等40个单位,开展了对小麦、玉米和水稻大面积遥感估产试验研究,建成了大面积“遥感估产试验运行系统”,并完成了全国范围的遥感估产的部分基础工作。通过1993~1996年4年试验运行,分别对四省两市(河北、山东、河南、安徽北部和北京市、天津市)的小麦,湖北、江苏和上海市的水稻;吉林省的玉米种植面积、长势和产量的监测和预报,在指导农业生产及农业决策中发挥了重要作用。特别是解决了一些关键技术问题,为进一步开展全国性的卫星遥感估产提供了重要保证。

遥感的原理范文6

[关键词]遥感 教学改革 教学内容 教学方式 实践教学 慕课

[中图分类号] G642.0 [文献标识码] A [文章编号] 2095-3437(2015)10-0108-02

遥感是20世纪70年展起来的空间对地观测技术,已在土地管理、城乡规划、农业、林业、环境监测、水文气象、地质地理等方面得到了广泛应用。[1] [2]近年来遥感技术的长足发展使得社会对遥感人才的需求量和专业素质的要求日益提升。目前国内已有170余所高校设置了遥感类本科课程[3],其中“遥感原理与应用”已成为地学及测绘专业的核心课程之一。笔者结合地理信息科学专业“遥感原理与应用”多年的教学实践对教学内容、方法及实践环节的改革进行初步探讨。

一、现阶段教学中存在的问题

纵观目前高校的遥感基础课程教学,主要存在以下几点问题:(1)教学内容陈旧,仅注重基础性和理论性,对实际应用和学术前沿关注不够;(2)教学方法有待改进,“满堂灌”的授课方式只注重“教”而轻视了“学”,学生缺乏学习兴趣,教学效果不佳;(3)实验环节薄弱,学生得不到充分训练,基本技能和综合素质有待提高。这些问题在“遥感原理与应用”课程中也同样存在。

二、改革措施

(一)在教学内容安排上兼顾基础性和前沿性

目前,有关遥感基础知识或基本技能方面的教材很多,其中以《遥感导论》(梅安新主编)、《遥感概论》(彭望f主编)、《遥感数字图像处理教程》(韦玉春主编)和《遥感应用分析原理与方法》(赵英时主编)等教材的应用较为普遍。各种教材内容和重点不一,因此根据教学目的和学生实际,选择适合的教材和教法尤为重要。笔者选择《遥感导论》作为主教材,以《遥感数字图像处理教程》为辅助教材,从中选取部分内容进行重新组合和梳理,安排了如下的教学内容:1.遥感基础知识,包括遥感基本概念、传感器、遥感类型、电磁辐射基础; 2.遥感图像处理,包括遥感大气校正、几何校正、影像裁剪、影像增强、影像分类;3.遥感信息提取,包括常用植被指数、一阶和二阶纹理参数的提取,以及基于提取的遥感指标进行植被覆盖度、植被叶面积指数的定量估算;4.综合应用训练,包括使用常用遥感影像处理软件ENVI和ERDAS进行特定研究区土地利用类型的分类、植被结构参数的提取以及水体叶绿素含量的估算等。同时,遥感学科的发展日新月异,为了让学生及时了解遥感领域的最新发展动态,笔者在教案设计上注意引用一些国外优秀教材,如John A.Richards编写的Remote Sensing Digital Image Analysis、Canada Centre for Remote Sensing编写的Fundamentals of Remote Sensing等,并精选若干国内外学术文献,如《遥感学报》、《地理学报》、《Remote Sensing of Environment》等专业顶级期刊经典文献供学生课后阅读。实践证明,这一做法不仅能有效提升教学内容的现势性,也能激发学生进一步探索遥感领域的兴趣。

(二)教学方法上结合案例教学法,使学生变被动学习为主动学习

传统的教学方式以教授为主,往往只注重“教”而轻视了“学”。针对“遥感原理与应用”课程理论性强、内容抽象的特点,笔者尝试采用“互动式教学法”和“案例教学法”。在处理教学难点时,通过设计疑问,让学生分组讨论,笔者及时点评,改变了传统的教师“一言堂”的做法,强化师生互动。笔者根据学生的问题反馈进一步深入引导,有效化解了教学难度,并调动了学生的学习主动性。如辐射传输过程比较抽象,笔者在讲解时并非围绕教材上的公式推导,而是以日常生活中的拍相片为例,引导学生理解一张相片的质量受到哪些因素的影响。通过合理设问,或者让学生提问,可轻松解决教学难点,学生也反映很容易理解。在进行遥感软件应用教学时主要采用“案例教学法”。可选取一些具有代表性、典型性、实时性的案例进行讲解和分析,或者引导学生运用所学理论对案例进行分析和讨论,以加深和巩固理论知识并学会灵活运用,培养学生分析问题和解决问题能力。[4]例如,基于遥感影像的南方丘陵植被叶面积指数反演、林地水土保持植被三维绿量估算、南京市土地利用时空演变分析、南京市林地植被覆盖度信息提取及太湖叶绿素浓度适时监测等案例,都涉及多个理论知识点,学生从中加深对理论的认识,并自觉地在脑海中实现对知识的构建和对技术应用的了解。笔者发现,案例教学法从实际问题出发,通过一系列问题导向的推理或操作,巩固了诸多知识点,并让学生练习了相关的遥感技能。这一方法打破了教材中的知识体系分割,让学生在最终完成任务后体验到一种学习成就感,教学效果很好。

(三)优化实践教学体系以锤炼学生专业硬功夫

本科阶段“遥感原理与应用”课程中实践教学体系主要包括验证性实验、综合性实验和设计性实验三类。其中验证性实验主要是对基本原理和基本方法的验证,以帮助学生理解课程的基本知识和培养学生的基本技能。如典型地物光谱的测试、遥感影像投影转换、大气校正、几何校正、图像融合、图像的增强处理、遥感影像分类等,使学生初步掌握和熟悉常用遥感图像处理软件的运行环境、操作方法及其功能,提高学生动手能力。综合性实验则是将相关的实验内容有机结合,例如遥感反演林地叶面积指数的实验,基于区域SPOT影像,首先进行大气校正、几何校正等预处理,然后与野外实测的林地叶面积指数样方中心点的矢量图层叠加,建立基于点的感兴趣区,进而提取以实测点为中心,一定范围(如10m)缓冲区内的各波段反射率均值,计算几种植被指数,并用植被指数与实测叶面积指数建立关系模型,用该模型反演研究区林地叶面积指数。综合性实验通常可结合学生的毕业论文进行。设计性实验带有一定的研究性和探索性,一般由教师给定题目和要求,学生3-5人组成一个兴趣小组来共同完成。教师在实验方案的选取、专业文献的阅读等环节给予指导性意见,细节问题由学生把握。如要求学生利用ERDAS软件完成一幅1 / 5万的某市土地利用现状专题地图,教师布置这一任务,明确完成时间和要求,可放手让学生去做,学生有问题则及时解答。设计性实验给学生留有较大的自主空间,可培养学生的科研能力及团队合作精神,对于创新型和应用型人才培养十分必要。这三类实验由浅入深,有步骤地提升学生的遥感应用能力。笔者在实践教学初始阶段就给学生布置设计性、综合性实验任务,较之传统的“填鸭式”讲解,这样带着目标的研讨式学习更能有效激发学生的学习兴趣和潜力,能达到事半功倍的效果。

(四)迎接“慕课”时代,实现网络资源共享

“慕课(MOOCs)”发端于美国,是“大规模公开在线课程”的简称,具有规模大、无时空限制、开放性、可重复性、互动性、娱乐性等特点。[5]“慕课”是新近涌现出来的一种在线学习模式,是一种将分散的授课者和学习者通过某一个共同的话题联系起来的方法,上课的时间、地点不受限制,无论你身在何处,只需要一台电脑和网络联接即可享受到世界一流大学的一流课程。慕课尊崇创用共享协议,24小时全天开放,凡是想学习的,都可以随时随地进来,因此受众非常广泛。[6]“慕课”不同于以往的网络公开课,其视频课程被切割成数分钟甚至更小的“微课程”,不在“大而全”,而在“小而精”,为新媒体迅速而广泛的传播提供了便利。“慕课”启发了网络时代全新的教学模式――线上(课外)学习与线下(课堂内)探究相结合的“混合教学”模式。“慕课”平台有望整合全球的教学资源并共享之,教师甚至可以自行开发类似于“慕课”的小视频,主要侧重理论知识的传授。“慕课”视频可代替课堂讲授,其明显的优势就是“可重复性”,所有的课程都可以重复学习,学生可根据自己的学习进度选择回放或快进。“慕课”的核心在于“学”,强调以“学”为本的教学价值取向。[7]“慕课”正在全球引发一场“学习的革命”,也激起了专业教学领域广泛的讨论。处于教学一线的教师们应把握时机,顺应时代潮流,充分利用“慕课”平台,开发建设高质量在线课程,最大限度地分享全球优质教学资源,为“遥感原理与应用”课程教学模式的创新注入新的活力。

三、结语

遥感是一门技术更新很快的应用型学科,对人才数量和质量的需求都不断上升。高校遥感教学也应适应本专业的快速发展及社会需求,培养出创新能力强、综合素质高的应用型人才。本文结合笔者的专业教学实际从教学内容、教学方法及实践应用等环节对“遥感原理与应用”课程的改革进行了探索,提出兼顾教学内容的基础性和前沿性、采用案例教学法和互动式教学、优化实践教学体系、迎接“慕课”时代等教学改革措施,对于优化遥感课程教学模式、激发学生专业学习兴趣并全方位锻炼学生综合素养具有积极意义。

[ 注 释 ]

[1] 梅安新,彭望录,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.

[2] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.

[3] 杨卫军,洪港.高校遥感学科建设的现状及其对策[J].湖州师范学院学报,2010(4):113-115.

[4] 岳林琳,胡友利.试论案例教学法在课堂教学中的应用[J].中国科教创新导刊,2008(20):148.

[5] 郭芸,白琳.网络环境下高校思政课教育教学方法创新研究――慕课对教学模式改革的启示[J].现代教育科学,2014(6):61-65.