遥感卫星影像技术范例6篇

遥感卫星影像技术

遥感卫星影像技术范文1

关键词:免费卫星遥感影像;林业调查设计;应用

中图分类号:F32 文献标识码:A DOI:10.11974/nyyjs.20160432200

1 免费卫星遥感影像在林业调查设计中的运用现状

卫星遥感影像技术在我国各种地质调查领域中都有所运用,在林业调查设计中的运用情况也发展较好。以玛纳斯县为例,在2003年首次利用SPOT-5卫星遥感影像技术进行森林资源调查设计,之后在2006年在新疆全省进行全面推广。现在新疆各地区在进行林业调查设计时都会结合免费卫星遥感影像技术。例如新疆玛纳斯县在2014~2015年进行的林业调查中,使用的调查方法就包括了采用“3S”(地理信息系统(GIS)、遥感(RS)和全球定位系统(GPS))等技术,并且利用近期较高分辨率(2.5~5m)的卫星遥感影像数据进行小班判读区划。但是,我国各地区使用的卫星影像栅格数据大多都还是2006年的数据,这一数据较为可靠并容易进行调用,但是缺乏实时性,运用中有一定的局限性。因此现在林业调查设计中使用的卫星遥感影像数据还有待更新,才能够更加方便、准确地进行合理的林业调查设计规划。

2 免费卫星遥感影像在林业调查设计中的使用方法

免费卫星遥感影像的使用需要经过一系列步骤,要利用免费的网络资源,获取到待调查区域的卫星遥感影像,然后要将这些影像进行栅格处理和配准校正等步骤,最后才能够将图像应用在林业调查设计工作中。这一系列步骤涉及到一些软件的操作及调试,具体步骤如下:进行准备工作。需要在Windows 操作系统中安装ArcGIS Desktop 10.0或者以上版本,并且安装好ArcBruTile 0.3.3 插件。有了这些软件才能够正确显示图像并进行导出或者打印;开始获取遥感影像。在这步骤中,要经过Arc Map进行地区定位,输入地区的经纬度进行数据获取,选定比例尺将得到的图像进行导出;根据图像叠加的方式进行配准校正,得到可以使用的卫星遥感影像。根据这些这些影像,就可以作为实际林业调查设计的参考,便于实际设计工作的进行,为设计林业调查方法或者进行区域划分提供真实的参考资料。

3 免费卫星遥感影像在林业调查设计运用中的优势

免费卫星遥感影像在新疆各地区的林业调查设计中都得到了较为广泛的应用,这与免费卫星遥感影像的一些有利优势是分不开的,正是因为有了这些优点,才能够促进这种技术在林业调查设计中的推广。

3.1 技术使用方便

免费卫星遥感影像的实际运用虽然涉及到一些计算机软件的操作和使用,但实际上技术并不复杂,并且由于大多数经常进行林业调查的地区都早已配备了较为完善的GPS设备,人员只需要进行简单培训就可以进行使用。例如在玛纳斯县的林业调查部门中,配有正版的GIS软件,并且为设计人员配有手执版GPS,方便操作,使用非常简单。运用现代软件进行操作比用人工测绘的方式要简单得多。

3.2 数据结果可靠

免费卫星遥感影像能够实际拍摄地形情况,测量误差较小,并且具有多点校正配准技术,在实际使用中能够极大地减少人为因素带来的测量和估算误差,能够极大地提高林业调查结果的可靠性,为林业调查研究提供更加准确的参考资料。

3.3 技术易于推广

免费卫星遥感技术能够迅速在新疆地区进行大面积地推广正是因为这种主要依赖于卫星和信息技术的方法相比于传统方法更加容易进行推广,只需要安装相关软件并接入互联网就可以获取到影像资料,减少技术传播的中间过程。同时,这种技术易于学习,只要有一定的计算机基础即可学习使用这种技术,可以降低对使用人员的专业素质要求,使得这种技术更能够被基层林业部门掌握,也就利于这种技术在基层林业调查设计工作中的传播推广。

4 结束语

免费卫星遥感影像在现代林业调查设计中被广泛应用,这种影像资源获取较为简单,技术容易学习掌握,在我国新疆地区等地全面进行了推广。通过使用这种免费的卫星遥感影像,可以帮助林业调查设计人员获取更加准确可靠的地形、林区、流域资料,对于设计过程中的调查方法的选用、调查区域的划分等工作安排有着重要的意义,进而可以有效提高实际的林业调查结果的准确性,有效提高林业调查效率。

参考文献

遥感卫星影像技术范文2

卫星遥感技术集中了空间、电子、光学、计算机通信和地学等学科的最新成就,是当代高新技术的一个重要组成部分。我国卫星遥感技术的发展和应用已经走过了多年艰苦探索与攀登的道路。如今,我们欣喜地看到卫星遥感应用技术已经起步并正在走向成熟和辉煌。

众所周知,近十年来全球空间对地观测技术的发展和应用已经表明,卫星遥感技术是一项应用广泛的高科技,是衡量一个国家科技发展水平的重要尺度。现在不论是西方发达国家还是亚太地区的发展中国家,都十分重视发展这项技术,无论在政策、资金,还是在人力、物力上都给予卫星遥感以特别的重视和倾斜,寄希望于卫星遥感技术能够给国家经济建设的飞跃提供强大的推动力和可靠的战略决策依据。这种希望给卫星遥感技术的发展带来新的机遇。面对这种形势,我国卫星遥感技术如何发展,如何使卫星遥感技术真正成为实用化、产业化的技术,直接为国民经济建设做好先行,是值得我们认真思考而且必须做出正确回答的问题,同样它也是当前业界人士关注的热门焦点。

卫星遥感技术应用

1、卫星遥感技术应用现状

首先,到目前为止,我国已经成功发射了十六颗返回式卫星,为资源、环境研究和国民经济建设提供了宝贵的空间图像数据,在我国国防建设中也起到了不可替代的作用。我国自行研制和发射了包括太阳和地球同步轨道在内的六颗气象卫星。气象卫星数据已在气象研究、天气形势分析和天气预报中广为使用,实现了业务化运行。1999年10月我国第一颗以陆地资源和环境为主要观测目标的中巴地球资源卫星发射成功,结束了我国没有较高空间分辨率传输型资源卫星的历史,已在资源调查和环境监测方面实际应用,逐步发挥效益。我国还发射了第一颗海洋卫星,为我国海洋环境和海洋资源的研究提供了及时可靠的数据。

其次,除了上述已发射的遥感卫星外,我国还先后建立了国家遥感中心、国家卫星气象中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等部级遥感应用机构。同时,国务院各部委及省市地方纷纷建立了一百六十多个省市级遥感应用机构。这些遥感应用机构广泛的开展气象预报、国土普查、作物估产、森林调查、地质找矿、海洋预报、环境保护、灾害监测、城市规划和地图测绘等遥感业务,并且与全球遥感卫星、通信卫星和定位导航卫星相配合,为国家经济建设和社会主义现代化提供多方面的信息服务。这也为迎接21世纪空间时代和信息社会的挑战,打下了坚实的基础。

最后,非常关键,必须要重点指出的是两大系统的建立完成。一是部级基本资源与环境遥感动态信息服务体系的完成,标志着我国第一个资源环境领域的大型空间信息系统,也是全球最大规模的一个空间信息系统的成功建立;二是部级遥感、地理信息系统及全球定位系统的建立,使我国成为世界上少数具有部级遥感信息服务体系的国家之一。我国遥感监测的主要内容为以下三方面;

(1) 对全国土地资源进行概查和详查;

(2) 对全国农作物的长势及其产量监测和估产;

(3) 对全国森林覆盖率的统计调查。

2、卫星遥感技术应用前景

国际上卫星遥感技术的迅猛发展,将在未来十五年内把人类带入一个多层、立体、多角度、全方位和全天候对地观测的新时代。由各种高、中、低轨道相结合,大、中、小卫星相协同,高、中、低分辨率相弥补而组成的全球对地观测系统,能够准确有效、快速及时地提供多种空间分辨率、时间分辨率和光谱分辨率的对地观测数据。

随着对地观测技术的进步以及人们对地球资源和环境的认识不断深化,用户对高分辨率遥感数据的质量和数量的要求也不断提高,从而促进了高光谱分辨率遥感的发展。高分辨率的空间信息能够较好的满足诸多用户的需求,它们的重要特征就是具有商业化前景。

在国家经济建设中,对空间遥感信息以及空间地理信息的需求将日益增长。为使我国现代化经济建设得以持续稳固发展,空间遥感信息技术和应用必须相适应的发展。我们可以从我国对遥感信息和技术的应用需求来看卫星遥感应用前景,这主要表现在社会公益需求方面和遥感图片的商业应用需求两个方面:

(1)社会公益需求。

主要有以下几种类型:

①土地利用、城市化及荒漠化监测;

②农作物、森林等可再生资源的监测和评估;

③灾害监测和环境监测。

此外,对道路、建筑工程的设计、选址等方面也有着广阔的前景。这方面的需求主要靠政府扶持。

(2)商业应用需求。

遥感技术的应用是极其广泛的,凡是涉及地球科学的各门类的学科和技术种类,遥感技术都能为它们提供信息。这种广泛性必然会使对遥感数据的需求用户范围变广,因此除了社会公益型用户外,还存在部分商业应用型用户。虽然这些商业应用型用户由于遥感卫星正处于产业化初期,市场尚未形成规模的原因,目前数量较少,但随着将来技术的进步,商业化的发展,这部分的用户肯定会逐渐增多,最终成为用户群体中的主要成员。

高空间分辨率图像数据和地理信息系统紧密结合,在未来的城市规划、地籍管理、工程评估等方面将有广阔的市场,预计每年会有14%左右的增长率;近年来,由于卫星数据的增加和小型廉价的工作站、图像处理系统、软件的发展,与此相关的空间信息服务公司大大增加,由此形成的增值收益是卫星图像销售收益的六倍。由此可见,卫星遥感的商业化是卫星遥感应用产业化发展的推动力之一。

卫星遥感技术的产业化发展

1、卫星遥感技术蕴藏巨大的产业化前景

遥感技术应用的基础是遥感信息的获取。地面物体在遥感图像上形成各种信息是一个复杂的过程,这个复杂过程是由人类生活的真实地表空间的复杂性、千变万化性和成像过程的复杂性共同决定的。具体地说,人类生存的地表空间是复杂的,是宏观有序、微观混乱的地理综合体,成像获取的遥感图像的光谱值是混合光谱,受多种因素的影响。从信息论角度来讲,遥感成像过程是信息从多到少的映射,是个确定过程,是把一个千变万化、形形的地球表面高度概括、总结、选择、压缩的过程。正是这个过程,使得遥感影像中包含的信息具有宏观性、多样性、综合性、周期性、量化等特点。这些特点决定了遥感影像中包含着人类生产活动各个研究和应用领域所需要和感兴趣的信息,各个研究和应用部门均可以从不同的遥感影像中提取和挖掘出所需的信息,为本部门的发展和应用服务,为国民经济建设服务。这也就是遥感信息具有跨部门、跨学科的特点。遥感信息的上述特点决定了遥感技术从起源就蕴藏着巨大的产业化前景。

2、卫星遥感技术发展的不平衡性需要加速产业化

卫星遥感信息的获取技术得到了惊人的发展,空间分辨率和光谱分辨率已经达到相当高的程度。空间分辨率由千米级、百米级,到米级、分米级,光谱分辨率由几百个纳米、几十个纳米,到几个纳米。多空间尺度、多光谱尺度以及多时间尺度的海量卫星遥感数据的获取技术已经形成,但卫星遥感信息的应用则相对发展滞后,出现了卫星遥感获取技术的快速发展与信息应用滞后的矛盾。这个矛盾使得人们在欣喜地获得大量可用数据的同时,却在解决实际问题时仍然对知识万分饥渴,深感信息的短缺。这主要是因为卫星遥感影像信息的应用过程远比获取过程要复杂得多。遥感图像的解译和应用过程是信息从少到多的映射 ,是个不确定过程,无法从数学上直接求得确定解。从信息论来说,是因为遥感成像过程在保留了总体信息的同时,压缩了细节信息,同时还附加有噪音,减少了信息量,从而使遥感影像上所包含的信息量不足以表达人们所希望求解的诸多地理对象的内在的不确定度。这种不确定性程度因对象不同而不同。可以把遥感信息应用过程看成是一个信息传递系统,一个将遥感数据转换为可用信息的过程。而遥感数据到信息的转换,是由业务用户的信息需求所驱动的,选择什么样的模型以及最终达到什么样的目的完全因应用部门而异。由于支持“数据到信息”过程的基础知识很少和短缺,限制了遥感数据直接产生的经济和社会效益,从而影响了遥感数据的应用广度和深度。因此,要加强卫星遥感技术向国民经济和社会发展诸多行业和领域的渗透、辐射,与各行业、领域的传统方法相结合,而不是排斥和完全代替,以提升传统行业、发展新兴行业,加速卫星遥感技术产业化的进程。

卫星遥感技术的产业化发展历程

1、实用化是产业化的前提

卫星遥感技术具有其他技术不可替代的优势,但也有它的局限性,主要表现在:

(1)遥感技术在电磁波谱中仅反映地物从可见光到微波段电磁波谱的辐射特性,而不反映地物的其它波谱段特性。因此,它不能代替地球物理、地球化学等方法,但它可与其集成,发挥信息互补效应。

(2)卫星遥感信息主要反映是近地表的现象、区域和运动状态等。这一局限性与人类在地球科学和其他科学研究中不断向地下深处发展之间产生了矛盾。这一矛盾使得遥感技术在不同行业和领域的应用程度可能会因应用领域的深入而受到影响。

(3)卫星遥感信息获取过程的确定性与信息应用反演时的不确定性产生了明显的矛盾。该矛盾使卫星遥感技术在各行业、领域深入应用的效果受各种因素影响大,效果好坏不定。

之所以强调这些局限性是因为只有正确地认识到卫星遥感技术的优势和局限性,才能扬其所长,补其所短,使它更加实用化。

显然,卫星遥感数据的深入应用仅靠遥感技术和遥感知识是完全不够的。实现遥感数据良好和深入的应用需要三方面的信息和知识:一是遥感信息和相关的处理技术;二是应用领域的专业信息和相关技术及知识;三是借鉴其他领域先进的信息技术。只有这三方面知识和技术的共同支持,应用部门才能更加准确地提取和理解赋存于卫星遥感数据中的专门信息,有效地服务于生产和研究。这三个方面的信息和技术可归纳为两个结合,即遥感技术与各应用领域的专业技术相结合,遥感技术与其他现代信息技术相结合。这两方面的结合方式和结合的紧密程度与应用部门或个人感兴趣的目标地物赋存的地理空间及复杂性有密切关系。正是由于这种赋存地理空间的差异和对象属性、运动状态的复杂性差异,不同部门在进行遥感信息应用时,采用上述两个结合的程度也不同,遥感信息的应用广度和深度也有差异。无论对哪个应用部门、哪个学科或个人,不断深入地应用遥感信息来有效地解决问题,上述这两个结合都是必要的。换句话说,发挥快速发展的遥感技术的强大优势,结合各行业和领域的传统有效的方法技术,整合现代信息技术,发展交叉技术,从多学科、广视角来解决各行业和领域遇到的实际问题,有利于卫星遥感技术的实用化,从而有利于推动卫星遥感技术的产业化。

2、商业化是产业化的催化剂

在市场经济的大背景下,实用化商业化产业化是产业化的必由之路。没有实用化,就谈不上商业化,没有商业化就形成不了产业,没有产业化的推动,任何一项高新技术,包括卫星遥感技术就不可能持续地发展下去。

所谓商业化就是要将卫星遥感技术作为商品在市场经济大环境下进行竞争,形成卫星遥感技术的规范化、规模化市场。要想促进卫星遥感技术的商业化,那就必须要转变观念,树立竞争意识,进行技术创新,研制开发新一代高水平的遥感卫星,提供高质量、具有优势的产品。同时,采用成熟技术,商业现货产品和发射小型卫星的办法降低生产成本。扩大市场需求,提供不同档次级别的图像产品和增益产品,培养个体用户,大力发展个人图像服务。改变传统作业方式,实行商业运作,加强数字提供商与信息增值服务商之间的合作,逐步增大纯商业化系统的比例。采取符合市场经济规律的正确方针和有力措施,进行综合经营,实行薄利多销。遥感卫星产业包括卫星制造业、发射服务业、地面应用服务业和地面设备制造业等。地面应用服务业包括代销或经销其他公司或非商业化的民用遥感产品等。

3、产业化的主要模式以及发展趋势

(1)卫星遥感技术产业化的主要模式。

①混合模式;

②政府政策促进商业遥感卫星产业化的模式。

(2)卫星遥感技术产业化的发展趋势。

①跨国公司合并,形成规模开发能力;

②既竞争又合作,军民商遥感卫星同时出击;

③开发通用卫星平台;

④1米高分辨率遥感卫星市场成为焦点;

⑤以创新技术优势开拓市场;

⑥国家和私营公司采用高新技术合作开发;

⑦以卫星品牌和标准产品占领市场。

我国卫星遥感技术的产业化发展

1、我国卫星遥感技术产业发展现状

目前,我国1000多家3S(GPS,RS,GIS)单位的十多万名从业人员构成了我国遥感市场的主体,他们直接或间接从事卫星遥感技术的软硬件研制、应用和开发工作。资料显示,遥感已成为我国地理空间信息产业的一个重要组成部分,发挥的作用越来越明显,并成为有关行业的主导技术,如在城市土地动态监测、违章用地处罚、水土流失调查、生态环境评价、大型工程选线选址等方面。

(1)卫星遥感的产业链

①卫星遥感基础设施的制造与发射,持续稳定的数据源是遥感产业发展的基础。

②卫星数据加工以及增值服务,是遥感应用的前提;离开了不同种类、不同级别的数据加工,遥感的产品将非常单一,应用的范围将缩小。

③地理信息产业为主的信息应用,是遥感产业扩展与延伸的主要方面和新的增长点。

④工程建设应用始终是遥感应用的重点之一。

⑤政府的公益事业、政府的政策导向是遥感生命力所在。

(2)卫星遥感市场的特点

①多极化的市场已经出现,发展势头强劲,并且不断加快,但公益服务仍占据主导地位。这是从经济总量对比得出的结果,但需求是多渠道的;多极化市场的出现将逐步改变政府的主导地位。

②产业链和市场细分逐渐形成。遥感需求层次已形成,不同分辨率的数据为不同用户服务,同时遥感需求的网络正在逐步有序化。

③产业规模扩大,遥感数据市场竞争激烈,市场需求不断增强。

④遥感软件产业发展平缓,起伏不大。

⑤市场准入制和竞争机制正在建立。

2、我国卫星遥感技术产业发展途径

每个国家遥感卫星的发展战略各不相同,没有哪个国家的遥感卫星发展道路和战略是最好的,适用于一切国家的。世界上有许多国家如美国、法国、印度等都已走出了一条适合自己发展的道路。我国也很有必要根据自身的应用需求、经济实力和技术基础等条件,并借鉴其他国家的发展经验制定遥感卫星发展战略。总结和分析其它国家遥感卫星发展战略及其特点,有助于我们把握好方向、正确定位和制定合理的遥感卫星发展计划。纵观美国及其它国家遥感卫星发展所走过的历程,广大专家、学者整理归纳出以下四点适合我国卫星遥感技术产业发展的有效实现途径。

(1)商业化。

商业化是一条值得探索的道路。我国财力有限,采用商业运作模式可以充分利用卫星资源。如果遥感卫星产品能够打开国内市场、打入国际市场,并在市场上占据一定份额,遥感卫星将能自负盈亏,政府不必投资,便可使其处于一个良好的循环状态,如果政府少量投资,将使其更有竞争力。由于遥感卫星数据本身的社会性和公益性,以及市场的特殊性,要在短期内实现商业化是很困难的,不可急于求成,要充分借鉴别国成功的经验,避免它们曾经出现过的问题,在商业化的过程中政府的扶持和调控是必不可少的。

(2)国际合作。

卫星是一项投资巨大的产业,可以通过国际合作来共同承担风险和投资成本。走国际合作的道路,通过技术引进、消化、发展,一可减轻国内经济负担,二可分散风险。国际合作这种运作模式也是当前的一个发展方向。

(3)重视应用。

发展遥感卫星的目的是为了应用,应强调系统的应用效益,切实改变重技术、轻应用的倾向,技术发展要与应用效益挂钩。我国资源一号卫星,应用还很有潜力可挖,应加大宣传力度,综合管理遥感卫星数据的应用,以发展推动应用,以应用促进发展。

(4)军民合用。

遥感卫星影像技术范文3

天眼越来越好

遥感卫星也叫对地观测卫星,有光学成像卫星和雷达成像卫星2种,前者携带可见光、红外和多光谱等遥感器,最大优点是分辨率高;后者携带合成孔径雷达等遥感器,最大优点是可以全天候工作。

众所周知,评估遥感卫星性能的一个重要指标就是分辨率,它包括空间分辨率、时间分辨率和光谱分辨率等,其中空间分辨率最令人关注,其指标对卫星应用的深度和广度具有重要影响。空间分辨率一词来源于光学,是指2个点光源彼此接近到恰能被分辨出的最小距离,能显示遥感卫星分辨目标的能力。具体说来,它是指能从遥感卫星照片上辨别地面目标的最小尺寸,例如,如果某遥感卫星能够辨别的最小目标为2米,则这种遥感卫星的分辨率就是2米。

随着经济建设和社会发展,人类对遥感卫星的空间分辨率要求越来越高,所以高分辨率遥感卫星的发射数量和研制国家正日益增多。近年来,高分辨率遥感卫星的发射数量已占遥感卫星发射总数的约41%,而且其占有比例有继续增加的趋势,因此可以认为,人类对地观测已进入高分卫星时代。这些高分辨率遥感卫星已广泛用于精确制图、城市规划、土地利用、资源管理、环境监测、地理信息服务等领域,成为国家基础性、战略性资源。

对于采用光学成像的遥感卫星来讲,其运行轨道越高,分辨率就越低,所以,高分辨率遥感卫星通常运行在近地轨道,有时甚至采用临时性降低轨道高度的方法来取得短期的更高分辨率的图像,以满足特殊需要。另外,星载相机的焦距越大,分辨率越高。

对于采用雷达成像的遥感卫星来讲,可工作在略高的轨道上,但这就需要雷达成像卫星自身能提供足够高功率的雷达信号。提高其分辨率的方式主要有两种:一是采用短波长;二是增加天线口径。为此,可以提高雷达波的频率,缩短其波长,但当频率增加到一定程度时,大气对雷达波的衰减和吸收特性就会表现得非常明显,从而影响雷达的正常工作;同样,雷达的天线口径也不可能无限增加,因为加大雷达口径不仅会增加工艺难度和成本,而且对发射卫星的运载器提出了新要求。为此,提出了合成孔径雷达的概念。合成孔径雷达是利用雷达与目标的相对运动来把尺寸较小的真实天线孔径用数据处理的方法合成一较大的等效天线孔径的雷达。

军用领跑高分

高分辨率遥感卫星在军用和民用方面都有广泛的用途。从原理上讲,军用遥感卫星与民用遥感卫星大同小异,主要差别是在使用的谱段和对地面分辨率的要求不同。军用遥感卫星主要在可见光或近红外谱段成像,分辨率优于1米,因此,军用遥感卫星大部分都是高分辨率卫星,只有少数用于普查的军用遥感卫星因运行轨道较高,以便提高时间分辨率,但空间分辨率会稍低;民用遥感卫星主要在多光谱成像,以便识别地面各种特征,其分辨率有高有低。

在军用高分辨率光学成像遥感卫星方面,美国锁眼12号卫星最牛,它采用了大面阵探测器、大型反射望远镜系统、数字成像系统、自适应光学成像技术、实时图像传输技术等,镜头口径3米,焦距27米,分辨率达0.1米。法国太阳神2号A、2号B卫星分辨率达0.5米,其军民两用光学成像遥感卫星“昴宿星”的分辨率为0.7米。以色列最先进的地平线9号小型:光学成像遥感卫星分辨率为0.5米。日本现役的第二代光学成像“情报收集卫星”分辨率为0.6米。

在军用高分辨率雷达成像遥感卫星方面,美国“长曲棍球”卫星是老大,分辨率达0.3米,其设计特点是装有巨大的合成孔径雷达天线和巨大的太阳能电池帆板,卫星装载的高分辨率合成孔径雷达能以多种波束模式对地面目标成像,使“长曲棍球”不仅能全天候、全天时工作,还可以发现伪装的武器和识别假目标,甚至能穿透干燥的地表,发现藏在地下一定深度的设施,并对活动目标有一定跟踪能力。德国有军用卫星

“合成孔径雷达·放大镜”,意大利有军民两用卫星“宇宙一地中海”,前者分辨率为0.5米,后者为1米。日本现役的第二代雷达成像“情报收集卫星”分辨率为1米。以色列的“技术合成孔径雷达”设计寿命为4年,质量只有300千克,其中所载的合成孔径雷达重约100千克,分辨率为1米。印度军民两用的雷达成像卫星1号是自制的,其雷达成像卫星2号由以色列研制,分辨率为1米。

今后,军用高分辨率遥感卫星的发展趋势更多地使用雷达成像卫星,并通过采用平板相控制雷达天线等措施进一步提高其分辨率,采用新的分布式星座来缩短卫星的重访周期;光学成像卫星在获得高地面分辨率的同时,将继续扩大视场宽度,以提高卫星的时间分辨率;组建可实现全球覆盖的小型卫星星座,实施对任何目标的实时或近实时的侦察;发展星载超光谱遥感器,进一步扩展成像侦察范围,增加对隐蔽和伪装目标的识别能力;开发新型战术成像侦察技术,提高侦察技术的传送能力,实现军用高分辨率遥感卫星从战略应用向战术应用扩展;发展小型、低成本和可应急发射的军用高分辨率遥感卫星,它也可军民两用;建造军用和民用高分辨率遥感卫星混编星座,以提高对地观测的效率;研制同时载有光学成像和合成孔径雷达成像2种遥感器的军用高分辨率遥感卫星。

多国角逐民星

一般来讲,分辨率约2米的民用遥感卫星可称为民用高分辨率遥感卫星。美国、德国、印度、以色列和俄罗斯等国都在积极发展民用高分辨率遥感卫星。美国高分辨率遥感卫星大多是小型商用卫星,有多个型号:“艾科诺斯”2号卫星的分辨率为0.82米,幅宽11.3千米;“快鸟”2号卫星的分辨率为0.61米,幅宽16.5千米;“地球之眼”1号卫星的分辨率为0.41米,幅宽15.2千米;“世界观测”2号卫星的分辨率为0.46米,幅宽16.4千米。它们也可以用于军事。

2012年9月9日,法国首颗第4代“斯波特”——“斯波特”6号入轨,它是光学成像卫星,具有质量轻、寿命长、分辨率高的优点。其分辨率为2.5米,幅宽60千米,并能同轨立体成像。该卫星运行在694千米高的太阳同步轨道,质量只有800千克,设计寿命达10年。该卫星上有两台高分辨率相机,每天成像范围250万平方千米。虽然其分辨率和幅宽与第3代“斯波特”一样,但更加敏捷,能执行快速反应任务,每天上传6个任务计划,获取无云图像。它们与2颗已上天的法国“昴宿星”形成互补,满足多样化任务需求,保持系统的宽覆盖能力和图像数据的连续性,因为“昴宿星”虽然分辨率达0.7米,但幅宽只有20千米。

德国“陆地合成孔径雷达-X”是民用和商用高分辨率雷达成像卫星,也是世界首个高精度干涉合成孔径雷达卫星系统,分辨率优于1米,现广泛用于农林管理、地质调查、海事监测等。

印度现有制图卫星1号、2号、2号A、2号B共4颗高分辨率卫星,其最高分辨率为1米。印度正在研制的制图卫星3号卫星的分辨率将达0.3米。

以色列地球资源观测系统一B卫星运行在距离地面540千米高的太阳同步轨道上,观测周期为4天,分辨率为约0.7米,设计寿命6年。其上的遥感器也是1台全色CCD相机,其每行像元数为20000,量化等级为8比特~10比特。星上相机的观测角变化范围为±45°,这是靠平台侧摆来实现的。由于相机观测角变化范围较大,故它有能力获得较多的立体像对。

俄罗斯新一代民用高分辨率光学成像卫星——“资源”-DK的分辨率为1米,其正在研制的“资源”-P卫星的分辨率为0.4米。

2012年,韩国阿里郎3号多用途卫星升空。它载有光学相机,能够拍摄0.7米高分辨率照片,运行在685千米高的轨道。2013年,韩国将发射1米分辨率的雷达卫星。

中国成为后起之秀

近年,我国也在积极研制高分辨率遥感卫星。例如,2012年4月18日,我国首颗民用宽幅带、高空间分辨率遥感卫星——资源一号O2C星正式在轨交付给国土资源部;2012年7月30日,我国首颗高精度民用立体测绘卫星资源三号正式投入使用;2012年9月29日,我国为委内瑞拉研制的委内瑞拉遥感卫星1号上天,这是我国首次向国际用户提供遥感卫星整星出口和在轨交付服务。

2012年投入使用的资源一号O2C星的发射质量约2056千克,设计寿命3年。它装有2台分辨率为2.36米的全色分辨率相机,1台分辨率为5米/10米的全色/多光谱相机,可采用2台全色高分辨率相机拼接的方式提供了54千米的成像幅宽,最大限度提升了高分辨率数据的观测幅宽。在轨测试表明,该卫星所拍图像质量接近或达到国际先进水平,数据质量满足1:2.5万~1:10万国土资源调查监测精度要求;最小监测图斑面积达到0.2亩,满足经济发达地区、重点关注区域资源现状高分辨率调查监测要求;融合影像的属性精度、面积精度、最小监测图斑等指标与常规使用的法国“斯波特”5号、德国“快眼”数据接近。

2012年投人使用的资源三号卫星质量约2650千克,运行在高度约500千米的太阳同步轨道,具有立体测图功能、测国精度高、影像数据量大、处理速度快等特点。它是我国首颗高精度民用立体测绘卫星,装载了一组分辨率为2.1米(正视)和3.5米(前后视)的三线阵立体测绘相机,以及1台空间分辨率为5.8米的多光谱相机,幅宽约50千米,可提供3.5米分辨率立体影像,2.1米全色/5.8米多光谱平面影像。该卫星集测绘和资源调查功能于一体,影像数据覆盖全球逾4.578×108千米,其中覆盖中国领土9.3242×108千米,使我国的测绘方式由大地测绘、航空测绘提升为航天测绘,使我国地图的更新率由过去的平均5年提升为60天。它第一次使我国卫星遥感图像质量达到国际先进水平,第一次实现我国低轨遥感卫星5年设计寿命,大大提升了我国对地观测卫星的应用效益。

2012年9月29日发射委内瑞拉遥感卫星1号采用中国空间技术研究院航天东方红卫星有限公司的CAST-2000卫星平台,装有2台全色/多光谱相机和2台宽幅多光谱相机,其中2台全色/多光谱相机在639千米高的分辨率为2.5米(全色)/10米(多光谱),幅宽为57千米;2台宽幅多光谱相机在639千米高的分辨率达到16米,组合幅宽为369千米,在轨寿命5年。该星具有±35°的快速侧摆机动能力,可保证全色,多光谱相机在4天内对全球任意目标实现重访,宽幅多光谱相机可在3天内实现对全球任意目标重访。它们成像清晰、图像层次丰富。据悉,其全色/多光谱相机是高性能光学小相机,在成像谱段数量、覆盖宽度、动态范围、轻小型化等指标方面,超过了国内外同类型的遥感相机,居国际先进水平。该卫星主要用于委内瑞拉国土资源普查、环境保护、灾害检测和管理、农作物估产和城市规划等。

遥感卫星影像技术范文4

一、遥感技术的发展

1.1遥感的工作原理

“遥感”,顾名思义,就是遥远地感知。人类通过大量的实践,发现地球上每一个物体都在不停地吸收、发射信息和能量,其中有一种人类已经认识到的形式――电磁波,并且发现不同物体的电磁波特性是不同的。遥感就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。遥感的实现还需要遥感平台,像卫星、飞机、气球等,它们的作用就是稳定地运载传感器。当在地面试验时,还会用到像三角架这样简单的遥感平台。针对不同的应用和波段范围,人们已经研究出很多种传感器,探测和接收物体在可见光、红外线和微波范围内的电磁辐射。传感器会把这些电磁辐射按照一定的规律转换为原始图像。原始图像被地面站接收后,要经过一系列复杂的处理,才能提供给不同的用户使用。

1.2遥感技术的发展

遥感包括卫星遥感和航空遥感,航空遥感作为地形图测量的重要手段已在实践中得到了广泛的应用,卫星遥感用于测图也正在研究之中并取得一些意义重大的成果,基于遥感资料建立数字地面模型进而应用于测绘工作已获得了较多的应用。自20世纪初菜特兄弟发明人类历史上第一架飞机起,航空遥感就开始了它在军事上的应用,从1972年第一颗地球资源卫星发射升空以来,美国、法国、俄罗斯、欧空局、日本、印度、中国等国家都相继发射了众多对地观测卫星。遥感信息获取技术已从可见光发展到红外、微波:从单波段发展到多波段、多角度、多极化;从空间维扩展到时空维;从低分辨率发展到高分辨率甚至超高分辨率。遥感平台有地球同步轨道卫星、太阳同步卫星、太空飞船、航天飞机、探空火箭,并且还有高、中、低空飞机、升空气球和无人飞机等:传感器有框幅式光学相机,缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计、雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。

二、卫星遥感在测绘领域的应用

2.1测绘的发展

测绘,顾名思义就是测量并绘制地图。测绘成果在一般人眼里基本上就是纸质地形图,不过这只是对早期测绘的理解。随着计算机技术及测绘技术的发展,目前的测绘已经远远超脱出传统模拟产品的固有模式,向多品种(模拟及数字产品)、多用途、多种成果形式及高度集成化的方向迈进。当然,对卫星遥感影像资料的应用面也就日益广泛。

90年代中,国家测绘局根据国内外发展状况,在原有测绘产品的基础上,提出增加新的测绘产品模式,即4D产品(数字线划地图DLG、数字高程模型DEM、数字栅格地图DRG、数字正射影像图DOM)。航空摄影资料与卫星遥感资料的互补是4D特别是数字正射影像图制作的资料源。利用现有的遥感影像资料可以制作多种比例尺的数字正射影像图,如利用TM影像可制作30m分辨率的数字正射影像图,利用陆地―7影像可制作15m分辨率的数字正射影像图,利用斯波特影像可制作10m分辨率的数字正射影像图,利用依科诺斯影像可制作4m和1m分辨率的数字正射影像图等,从而极大地丰富了4D产品,为影像数据库建设提供了多分辨率、多层次的影像资源。同时,影像数据可作为GIS(地理信息系统)的背景地图,对GIS的深层次研究与应用提供了更直观的影像信息资源,从而也充实和发展了数据库本身,为规划、管理等部门的科学化决策提供了基础数据资料。

2.2卫星遥感在测绘领域的应用

利用卫星遥感影像更新数据库的过程,从某种意义上讲,就是监测并发现变化的过程。因此,各国均利用卫星遥感影像的优势,对各种感兴趣要素进行监测,如我国进行的土地利用调查及监测、城市变迁、灾情监测等。这些工作的开展,一定程度上为我国可持续发展战略的逐步实施提供了基础保证。

2.3应用的常规方法

利用遥感技术获取地面三维信息,常规的方法是立体摄影测量。由于雷达卫星具有全天时、全天候、不受云雾等恶劣天气和夜暗影响的特性,故随着雷达遥感的发展,合成孔径雷达(SAR)也被用作立体摄影测量。由于斑点噪声的存在,其使用也一度受到影响。近年发展起来的干涉合成孔径雷达技术(INSAR),提供了获取地面三维信息的全新方法,即利用干涉雷达提取地形数字高程模型(DEM)。该方法将大大改进数字高程模型(DEM)获取的传统模式,这是雷达遥感的最新领域,是遥感和摄影测量科学的前沿,目前还只处在进一步的研究之中,相信在几年内可以大规模应用在测绘及其他领域。

2.4遥感图像全数字测绘系统

遥感图像全数字测绘系统是利用航空、航天遥感图像提取战场地理环境和军事目标空间信息,进行全数字测绘作业的智能化综合信息处理系统,是我军首次自行设计与研制、具有自主版权的第一代全数字遥感测绘装备。该系统的研制成功实现了遥感测绘技术进入全数字阶段的跨越性和革命性转变,为我军数字化测绘保障提供了新型的换代技术装备,对于改变100多年来摄影测量基于硬拷贝图像的生产作业方式有重要意义。

与以往的测绘系统相比,该系统在影像匹配方面,能成功用于数字空中三角测量,提高了算法的速度和可靠性,有效地解决了卫星遥感影像匹配的技术难题;在微机环境下能实现单像和立体方式下的地形半自动测绘;在数字图像处理方面,能实现正射影像镶嵌中几何纠正和无缝辐射拼接的自动化;在地形三维可视化方面,实现了三维地形图的空间查询及分析和大区域地形数据、高分辨率遥感纹理图像的三维可视化;在数字城市三维景观方面,开发了基于多源遥感图像的数字城市三维显示实用技术;在航天影像摄影测量方面,还开发了三线阵推扫式影像的处理软件。

该系统配置合理、实用化程度高,总体技术水平已达到同类产品的国际先进水平,经进一步集成装备部队,将极大地改善我军作战测绘保障的网络化作业环境。

三、测绘新技术的发展

测绘新技术除了遥感技术以外,不可不提的便是GPS、GIS技术,下面对此进行简单论述:

3.1GPS的发展

全球定位系统(GPS)是美国从20世纪70年代开始研制,于1994年全面建成的利用导航卫星进行测时和测距,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。随着全球定位系统的不断改进,硬、软件的不断完善,GPS的应用领域正在不断地开拓,目前,各种类型的GPS接收机体积越来越小,重量越来越轻,便于野外观测。GPS已遍及国民经济各种部门,并开始逐步深入人们的日常生活。GPS作为一项引起传统测绘观念重大变革的技术,已经成为大地测量的主要技术手段,也是最具潜力的全能型技术。GPS定位技术与常规地面测量定位相比,除具有对测站选择更灵活、更适应不利条件、全天候连续作业外。还具有比任何地面常规技术供数量更多、精度更高的数据信息。

3.2GIS的发展

地理信息系统作为多个学科、多种技术交叉融合的产物,至今只有40多年的历史。地理信息系统起源于20世纪60年代加拿大和美国学者的在土地和交通方面的地理信息研究。1998年1月31日美国前副总统戈尔在加利福尼亚科学中心的一次讲演,在该讲演中戈尔正式提出数字地球的概念。地理信息系统作为对空间地理分布有关的数据进行采集、处理、管理、分析的计算机技术系统,其发展和应用对测绘科学的发展意义重大,是现代测绘技术的重大技术支撑。

四、结语

现代科学技术发展的综合化整体方向极大地影响着现代测绘科学的发展趋势,这种趋势表现在现代测绘新理论的概括性增强,测绘新技术的技术综合程度提高,各专业学科之间的相互交叉与渗透,测绘学与其它门类科学的联系增强加大,测绘学吸收和移植其它学科成果的速度加快,这种学科内外的综合化发展,将使现代测绘学不断开拓出新的领域。

参考文献:

[1] 钱乐祥. 遥感数字图像处理与地理特征提取[M]. 北京:科学出版社,2004

[2]魏建华,张展,许月光.工程地质测绘中的几个研究对象[J].黑龙江水利科技,1999,(4).

遥感卫星影像技术范文5

关键词:GeoEye 1卫星 技术指标 卫星影像

中图分类号:P236 文献标识码:A 文章编号:1674-098X(2014)06(a)-0033-02

GeoEye系列卫星是IKONOS和OrbView的下一代卫星。2005年,SpaceImaging公司(IKONOS的所有者)因为竞标失败,未得到美国政府订单,被OrbImage公司(OrbView的所有者)收购。合并后的公司改名为世界上最大的商业高分辨率遥感卫星运营公司,其计划中的卫星OrbView-5继承了IKONOS和OrbView-3两颗卫星的设计优点,并在最近计划里改名为GeoEye 1。OrbImage公司2008年9月份发射成功,将GeoEye 1送入轨道,并于12月份开始提供商业影像产品。

GeoEye 1卫星的全色影像具有全色波段0.41 m的空间分辨率,4个波段蓝、绿、红和红外的多光谱影像1.64 m的空间分辨率,影像幅宽能够达到15.2 km。GeoEye 1卫星重访周期小于1.5 d,影像采集速度也有明显提高。在没有地面控制点的情况下,GeoEye 1单张影像能提供3 m的平面定位精度,立体影像能提供4 m的平面定位精度和6m的高程定位精度。

附:GeoEye 1卫星主要参数表1和表2

GeoEye 1遥感影像图1、图2、图3、图4、图5。

由于GeoEye 1数据具有高精度、高空间分辨率、高光谱等优势,在生产生活的各个领域都受到了极大的应用。

济南市勘察测绘研究院田永明、王鸿、张兴国、顾晓莉曾于2010年利用GeoEye 1卫星影像制作过济南市南部山区1:5000卫星影像图。他们采用4个单波段16bit影像和一个全色波段16bit影像进行制作,首先对影像进行了预处理,包括大气校正、控制点数据修正、多光谱数据与全色数据融合以及DEM数据采集,之后对影像正射纠正、镶嵌、裁剪、色彩调整和比例尺修正等,最后输出制作好的卫星影像图。

吉林省公路勘测设计院的胡雪峰、程海帆、李凤尊以及武汉大学的胡庆武和曾力也曾利用GeoEye 1立体像对对公路勘测进行辅助。因为GeoEye 1卫星具有高精度恒星定位仪、高精度GPS接收机和高精度惯导,所以能够对公路勘测进行立体定位。同时高分辨率的影像在公路勘测前期也可为公路选线提供影像图和带状地形图。在公路勘测中利用GeoEye 1立体像对还能够进行数字高程模型(DEM)、数字正射影像(DOM)、数字线划图(DOM)的生产等等。

该文提供的是分辨率为2m的GeoEye影像,区域为广西省玉林市兴业县南乡六连路段及其周边地区,该影像成像时间为2009年9月27日。

下图为GeoEye 1遥感卫星蓝色波段所获取的一景影像。

图2显示的是GeoEye 1遥感卫星绿色波段所获取的玉林市兴业县南乡六连路段一景影像。

图3显示的是GeoEye 1遥感卫星红色波段所获取的当地的一景影像。

图4显示的是GeoEye 1遥感卫星红外波段在同一时段同一地点所获取的一景影像。

图5显示的是GeoEye 1遥感卫星全色波段在所获取的一景影像。

参考文献

[1] 曹力,刘伟.Quick Bird影像制作1:10000 DOM方法探讨[J].地理空间信息,2008(6).

[2] 张利平,崔永利,王宝山.不同地形条件下Quick Bird影像正射纠正精度分析[J].测绘与空间地理信息,2009(4).

[3] 田永明,王鸿,张兴国,等.利用GeoEye影像制作济南市南部山区1∶5000卫星影像图[J].城市勘测,2010(4).

遥感卫星影像技术范文6

遥感技术是指从远距离感知目标反射或自身辐射的电磁波、可见光、红外线等信息,对目标进行探测和识别的技术。

人类通过大量实践,发现地球上每一个物体都在不停地吸收、发射和反射信息和能量,其中有一种是人类已经认识到的形式就是电磁波,并且发现不同物体的电磁波特性是不同的。遥感技术就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。

二、遥感技术的分类

(一)按搭载传感器的遥感平台分类

1.地面遥感,是指把传感器设置在地面平台上。如车载、手提、固定或活动高架平台等。

2.航空遥感,是指把传感器设置在航空器上。如气球、航模、飞机及其它航空器等。

3.航天遥感,是指把传感器设置在航天器上。如人造卫星、宇宙飞船,空间实验室等。

(二)按遥感探测的工作方式分类

1.主动式遥感,即由传感器主动地向被探测的目标物发射一定波长的电磁波,然后收集从目标物反射回来的电磁波。其主要优点是不依赖太阳辐射,可以昼夜工作;而且可以根据探测目的不同,选择不同的波段和发射方式。比如,雷达和激光器。

2.被动式遥感,即由传感器直接收集目标物反射太阳光的反射或目标物自身辐射的电磁波。比如,常用的摄影机和多光谱扫描仪,热红外扫描等。

(三)按遥感探测的工作波段分类

紫外遥感,是指利用紫外波段的大气窗口进行探测的遥感技术。波长在0.01-0.4um。紫外遥感在地质调查中有特别重要的应用,主要用于探测碳酸盐岩分布。碳酸盐岩在0.4μm以下的短波区域对紫外线的反射比其它类型的岩石强。另外,水面飘浮的油膜比周围水面反射的紫外线要强烈,因此也可用于油污染的监测。

可见光遥感,应用比较广泛的一种遥感方式,波长为0.4--0.76μm的遥感技术。通常以摄影、摄像或扫描方式成像,是目前应用最普遍的遥感技术。可见光摄影遥感具有较高的地面分辨率,但只能在晴朗的白昼使用。

红外遥感,又分为近红外或摄影红外遥感,波长为0.7~1.5微米,用感光胶片直接感测;中红外遥感,波长为1.5~5.5微米;远红外遥感,波长为5.5~1000微米。中、远红外遥感通常用于遥感物体的辐射,具有昼夜工作的能力。常用的红外遥感器是光学机械扫描仪。

微波遥感,对波长 1~1000毫米的电磁波(即微波)的遥感。微波遥感具有昼夜工作能力,但空间分辨率低。雷达是典型的主动微波系统,常采用合成孔径雷达作为微波遥感器。

多光谱遥感,利用几个不同的谱段同时对同一地物(或地区)进行遥感,从而获得与各谱段相对应的各种信息。将不同谱段的遥感信息加以组合,可以获取更多的有关物体的信息,有利于判释和识别。常用的多谱段遥感器有多谱段相机和多光谱扫描仪。

三、遥感技术的特点

1.探测范围广、采集数据快

遥感卫星居高临下,视野开阔,侦察范围广,获得情报多。比如,卫星视角为20度的情况下,从3000米高度的飞机上可看到1平方千米的面积,而在300千米高度的卫星上看,可看到10000平方千米的面积。在近地轨道上的侦察卫星,每秒可以飞行七八千米, 绕地球一周只需一个半小时左右,一个比较长寿命的卫星,可以在太空持续工作两年以上,从而保证了侦察的及时性和连续性。卫星一天可绕地球飞几十圈,只要运行的轨道合适,几乎可以看遍全球。如果发射几颗卫星,构成卫星侦察网,可以在某些地区实施不间断几乎无遗漏的监视。

2.限制少,精度高

利用卫星进行侦察安全可靠,合理合法,有超越国境的自由,不存在侵犯领空、领海和受防空武器威胁的限制。国际公认离开地面高度100千米以上的空间,不属于地面国家的住宿范围。宇宙空间不受国界限制,卫星可以任意出入。因此,侦察卫星比任何高空侦察机有更大的安全性。同时,也不受地形、气象等条件的限制。同时,利用遥感卫星进行侦察,获得的图像清晰、准确、精度高。海湾战争中,美国"曲棍球"侦察卫星装有图像探测器,由雷达发射微波信号到地面,经回收识别后再反射到太空。它的活动不受云雾和夜暗的限制,可识别地面约0.3-1米的目标,尤其适用于干燥的沙漠地区拍摄卫星照片。它能分辨出坦克种类,计算出坦克、帐篷、甚至人员的数量。

3.信息量大、种类多

根据不同的任务,遥感技术可选用不同波段的遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线、红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。例如,地面深层,水的下层,冰层下的水体,沙漠下面的地物特性等。科索沃战争中,以美国为首的北约,在空袭南联盟的行动中,美国和欧洲至少使用15-20种不同的卫星。

四、遥感技术在武警部队遂行任务中的应用

(一)在执勤处突中的应用

随着我国经济建设的高速发展,武警部队遂行任务的地理环境变化非常迅猛,目前许多地区地图多数都比较陈旧,现势性较差,部队使用困难。传统的地理保障形式是以基础信息为主,不能满足部队行动的特殊保障要求,无法更好地为指挥人员提供决策咨询服务。武警执勤处突需要特殊的地理信息保障。部队行动时对点状、线状地理目标的信息要求更多、更具体。其中主要的道路、周边地形、制高点、市区街道、地下通道与管网、广场、桥梁、隧道等要素,对部队集结、机动及兵员和后勤保障物资的运输影响很大,必须重点保障。遥感卫星围绕地球运转,能及时获取任务区域的各种最新地形资料,根据不同的任务,遥感技术可选用不同波段的遥感仪器来获取信息。利用不同波段对物体不同的穿透性,还可获取地物内部信息。科索沃战争中,以美国为首的北约,在空袭南联盟的行动中,美国和欧洲至少使用15-20种不同的卫星。