前言:中文期刊网精心挑选了农业物联网行业研究范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

农业物联网行业研究范文1
0 引 言
物联网是我国战略性新兴产业的重要组成部分,《物联网“十二五”发展规划》[1]圈定了10大领域重点示范工程,智能农业便是其中之一。据工信部统计,智能农业在其领域五年内需要的人才约为1 000万。从产业需求看,物联网人才[2]总体可分为研究型人才和工程应用型人才两类。
研究型人才主要为研究生层次或研究型高校所培养的毕业生,是各类“研究型企业”或“高新企业”的研发部、研究院所急需的人才。在高等院校和科研院所物联网研究型人才培养方面,偏重于研究型和创新型,具有跨学科复合型特点。工程应用型人才主要为各类高职学校或信息类本科学院毕业生,以从事物联网系统设计、产品开发、物联网项目实施等为主,以系统设计、产品开发、工程项目策划与实施为主的企业,更应注重工程应用技术能力的培养,加强工程实践的实际训练,突出技术应用能力、培养创新能力。
随着近几年大量物联网应用系统开发完成,开始转向系统的实施与维护过程,物联网应用型人才的占比已赶上甚至超过了研发型人才需求。巨大的市场潜力,广阔的行业发展前景,急待提高的人员素质,为职业学校办好此朝阳专业建立信心和决心。很多高职院校抓住此良好环境和契机,建设好该新兴专业,物联网实训室应用平台是保障此专业能较好完成教学效果的前提和必要条件。
1 物联网智慧农业实训室平台的需求分析
1.1 实训室建设意义
从教学方面来说,应培养从事物联网领域的系统设计、系统分析与系统开发的高技能人才。培养合理的知识结构,具备扎实的物联网理论与实践知识,并具备在物联网领域跟踪新知识、新技术的能力及较强的物联网应用能力。通过理论课程的教学并结合实训室的实验,让学生、学员亲自动手,接触各种实训室设备。最终实现能让学生独立构架各种物联网应用系统的目的。通过理论与实践相结合,感知体验与动手结合、方案设计与实际验证结合来提高动手能力,积累实践经验,进一步提高学生水平。
从科研方面[3]来说,物联网技术是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,是一个全新的技术领域,包含RFID射频技术、有线传感技术、无线传感技术、数据交换与网络异构、终端管理等关键技术。实训室物联网设备通过射频识别等设备与互联网连接,实现智能化识别和管理,通过建设物联网实训室为教师提供物联网应用研究的科研平台,通过实训室设备促进教师与科研人员进行更好的科研研究。
1.2 实训室的建设特点
物联网实训室设计以技术全面化、业务典型化、应用教学化三个方面为指导思想进行建设。
1.2.1 技术全面化
主要解决技术知识层面的问题,实训室引入物联网龙头企业工业化产品体系,融合产业发展趋势,设计模式吻合教学实训体系。实训室不仅可以全面支持物联网培训认证所要求掌握的技术,还全面涵盖了物联网专业的基础课和专业课[4],如物联网概论、信号与系统、计算机网络、现代通信网、传感器原理、嵌入式系统设计、无线通信原理、无线传感器网络、近距无线传输技术、二维条码技术、数据采集与处理、物联网安全技术、物联网组网技术等均可在此完成并创新拓展。
1.2.2 业务典型化
主要解决应用和就业层面的问题。众多教育集团公司将多年成功的商业模式及成熟的行业应用如车联网系统、智能家居、智慧农业等转化为典型的业务场景以用于支撑物联网行业应用实训,使学生在实训的同时了解、融入真实的行业产业应用。
1.2.3 应用教学化
应用数字化的主要目的在于解决培养和定位问题,通过物联网实训平台、行业应用实验箱、实训墙、行业应用实训场景等多种形态、多种应用的实验实训设备以及物联网技术体验中心实现理论与实践的结合,感知体验与动手的结合、方案设计与实际验证的结合。
1.3 实训室的建设目标
通过建立实训室,建设一个教、学、研、培训认证统一的实训平台,集教学、实训、培训认证功能于一体,围绕物联网主题,同时兼顾当前IT流行技术的发展趋势,注重各种技术之间的融合?c灵活应用,既可满足日常教学要求,又注重项目实训及创新试验,各设备之间还可以灵活组合。学员不仅可通过实训室里的相关设备掌握物联培训认证所要求的所有技术,还可以基于各种模块,按照自身需求进行独特设计,融合各种技术进行创新试验及项目实训。建设一个完整的物联网实训室,进行各种无线传感器网络、智能视频技术等教学实验,模拟典型智慧校园、智能追溯等实际应用。通过实训培养物联网方面的高技能技术人才。学生、学员可就业于与物联网相关的企业,从事与物联网相关的工作。
物联网专业实训室的建设,应在物联网的识别、感知、通讯传输、组网技术以及数据分析方面,衍生至物联网整个产业链,以专业建设、人才培养、物联网核心课程教学、提高学生实训水平为目标,建立一个完整的、基础的实训架构体系。实训室的建设需满足以下基本要求:
(1)满足农业院校物联网专业的人才培养规范和教学基本要求;
(2)能够支撑学校相关专业课程教学;
(3)能够支撑学校物联网教学实训,实现物联网各知识点的实训;
(4)能够满足物联网产业综合创新的实训,如智慧城市、智能家居等。
2 智慧农业实训室应用平台
典型物联网应用实训平台[5](智慧农业套件)以选取具有典型意义的物联网智慧农业设备为基础,结合可灵活部署的移动实训台。学生可通过应用平台实训产品的训练进一步了解各种农业物联网技术典型应用,进行模拟训练;从实训产品中学习传感器、WSN及嵌入式知识。通过丰富多彩的智慧农业物联网实验案例及体验,激发学生的想象力,充分调动学生的积极性,并提供多样化的集知识性和趣味性于一体的超强用户体验。让学生可以在实训室中看到农业物联网行业的现状,培养学生的动手设计能力,帮助他们成为具有特色能力的专业技术人才。
2.1 实训室平面图
物联网智慧农业实训室平面设计图如图1所示。具置可按实地重新规划,根据教室实地情况,使用20+1套典型物联网应用实训平台进行教学,可以满足对20~40学生进行教学。此外,结合农业院校特色,新建一个农产品温室大棚,充分体现了智慧农业套件由浅入深,由理论到实践的循序渐进过程,丰富实训课程设计,并将其应用于实践生活中。
2.2 系统结构
物联网智慧农业实训平台属于移动实训系列产品,主要由物联网网关、工控平板、数/模采集器等11个物联网典型部件构成。其中移动实训台、物联网网关、安卓工控平板是核心部件,采集器使用四输入模拟采集器和数字量采集器,有继电器I和继电器II,传感器包括光照传感器、温湿度传感器、人体红外开关,通过风扇I和风扇II完成。
2.3 平台实现流程
智慧农业套件实训平台通过网关连接到公共网云平台,构成了基于感知层基础的物联网云平台。具体数据流转流程[6]如下所示:
(1)通过四模输入量采集器采集光照、温湿度传感器数据,通过ADAM-4150采集人体红外传感器数据;
(2)模拟输入量采集器通过ZigBee传输协议将数据传到网关,ADAM-4150通过串口将数据传至网关;
(3)网关通过TCP/IP协议将数据传输至云平台或者工控平板进行数据逻辑处理;
(4)云平台或工控平板形成控制指令,并通过TCP/IP协议传给网关;
(5)网关通过串口将指令传给ADAM-4150;
(6)ADAM-4150给继电器输出指令,控制风扇的开闭。
3 核心部件功能介绍
3.1 网关功能介绍
物联网网关作为系统设备域的重要部件[7],集成物联网核心采集器、控制器,通过ZigBee协议、Modbus协议等采集、解析数据,具有透传、控制命令下发等功能,可将数据实时显示于网关显示屏。网管功能截图如图2所示。具有采集光照传感器、温湿度传感器、人体红外传感器数据的功能并进行显示,还可手动下发指令,打开风扇,将采集的数据传输给工控平板或云平台,同时工控平板或云平台通过网关可下达对继电器的开关指令。基于这些功能,农业套件平台网关具有以下特点:
(1)LCD显示功能,可同时显示6路传感器数据;
(2)本地声光报警功能,具备超温、断电报警功能;
(3)通过WiFi/GPRS/以太网传输可将温湿度数据实时传送至后台;
(4)内置后备电池,断电后可继续工作2小时;
(5)支持断线储存功能,最大支持5 000条记录。
3.2 工控平板功能介绍
工控平板是智慧农业套件的数据处理核心,通过对网关传输数据的逻辑处理,可自动下发控制指令。对光照传感器、温湿度传感器、人体红外传感器的数据进行逻辑处理,自动生成控制指令;对光照传感器、温湿度传感器、人体红外传感器的数据案例进行开发并展示;对网关下达继电器开关指令,或通过串口对ADAM-4150下达控制指令。基于这些功能,工控平板具有以下特点:
(1)支持通过网关连接和通过串口与采集器直接连接两种数据采集方式;
(2)显示内容丰富,界面友好;
(3)多通道数据传输,支持WiFi、串口、RJ45等多种数据传输方式;
(4)可旋转支架。
3.3 云平?_功能介绍
物联网云服务平台[8]以云计算架构实现系统的云平台管理,包含用户管理、数据存储、逻辑处理,设备管理、配置,资源管理、配置等功能,如图3所示。支持多个网关、传感器、执行器等物联网设备动态接入和管理;对光照传感器、温湿度传感器、人体红外传感器的数据进行存储;可远程手动或自动下达控制指令;BS架构可实现远程管理、监控;提供了丰富灵活的API接口,可通过API接口获取数据,组建具有逻辑功能的各种应用场景。
农业物联网行业研究范文2
关键词:天津市;物联网;农业;信息化
中图分类号:TP391.41 文献标识码:A DIO编码:10.3969/j.issn.1006-6500.2014.05.001
2013年,天津市作为农业部农业物联网区域试验工程试验区之一,在农业部、天津市和中国科学院的共同推进下,按照“全要素、全系统、全过程”的三全理念,开展了顶层设计、技术构建、典型应用、机制保障等一系列试点试验工作。通过一年的实践证明,农业物联网是推进天津现代都市型农业快速升级的新举措。
1 农业物联网是推动现代农业发展的新生动力
1.1 正确把握农业物联网的概念和特征
农业物联网是一次全新的农业技术变革,它是新一代信息技术在农业生产、经营、管理和服务中的集成示范和高度应用。农业部副部长余欣荣认为,农业物联网概念可以从狭义和广义两个角度去理解:狭义的农业物联网是指应用射频识别、传感、网络通信等技术,对农业生产经营过程涉及的内外部信号进行感知,并与互联网连接,实现农业信息的智能识别和农业生产的高效管理;广义的农业物联网是指在农业大系统中,通过射频识别、传感器网络、信息采集器等各类信息感知设备与技术系统,根据协议授权,任何人、任何物,在任何时间、任何地点,实施信息互联互通,以实现智能化生产、生活和管理的社会综合体。
农业物联网通过信息感知、传输和处理,把农业现代技术和现代信息技术集成应用。集约化、规模化、专业化、社会化是它的本来属性,与现代农业经营体系的规模化、集约化是一致的,其重要特征体现在两个方面:一是人机物一体化特征。农业物联网把农业生产内部过程中所需的自然、经济等要素以人机物的形态有机联系起来;也把农业生产、经营、管理全过程中所涉及的人、机、物有机联系起来,将传统的人、机双方交互,转型为人机物三方交互。二是发展理念“三全”化特征,即“全要素、全系统、全过程”。
1.2 农业物联网是推动信息化与农业现代化融合的重要切入点
以物联网为代表的信息技术日新月异,将为现代农业发展提供不竭动力。党的“十”明确提出了“四化同步”的战略部署,农业物联网是农业信息化应用优先发展的领域,而信息化是现代农业发展的制高点,因此,发展农业物联网是推进其他“三化”的关键技术手段。通过农业物联网技术的集成与创新,利用现代信息技术武装信息获取、传输与服务等农业信息化建设的关键环节,探索农业物联网技术在改造传统农业以及发展现代都市型农业中的应用模式和推进路径,将有效地推动信息化与农业现代化的深度融合。
1.3 农业物联网是引领农业生产向智能化转变的重要驱动力
随着物联网技术的进步和推广应用,通过感知技术可以获取更多的信息,包括作物信息、农田环境信息、农机作业信息等,为精准农业生产提供更加丰富的实时信息,通过全面互联共享可以获得更多的网络服务,提高精细农业科学决策水平和作业实施水平,它将在农业精准生产大显身手。
(1)有利于促进农业结构优化、布局合理。农业物联网通过感知农产品数量、质量、品种的供给与需求,自动寻求农业生产与市场流通的匹配度,实现农业资源的有效配置,提高农业生产效率。如天津市农业科学院正在开发基于物联网技术的设施黄瓜生命感知与智能管理系统,通过应用全面提升设施黄瓜产量、品质与效益。(2)有利于提升农业生产工具的专业化、智能化,有利于大型农业机械装备发挥效能。通过具有感知和控制功能的智能设备支持,可以使农业环境自动控制、农事操作自动化、动植物需求智能化等,在这方面农业物联网具有得天独厚的优势。如天津市农业科学院创新基地智能温室全自动监测控制系统,宁河县农夫、宝坻区德润母猪群养殖场自动饲喂站管理,滨海新区海发珍品和正跃海淡水养殖的自动投饵系统以及通过鱼群浮头识别系统实现智能化管理等方面得到了充分应用。(3)有利于推进大田作物各种农事管理的精细化、农事措施的合理化,如水肥一体化管理、病虫害在线远程诊断等。农业传感器可以准确感知农作物生长环境的墒情、养分,通过智能运算与分析,提出决策建议,实现各种生产管理的精准化。
2 天津市农业物联网区试工程的思路和目标任务
天津市农业物联网区试工程基本思路是以大力推进“四化同步”战略为指导,以建设现代都市型农业为目标,以“按照一条思路、坚持两个结合、树立三全理念”(即按照有限目标、重点突破、形成产业的思路;坚持信息技术、生物技术、工程技术有机结合,坚持研究开发、集成示范、推广应用相结合;树立“全要素、全系统、全过程”的三全理念)为宗旨,突破核心技术,研制关键标准,拓展规模应用,构建产业体系,力争使天津市农业物联网的应用处于全国领先水平,并为天津市全面发展农业物联网产业积累经验。
具体目标任务是集成示范物联网感知、传输、决策及应用相关技术和设备,实施农业物联网“一二三四五”工程,即构建1个天津农业物联网平台;重点建设不同专业、不同层次的农业物联网核心试验基地20个(推广示范200个);建立研究开发、集成示范、应用推广3种类型农业物联网展示窗口;探索产学研用创新、农业企业运作、合作组织示范和区域整体推进4种农业物联网应用模式;取得包括探索培育农业物联网应用标准、物联网产业研发和经营主体、技术服务队伍、物联网产业发展的协同体系和农业物联网应用天津模式在内的5个方面的成果。
3 天津市农业物联网区试工程取得初步成效
天津市农业物联网区试工程自2013年实施以来,遵循“科学规划、重点突破、行业应用、整体提升”原则,紧密围绕现代都市型农业发展需求,积极推进各项工作,取得了初步成效。
3.1 加强了组织机构建设与机制创新
在各级领导的关心和支持下,天津市农业物联网区试工程建设工作加强和创建推进机制,探索了一套行之有效的组织机制,保障了区试工程的高效开展。
2013年,农业部余欣荣副部长先后6次来津就农业物联网区试工程建设进行考察或座谈指导。春兰书记、兴国市长在2014年天津市农村工作会议上强调要把物联网技术与现代农业深度融合。东峰副书记和宏江副市长对农业物联网区试工程给予指导支持,多次做出重要批示。2013年9月,天津市政府与农业部、中国科学院就发挥各自优势,共同推进天津市农业物联网建设签定了合作框架协议,成立了由农业部、中科院有关司局和天津市有关委局组成的部市院共建领导小组及办公室,集成各方资源优势,建立了多部门联动机制,保障了区试工程的顺利实施。目前,各方面都把农业物联网作为农业现代化建设的重要抓手,领导高度重视的氛围已经形成。
3.2 构建了适合天津特点的农业物联网建设总体框架
在“按照一条思路、坚持两个结合、树立三全理念”思想指导下,编制了天津农业物联网区试工程实施方案,得到了农业部余欣荣副部长和有关专家领导的直接指导和肯定。在建设内容上开展“一个平台、三个工程、两个体系”建设,即建设一个天津农业物联网平台;开展农业生产经营物联网应用工程、农产品质量安全追溯工程、农产品电子商务示范工程3个工程建设;探索符合天津发展现代都市型农业需求的理论体系和标准体系两个体系建设。
3.3 研发了国际先进的天津农业物联网支撑平台
黄兴国市长在2014年天津市十六届人大二次会议上所做的《政府工作报告》中提出“高水平建设农业物联网综合应用平台”。天津市与中科院合作,建成了天津农业物联网平台。平台涵盖了农业生产、市场流通、农产品加工、农资农机服务等领域数据库17个,集成各类农业应用系统113个,实现了25个基地传感数据的在线采集和9个基地共17路视频接入。2013年9月24日,农业部组织汪懋华院士等9位专家对平台进行了评估,一致认为平台开发技术居于国际先进水平。
3.4 研究储备了一批农业物联网关键技术
天津市在农业网联网区试工程实施伊始,就明确了高标准、高起点的工作定位,注重应用技术的原始创新与集成创新。大力开展了针对环境、生命信息感知技术与设备的引进创新,重点中试和熟化动植物环境和生命信息传感器,重点开展了设施农业病虫害和水产主要病害特征信息提取技术和智能化控制技术研究。
3.5 开展了农业物联网技术应用典型示范
区试工程办公室组织相关部门对已有的50多个农业物联网相关试验点或基地进行了充分调研,系统掌握了天津市农业物联网建设的基本状况,明确了主要实施内容。建设了10个核心基地,核心试验面积704 hm2,进行了1 262栋节能温室、76.5万m2养殖水面示范应用,涉及设施蔬菜、种羊、种猪、海水鱼、淡水鱼、南美白对虾等种类。实施了农产品质量安全追溯系统建设,建立了电子生产档案、企业管理、质量监管和消费者查询组成的农产品质量安全综合监管平台。积极开展农产品电子商务示范工程建设,建设了农业电子商务支撑平台,开展了千余种名特优农产品的网上销售活动,探索了冷链宅配模式、线上线下模式、会员定制模式以及农超对接模式等农产品电子商务模式。
3.6 加强了标准建设与理论研究
天津市将农业物联网技术作为地方标准重点编制计划,分步骤制定、完善一系列的天津市现代农业地方标准并组织实施。“天津市现代都市型农业物联网产业发展规划与对策研究”列入2013年天津市科技发展战略计划项目,组织种植业、畜牧、水产、农机4个行业管理部门分别制定了行业物联网应用规划,正在抓紧制定天津市农业物联网产业发展规划,为加快培育和壮大农业物联网产业提供理论依据。
4 天津市农业物联网区试工程的重点工作
天津市农业物联网试验区的工作取得了一定进展,但是,我们在平台内容、功能和运行机制上还需不断充实完善,在农业物联网技术应用上还需从人力和资金上加大投入。下一步工作任务更加艰巨,我们要全面推进农业物联网区试工程建设,重点抓好以下6个方面的工作。
4.1 加强核心基地建设,探索应用模式
对已建设的10个核心试验基地应用加强指导服务,同时,按照天津市农业物联网区试工程实施方案,筛选建设一批新的核心试验基地。加大推动武清区、西青区整体推进模式的建设,扩大农业物联网试验基地和应用点,不断探索天津市农业物联网技术应用模式。
4.2 强化平台应用功能,发挥引领作用
紧紧围绕平台应用建设,在技术上重点完善平台数据接口、在线视频、数据传输和接入接口规范标准;在应用上加快行业子平台应用系统研发进程,开发“农业农村基层基础数据信息管理系统”、“天津动物及产品外埠进津道口监管信息系统”、“奶牛良种繁育管理系统”和“农业农村经济管理基础数据挖掘”,同时,为企业、基地应用提供定制服务支持,鼓励更多的企业入驻平台,不断丰富平台内容。在保障上尽快出台平台运行管理办法,规范平台安全管理机制,保障平台安全畅通,引领农业物联网产业发展。
4.3 建设质量追溯系统,做好支撑服务
按照市委、市政府关于农产品质量安全重点工作要求,结合农业物联网区试工程建设任务,以放心菜追溯系统、放心水产品追溯系统和畜产品外埠进津道口监管信息系统建设为切入点,构建农产品质量安全电子化管理和信息化追溯系统,为确保农产品质量安全做好支撑服务。
4.4 积极开展电子商务,促进产销衔接
开展农产品电子商务示范工程建设,完善天津市农产品电商平台功能,组织农民专业合作、休闲农业和涉农企业开展网上销售。选择3~5家农产品电商企业进行示范,探索建立线上线下、会员定制、冷链宅配和农超对接等农产品电子商务模式,促进农产品销售。
4.5 加强理论人才建设,促进持续发展
按照总体目标任务,加强农业物联网理论研究,组织编制和修订10个农业物联网标准,逐步完善农业物联网标准体系。积极筹建农业物联网应用研发中心,汇集大专院校、科研院所的物联网、云计算、大数据研发技术人才。在已有工作基础上,完成天津市农业物联网三年整体规划任务,推动农业物联网产业健康持续发展。
4.6 加大宣传培训力度,提高应用水平
充分利用网络、手机短信、信息终端、电视、刊物和媒体等多种形式,加强农业物联网区试工程的宣传和培训,对平台应用、标准编制和基地应用人员开展物联网技术应用培训。继续做好农业物联网区试工程建设工作简报的编发,全面提高农业物联网技术应用水平。
参考文献:
[1] 李道亮.农业物联网导论[M].北京:科学出版社,2012.
[2] 余欣荣. 物联网――改变农业、农民、农村的新力量[M].北京:时代出版传媒股份有限公司安徽科学技术出版社,2012.
[3] 唐珂.国外农业物联网技术发展及对我国的启示[J].中国科学院院刊,2013(6):700-707.
[4] 毛科军,官宏义.天津市农业物联网区域试验工程的实践[J]. 中国科学院院刊, 2013,28(6):693-699.
[5] 余欣荣 .关于发展农业物联网的几点认识[J]. 中国科学院院刊, 2013,28(6):679-685.
农业物联网行业研究范文3
“智能农场”展示物联网在农业中带来的效益
记者就这一话题从澳大利亚联邦科工组织获悉了一份行业最新研究报告,报告详细阐述了澳大利亚发展农业物联网的背景与原因、应用范围、试点成效和发展阻力。
报告指出,发展“智能农场”旨在为农民和相关农业公司提供一个实例,展示物联网在农业应用中带来的效益。另一目标则是让全澳学生能够在线关注“智能农场”的发展情况,全面了解现代农业正在发生的变革。
澳大利亚称得上是一个农业大国,其大部分农场能够实现自产自销和出口。根据2012年的数据显示,该国农业部门对全澳经济增长(GDP)贡献约12%。
尽管工具创新和技术创新一直是澳大利亚农业的发展传统,其农业生产力水平在过去几十年却一直呈现静态,低于美国、加拿大等竞争对手。随着全球对粮食需求的不断增长,澳大利亚农业现今面临着诸多挑战。
鉴于现状,澳大利亚联邦科工组织对农业部门设定了一项全国目标――到2030年,农业增产50%。研究发现,澳大利亚物联网的发展(即使用新一代宽带网络、智能数字化服务)最有可能帮助农业部门实现增产、应对可持续性挑战。
网络计算和传感技术在过去20年已经开始应用于澳大利亚农场。根据报告,20世纪90年代,澳大利亚有部分农业部门就开始发展所谓的“精细农业”,其中之一的推动力就是卫星定位技术在农业种植设备上的应用;其二,卫星图像技术为在大面积观察土壤和植被生长情况提供了全面的认知;其三,地面传感系统为了解土壤、植被、水质提供了更详细的信息。
物联网目前在澳大利亚主要应用于播种和灌溉业,其智能系统把握着施肥、播种、灌溉的最佳时机。已有案例显示,棉花种植者根据物联网技术,对水分缺失区域进行针对性灌溉,要比以前全面灌溉的棉花产量高出一倍,同时达到节水环保的效果。
政府投巨资推动农业物联网发展
然而,鉴于物联网在全澳农场应用不均、互联网技术还未普及到一些小型农企、物联网系统费用高昂、市场对智能农业投资匮乏等阻力,现代农业的潜力并未在澳大利亚完全挖掘。
联邦政府为了改善这一情况,于2011年实施国家基础设施建设计划。根据计划,政府将斥资360亿澳元(约合2500亿元人民币)建设国家宽带网,全面提升网速近5倍、提高偏远地区的上网条件等,这一举措从根本上推动了农业物联网在澳的发展。
澳大利亚联邦科工组织在全澳开展了一系列智能农业计划,以探索和评估农业物联网对现代农业的发展影响。位于新南威尔士州南部阿米德尔市的Kirby智能农场正是其中一个重要试点。
Kirby智能农场是一个2800公顷的商业农场,主营美利奴羊毛和菜牛生意,同时也生产牲畜饲料所用的各种谷物。
研究人员在Kirby智能农场部署了大量传感装置来监测土壤水分、土壤温度和电导性(其中土壤中传感器达到100个)、空气温度、牲畜移动,以及农场安全,这些数据综合在一起形成了一个信息流传送至“智能农场信息平台”。在该平台,每5分钟会形成一个实时的、类似于航拍的数字地图,为农场经营提供决策帮助和支持。
具体来讲,无线局域网络允许固定和移动传感器将收集来的数据流连续发送至一个基于网络计算和分析服务的云端,农场工作人员即可依据数字地图上数据的变化进行远程操作,实现资源的合理调配,同时还能针对各类问题进行咨询,小到拖拉机“罢工”,大到商品价格的波动,工作人员都能及时和专家在线交流与沟通。
除了各类传感器,Kirby智能农场还配有感应摄像头,方便观察机械故障、监视农场安全等。
农业物联网行业研究范文4
目前,物联网的发展非常迅速,它把新一代IT技术充分运用在各行各业之中,即通过各种传感设备(如RFID、WFN、全球定位系统和激光扫描器等技术)来实时采集任何需要监控、连接、互动的物体或过程,按约定的协议,把任何物品与互联网整合起来,实现物与物、人与物的信息交互,以实现智能化识别、定位、跟踪、监控和管理的一种网络。为加快物联网发展,培育和壮大新一代信息技术产业,物联网被列为《国家中长期科学与技术发展规划(2006-2020 年)》和“新一代宽带移动无线通信网”重大专项中的重点研究领域,工业和信息化部也制定了《物联网“十二五”发展规划》,各级部门也相继出台物联网发展相关战略规划。各地高校积极申办物联网相关专业,全国物联网相关机构也积极开展物联网研讨交流会议,国家教育部成立了物联网及相关专业教学指导小组,全国各地物联网研发企业如雨后春笋般涌现,为物联网的发展奠定了扎实的产业基础。2010年《政府工作报告》,正式将“加快物联网的研发应用”纳入重点产业振兴计划。目前,我国物联网在安防、电力、交通、物流、医疗、环保等领域已经得到应用,且应用模式正日趋成熟。从应用层面来看,中国物联网产业在公众业务领域以及平安家居、电力安全、公共安全、智能交通、环保等诸多行业的市场规模均将超过百亿元甚至达到千亿元。
2 黑龙江省适合高职物联网应用技术专业人才需求与就业岗位
《物联网“十二五”发展规划》中提出,重点发展与物联网感知功能密切相关的制造业,支持与物联网通信功能紧密相关的制造、运营等产业,着力培育物联网服务业,重点支持物联网在工业、农业、流通业、交通、电力、环保、公共安全、医疗卫生、智能家居等领域的应用示范。在传感器、核心芯片、传感节点、操作系统、数据库软件、中间件、应用软件、嵌入式软件、系统集成、传感器网关及信息通信网、信息服务、智能控制等各领域打造一批品牌企业。黑龙江省将针对智能农业、乳业、煤矿、林业、石油等龙江优势领域规划引导示范应用项目建设,重点推进煤矿安全生产物联网、森林防火应用物联网、乳品安全应用物联网等,以此为试点,探索应用领域不断向广度扩展的途径,以此为牵动,促进相应制造业的跟进发展。争取五年内,引进和培养一批技术技能型、复合技能型和知识技能型物联网工程师,初步满足黑龙江省物联网产业化发展需求,力争五年内,在智能城市、智能生活、智能产业、智能环境监控、智能暖气供热等试点示范领域内实施示范应用工程。我国是一个农业大国,但不是农业强国,农业强国战略的关键首先在于农业的信息化来促进农业的现代化,智能农业的各类专业人才在现代农业十二五当中的缺口1000万人以上。充分发挥黑龙江作为全国最大的绿色食品加工基地、无公害农产品生产大省和粮食总产量居全国第二位的农业优势地位,发展农业物联网应用,打造龙江优质优价的绿色生态农业品牌。
发展黑龙江省物联网战略新兴产业,人才是关键,应具有传感器技术、无线通信模块应用与网络技术、维护和销售、RFID相关设备的应用、操作管理和维护智能终端设备的应用、应用软件开发、维护和销售、智能农业等物联网应用技术专业的高技能职业人才。这为高职物联网应用技术专业学生提供了更多的就业岗位。
3 黑龙江高职物联网应用技术专业设置
3.1 物联网应用技术专业人才培养目标
根据黑龙江省物联网应用技术专业人才需求和高职人才培养目标,培养能够掌握物联网的相关理论、方法和技能,了解物联网主要技术标准,RFID 技术、嵌入式系统、无线和有线系统技术、无线通信组网技术等,具有物联网应用方案简单设计能力。具有较强的通信技术、传感信息处理技术和互联网技术的实践应用能力,具有较强的物联网岗位操作能力,具有良好服务意识与职业道德的系统集成技术员,能够从事石油和煤炭安全智能环境监测、绿色智能农业、智能交通、智能物流、智能家居等工程施工、安装、调试、维护等工作能力,具有自主学习、自我发展、对物联网的应用不断创新的能力,具备良好的团队合作精神的高级技术应用型人才,能够适应不断变化的未来物联网发展的需求。
3.2 物联网应用技术专业课程体系
以物联网专业人才的培养目标为导向,根据物联网的技术体系框架。“物联网”产业的技术支撑体系主要分为三个层次:感知层、网络层和应用层。感知层是物联网的底层基础,包括了RFID、二维码、智能卡、传感器等等数据采集和感知技术;网络层是“物联网”互联互通关键,包括无线传感网络,WiFi自组网、远程控制、机器间通信(M2M)的移动通讯网络等通信技术;应用层是具体应用的系统集成技术,包括数据融合、数据挖掘、商业智能、GIS、工业监控、云计算平台、中间件等软件技术。依据物联网的技术体系框架,下面列出了高职物联网应用技术专业课程设置的初步建议,算是抛砖引玉,其主干课程: C#语言程序设计、 数据库应用、CAD工程制图、物联网技术概论、局域网组建与管理、微机组成与接口技术。核心课程: 传感器网络技术、智能控制技术、无线传感网络、物联网安全技术、射频识别技术、管理信息系统、物联网软件、物联网软件、标准与中间件技术、RFID系统安装与调试、专业综合课程设计等组成。另外配合专业综合课程设计(包括RFID系统设计实践、基于Web的数据库设计实践、无线传感器网络设计实践、小型物联网综合设计与实现),在第五学期的教学周内,根据社会需要学习适应性强、覆盖面宽的专业课及专业选修课,开设小型物联网综合设计实践,要求学生利用IEEE802.15.4标准和ZigBee协议,将无线传感器网络和RFID技术结合起来组建简单的物联网并实现相关应用,具体包括:智能物流管理系统、智能环境监测(比如温室大棚的温度湿度管理,智能家居的应用),完成设计报告。根据学生的完成情况和设计报告进行考核。
目前黑龙江从事物联网行业的专业人才极为稀缺。毕业生能够在信息、物流等部门从事物联网相关领域的运行维护与管理工作,在智能农业、智能交通、智能物流、环境保护、智能环境监测、智能家居、智能暖气供热、石油和煤炭安全、公共安全、政府工作、远程医疗等多个领域中的工作。为了更好地适应市场经济对高等职业教育发展的需要,培养出物联网方向的职业高技能型人才,加快推进物联网在东北地区的应用与发展,以更好地服务于地方经济建设和社会发展,为黑龙江省高职院校将形成自己的“职业教育特色”,走集团化、专业基地化、基地产业化的办学理念,并结合职业教育自身发展规律,为立足于服务市场培养新型的、复合式高技能的物联网人才。
参考文献
[1] 陈海滢,刘昭等.物联网应用启示录——行业分析与案例实践.机械工业出版社,2011.5.
农业物联网行业研究范文5
关键词:温室;设施农业;物联网;应用研究
中图分类号:TP393 文献标识码:A DOI 编码:10.3969/j.issn.1006-6500.2015.04.011
Application and Research Direction of the Internet of Things on Facility Agriculture
JIA Bao-hong, QIAN Chun-yang, SONG Zhi-wen, WANG Jian-chun, LYV Xiong-jie, LI Feng-ju, LIU Shao-wei
(Information Institute of Tianjin Academy of Agricultural Sciences, Tianjin 300192, China)
Abstract:This paper preliminary discusses the current main restricting the further development of agriculture IOT bottleneck problem, put forward the applied research lacks is the key factor. Facility agriculture IOT application research to combine the production practice and future development trends, mainly in five aspects, including the data accumulation and analysis, research suitable application model, development for making a fool of Internet management system, study agriculture IOT application standards, strengthen the monitoring and research on crop physiological and ecological information.
Key words: greenhouse; facility agriculture; internet of things; application and research
农业物联网是物联网技术在农业生产、经营、管理和服务中的具体应用。它利用各类感知设备,采集农业生产、农产品流通以及动植物本体的相关信息,通过无线传感器网络、移动通信无线网和互联网传输,最后通过智能化操作终端,实现农业产前、产中、产后的过程监控、科学决策和实时服务[1]。
近年来,随着物联网技术的不断发展,其应用已经涉及水产养殖与畜牧业、种植业、农产品加工、运输与流通等农业领域。由于设施农业是在人为可控环境保护设施下的农业生产,更有利于物联网技术助力设施农业实现精准高效,因此设施农业物联网技术的推广应用成效最为显著,前景十分广阔。
1 物联网技术应用于设施农业的历史及现状
发达国家设施农业物联网发展较快,20世纪后期就已经有基于网络化、分布式的温室环境控制系统研发的报道,这与他们先进的生产管理水平密切相关。英国研发出用于储藏室或花园温室的入侵警报系统和霜冻系统、通风加热控制系统、远程无线洒水系统等系列无线设备;日本研究开发出“Open Plannet,OP”双向远程监控系统,利用基于以太网的嵌入式网络技术实现了温室环境和视频的实时动态监控[2]。荷兰向花卉培育者提供植物生长控制系统,可以实现复杂环境下温室植物的个性化追踪管理。在美国,20%的精细农业都应用感知技术,在农业生产信息获取、生产管理、辅助决策、智能实施中发挥了关键作用。美国加州研发出的“草莓培育物联网系统”能够实时监测植物的生长状况,根据土壤和环境空气的动态变化,自动启动施肥浇水或温度调节等智能设施。近年来,随着一些发达国家大面积推广精细化、自动化的农业生产技术,对农作物的生长环境进行监测,并针对作物生长需要进行生长环境、农业机械的自动控制,使得物联网技术可以无缝接入,应用环境较为完善[3]。著名的系统有英国开发的农业管理与决策选择系统、美国的作物决策管理系统等[1]。有此作保证才能真正实现农业生产管理的智能决策与控制。这其中,欧美发达国家尤其值得我们学习的是农业知识处理与应用系统开发方面,他们通过集成大量知识和农业生产流通第一线数据,来为品种选择、土壤营养诊断、水肥管理、病虫害诊断、农产品加工、流通等农业生产全过程提供信息化服务。
我国物联网的研究几乎与国外发达国家同步进行,在农业上的研究应用领域也较为广泛。2011 年,农业部了《全国农业农村信息化发展“十二五”规划》,包括北京市设施农业在内的三大国家级物联网应用示范工程开始启动, 2013年,上海、天津、安徽3个省市被农业部列为农业物联网区域试点[4],我国农业物联网发展驶入快车道。迄今全国已有8个省(区、市)(另外还有黑龙江、内蒙古、新疆)承担的国家物联网应用示范工程和农业物联网区域试验工程先后启动实施,并取得了阶段性成果,也带动了各地农业物联网的发展。
成绩较为突出的如:北京市重点开展了农业物联网在农业用水管理、环境调控、设施农业等方面的应用示范,开发了与农业技术结合的墒情监测系统,为政府决策、农户技术指导、公众消费和设施蔬菜生产管理提供了便利,实现了设施农业环境监测和农业用水精细管理[5]。江苏省则开发了基于物联网的智能农业管理平台,侧重对设施农业、猪舍生产环境进行监控,一定程度上实现了对农业设施的自动化管理,并逐渐开始进行规模推广[6]。天津市建成了国际先进的农业物联网平台,实施了农业生产经营物联网智能化控制与管理工程。应用种植业设施环境信息监测、智能化控制与管理等物联网技术,建设了总面积逾667 hm2的核心试验基地,开展了约1 000栋节能温室的示范应用。此外,国内许多企业也加入到农业物联网研发行列,如北京昆仑海岸传感技术有限公司、大唐移动通信设备有限公司、上海顺舟网络科技有限公司等在开发产品的同时,还提出了设施农业物联网体系解决方案来构建设施农业智能控制系统,以适应各种类型和不同规模的生产需要 [7]。
2 物联网技术在设施农业应用的发展瓶颈
虽然农业物联网技术在我国设施农业中的应用成效较为显著,但农业物联网是项复杂的工程,在我国总体上尚处于试验阶段,目前主要在示范型农业、科研温室等系统中有所应用,距离大规模商业化应用还需要一定时间。促进农业物联网蓬勃持续发展,必须面对制约其发展的瓶颈问题。目前,我国设施农业物联网发展中的主要问题可以概括为以下3个方面。
一是优质农业专用传感器的缺乏。农业部信息中心主任李昌健说:“目前我国农用传感器种类不到世界的10%,国产化率低、缺乏市场规模效应。在覆盖面、适用性等方面还有很大提升空间[4]。”而且,国内产农用传感器良莠混杂,质量参差不齐,性能不够稳定,使得监测数据不够准确,又没有权威的评价标准,因此农业生产者很难信赖物联网设备。
二是资金投入大、回报周期长。农业物联网基础设施建设不仅一次性资金投入大,需要长期更新维护,而且回报周期长。目前,我国仍以小农户分散经营为主,农业整体比较效益低下,对于普通农民来讲,物联网设备价格偏高[4],过于“高大上”,很难大面积推广。只有规模经营或者高效种养殖业才更有利于物联网技术的推广应用。
三是应用研究缺乏,急需“接地气”的生产应用参数及软件产品研发。目前国内农业物联网的市场需求仍然是以设备采购、网络接入为主,在设施农业生产上还主要停留在监测与初步分析环节,没有真正意义实现科学决策和智能控制,根本原因在于对数据分析及其生产应用的研究不够重视。
综合分析三方面问题,首先对于设备问题,我国的企业、科研机构普遍较为重视,相信随着科技的迅猛发展,大批低成本、低功耗、性能好的各类农业传感器很快会在市场上涌现。其次对于资金问题,当前还是政府投入引导为主,随着设备成本的降低,政府补贴的实施(据报道,有关部门正在研究建立农业信息补贴制度,加快推动将农业物联网相关产品和装备纳入农机购置补贴目录[4]),将会引入电信运营商、企业、科研单位、高校等社会力量的加入,逐步形成政府引导、投资主体多元化、运行维护市场化的格局。因此,制约农业物联网技术在我国推广应用的最大瓶颈无疑是采集数据如何应用,物联网如何为农业生产带来实实在在的效益,即如何打破“拿上来一大堆数据,却不知道干什么用”的窘况。重视“应用层”这个顶层设计,以应用为导向来做研发,是农业物联网发展到今天必须引起重视的核心原则和目标。
3 设施农业物联网技术应用研究方向
设施农业物联网应用研究涉及的领域较为广泛,确立研究方向要结合生产实际和未来发展趋势,可以重点从5个方面研究入手。一是注重数据的积累与分析,通过分析各类型数据发现农业生产规律,建立设施作物水肥管理模型、病虫害发生预警模型等,用于指导生产;二是研究成本低、效果佳、面向不同作物栽培的各种类型设施的应用模式,包括研究设施内网络节点的布控、设备系统的集成等;三是开发适用于当地设施生产实际、扩展性好、操作简便的物联网管理软件,结合专家模型的嵌入,成为农民身边的技术管家;四是以农业物联网技术应用研究为基础,制订操作性强的农业物联网应用标准,如针对不同设施蔬菜种植制定物联网栽培管理应用标准、蔬菜环境监测系统集成规范等,便于推广应用;五是加强作物生理生态信息的监测与研究,从长远来看,研究作物生理生长模型是提高设施作物生产潜力的根本和核心技术,有必要及早开始规划并实施[8-9]。
综上所述,随着科技的不断发展,农业物联网技术设备将会日臻成熟,但要大规模推广应用,得到市场的认可,还必须与各地区农业生产实际相结合,不能操之过急。要优先从基础好、规模化程度高、产值高的行业入手,但更为关键的是要提升数据分析能力,加强应用层面的把控与研究,才能充分发挥农业物联网的优势。
参考文献:
[1] 余欣荣.物联网 改变农业、农民、农村的新力量 农业物联网知识读本[M].合肥:安徽科学技术出版社,2012:63-64.
[2] 张唯,刘婧.设施农业种植下物联网技术的应用及发展趋势[J].科技广场,2012(1):238-241.
[3] 唐珂.国外农业物联网技术发展及对我国的启示[J].中国科学院院刊,2013,28(6):700-707.
[4] 乔金亮.物联网如何和农业更好结合[N].经济日报,2013-11-5(13).
[5] 许世卫.我国农业物联网发展现状及对策[J].中国科学院院刊,2013,28(6):686-692.
[6] 刘家玉,周林杰,荀广连等.基于物联网的智能农业管理系统研究与设计――以江苏省农业物联网平台为例[J].江苏农业科学,2013,41(5):377-380.
[7] 李作伟.物联网技术在设施农业中应用的调查研究[D].郑州:河南科技大学,2012.
农业物联网行业研究范文6
关键词:农业;物联网;构建
中图分类号:G202 文献标识码:A DOI:10.11974/nyyjs.20160432213
1 项目简介
信息技术和农业技术有机结合,加快农业的转型升级,县农委成立小组实施物联网示范推广项目,通过上级财政支持,建设具有农产品生产远程网络视频和生产环境因子数据自动采集传输功能的监测预警系统,实时掌握农业生产情况,及时生产指导、预警信息,引导全县农业向现代化、信息化方向发展。
2 蔬菜种植物联网技术
种植物联网技术主要负责监测农业生产中的各种数据,根据这些信息监控农业产品生长,从而改善传统农业生产模式。设施环境监测控制是实现设施农业生产自动化高效化的最为重要的环节之一。
3 农业物联网平台构建
3.1 地点选择
示范推广点应当为农作物重要产区,交通便利,通讯网络基础设施完备。经过详细考察调研,最终确定在羊寨镇(单家港村)、新沟镇(新沟村、新南村、陈圩村)、东沟镇(何桥村、周桥村、计桥村、太平桥村)、陈集镇(停翅港村)、罗桥镇金韩河现代农业示范园等地,建设10个现代农业生产远程智能自动化控制系统,示范推广物联网技术在设施蔬菜种植上的应用。
3.2 平台建设
3.2.1 建设流程
本次蔬菜种植物联网平台建设项目主要实施内容有以下几点:铺设田间电线杆、电缆线、网线等设备;安装田间传感器(温度、湿度、光线、水位、CO2)、数据采集模块、自动控制模块等;安装田间监控探头(云台);建设县远程监控管理中心:购置电子监视屏、服务器、研发手机客户端、专家决策及农情预警系统等;通过在各项目点的建设,示范推广设施蔬菜物联网关键技术。
3.2.2 监测内容
项目共建设羊寨镇、新沟镇等10个监测点,采集、存储田间土壤温度、湿度、CO2含量等农情数据。在管理中心实时传输田间作物的生长情况、农户田间生产措施情况、病虫害发生情况;实现远程预警信息及专家指导;远程智能控制自动喷灌等各类田间生产设施。
3.2.3 监控管理
县级远程监控管理中心建在阜宁县现代农业产业园区管理中心,该中心已建成一定规模的网络、信息平台,有专业网络、信息工程师2人,独立光纤接入,可实现监控点视频和生产环境关键因子监测数据保存6个月以上,各监控点都能实时联网,通过电脑,手机等方式接受和生产指导、预警信息,实现远程智能控制田间设施。
3.2.4 主要技术问题
各个监测点的网络不稳定。由于各个监测点位于农村基地,联网方式只有ADSL宽带和4G网络,要实现实时传输视频图像和传感器数据,ADSL宽带有时受场地、成本的限制无法接入运营商,而使用4G网络则流量的成本是比较难以承受的。最终采用的方案是选取了有条件的接入点接入光纤。
4 平台建设成果
蔬菜种植物联网平台在建设推广后,取得了明显的效益,项目实施区农民增收33.12万元,项目辐射区农民增收共计317.7万元。推广1a后三新技术覆盖率100%,单位规模新增纯收益增幅10.4%,农民满意度100%。
5 总 结
物联网技术已经成为各个行业的发展热点,在农业领域可以最大限度降低农业生产与加工的人力成本,为农产品规模化生产提供基础。本文从农业生产物联网的作用、技术基础等方面探究了其可行性,在江苏省农业三新工程项目中予以实践,取得了一定的成果。希望本文的研究可以为今后蔬菜种植物联网的建设提供一些参考和帮助。