防雷建筑标准范例6篇

防雷建筑标准

防雷建筑标准范文1

关键词:建筑物防雷保护

随着现代社会的发展,建筑物的规模不断扩大,其内各种电气设备的使用日趋增多,尤其是计算机网络信息技术的普及,建筑物越来越多采用各种信息化的电气设备。我国每年因雷击破坏建筑物内电气设备的事件时有发生,所造成的损失非常巨大。因此建筑物的防雷设计就显得尤为重要。

直击雷和感应雷是雷电入侵建筑物内电气设备的两种形式。直击雷是雷电直接击中线路并经过电气设备入地的雷击过电流;感应雷是由雷闪电流产生的强大电磁场变化与导体感应出的过电压,过电流形成的雷击。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)规定,建筑物的防雷区划分为LPZOA,LPZOB,LPZ1,LPZn+1等区(各区的具体含义本文不再赘述)。将需要保护的空间划分为不同的防雷分区,是为了规定各部分空间不同的雷击电磁脉冲的严重程度和等电位联结点的位置,从而决定位于该区域的电子设备采用何种电涌保护器在何处以何种方式实现与共同接地体等电位联结。

建筑物直击雷的保护区域为LPZOA区,其保护设计已为电气设计人员所熟知,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版),设计由避雷网(带),避雷针或混合组成的接闪器,立柱基础的钢筋网与钢屋架,屋面板钢筋等构成一个整体,避雷网通过全部立柱基础的钢筋作为接地体,将强大的雷电流入大地。建筑物感应雷的保护区域为LPZOB,LPZ1,LPZn+1区,即不可能直接遭受雷击区域;感应雷是由遭受雷击电磁脉冲感应或静电感应而产生的,形成感应雷电压的机率很高,对建筑物内的电气设备,尤其低压电子设备威胁巨大,所以说对建筑物内部设备的防雷保护的重点是防止感应雷入侵。由感应雷产生的雷电过电压过电流主要有以下三个途径:(1)由供电电源线路入侵;高压电力线路遭直击雷袭击后,经过变压器耦合到各低压0.38KV/0.22KV线路传送到建筑物内各低压电气设备;另外低压线路也可能被直击雷击中或感应雷过电压。据测,低压线路上感应的雷电过电压平均可达10KV,完全可以击坏各种电气设备,尤其是电子信息设备。(2)由建筑物内计算机通信等信息线路入侵;可分为三种情况:①当地面突出物遭直击雷打击时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。②雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电器设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。③若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电子设备。(3)地电位反击电压通过接地体入侵;雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近放射型的电位分布,若有连接电子设备的其他接地体靠近时,即产生高压地电位反击,入侵电压可高达数万伏。建筑物防直击雷的避雷引入了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机,反而可能引入了雷电。计算机网络系统等设备的集成电路芯片耐压能力很弱,通常在100伏以下,因此必须建立多层次的计算机防雷系统,层层防护,确保计算机特别是计算机网络系统的安全。

由此可见,对建筑物内各电气设备进行防感应雷保护设计是必不可少的一项内容;设计的合理与否,对电气设备的安全使用与运行有着至关重要的作用。

目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。

根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。

现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。

一、一类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

二、二类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

三、三类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:

1)TN-S系统过电压保护方式

2)TN-C-S系统过电压保护方式

3)TT系统过电压保护方式

综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:

1)建立联合共用接地系统,形成等电位防雷体系

将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。

2)电源系统防雷

以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。

3)等电位联结系统

国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。

作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。

参考文献

1、国家标准建筑物防雷设计规范GB50057-94(2000年版)北京中国计划出版社2001

防雷建筑标准范文2

关键词:人员密集;公共建筑物;防雷设计评价;防雷级别分类

中图分类号:TU856 文献标识码:A 文章编号:1009-2374(2013)06-0061-03

新建建(构)筑物防雷装置设计方案技术评价,是指根据国家法律、法规、技术标准与规范,对设计单位所作的防雷设计施工图或方案,就安全性、有效性、稳定性和强制性标准、规范执行情况等进行的技术评价。目前我们开展这项工作所依据的规范主要是:《建筑物防雷设计规范》(GB50057-2010)、《防雷装置技术评价规范》(QX/T 106-2009)及《建筑物电子信息系统防雷技术规范》(GB50343-2004)等。

而对公共建筑物,《防雷装置技术评价规范》(QX/T 106-2009)给出的定义是指用于公共目的的建筑物,而结合《消防法》(2009版)给出的解释能让我们更深入地理解“人员密集的公共建筑”这个概念,新《消防法》(2009版)第七十三条:(四)人员密集场所,是指公众聚集场所,医院的门诊楼、病房楼,学校的教学楼、图书馆、食堂和集体宿舍,养老院,福利院,托儿所,幼儿园,公共图书馆的阅览室,公共展览馆、博物馆的展示厅,劳动密集型企业的生产加工车间和员工集体宿舍,旅游、宗教活动场所等。

随着城市建设的高速发展,出于社会公益目的或者是纯商业目的的公共建筑建设项目越来越多,单个项目规模也越来越庞大,且其建设地址常位于城市的繁华地带,人员流动量大,建筑物内容纳的人员数量多、密度大。对此类建筑物的防雷设计评价关系到人民群众的的生命财产安全,关系到如何充分发挥防雷减灾为经济发展和人民生活保驾护航的作用。

下面就分别从几个方面就此类建筑的防雷设计方案技术评价要点进行简要阐述。

1 防雷级别分类方面

根据2011年10月启用的新规范《建筑物防雷设计规范》(GB50057-2010),预计雷击次数大于0.05次/a的人员密集的公共建筑物为第二类防雷建筑物,预计雷击次数大于或等于0.01次/a且小于或等于0.05次/a的人员密集的公共建筑物为第三类防雷建筑物,这与之前的旧规范在防雷类别的划分上有些许差别,在实际评价工作中应查阅设计图中的防雷平面图和立面图,取其长宽高数值,计算该建筑的等效截收面积,结合当地的年平均雷暴日,来计算该人员密集公共建筑的年预计雷击次数,以便给予其准确的防雷分类。因为建筑物的防雷类别决定了应以什么样的的标准对其设计方案进行评价,所以准确的防雷类别划分,是设计方案评价重要的第一步。

若建筑物的形状较复杂,难以直接量取其长宽高尺寸,有条件的话建议联系设计单位,获取该项目设计图纸的电子版,通过计算机CAD作图法,来计算其等效截收面积。

2 直击雷防护方面

人员密集公共建筑的直击雷防护,是此类建筑设计方案评价的重点。其评价方法,主要审阅该项目的天面防雷平面图、基础接地平面图及立面图等,评价其天面避雷网格是否符合该防雷类别标准,引下线间距是否达到该防雷类别要求。天面各类金属物是否与防雷装置良好连接,非金属物是否在防雷装置滚球法的保护范围之内,接闪带支架的高度是否达到150mm的要求等。

若该人员密集的公共建筑设计高度超过45m,依照《建筑物防雷设计规范》(GB50057-2010)相关规定,查看其接闪带是否沿屋顶周边敷设,是否敷设在外墙外表面或屋檐边垂直面上,如若未按规范执行,则应提出意见。屋面设计有阳角的,我们出于防雷安全的考虑,建议其在阳角处设置短接

闪杆。

3 均压环及侧击雷防护方面

均压环,顾名思义,主要作用就是均压,其可将高压均匀分布在该环周围,保证在环形各部位之间没有电位差,避免因高电位差而产生的危险放电现象。一些设计单位会在设计有均压环楼层的防雷平面图上详细画出均压环的敷设方法,这比较容易让我们评价该建筑均压环的设计,而较多的设计单位则是在电气设计总说明里以文字方式表述其均压环的设计方案。《防雷装置技术评价规范》(QX/T 106-2009)里,对于人员密集的公共建筑物,明文要求其从首层起每两层设计一个均压环,并将每层的金属门、窗与均压环的预留端子作电气连接。由雷电学的相关原理可知,建筑物高度超过45m时,雷电流,特别是电流值较小的雷电流,不单只会从建筑物的天面击中建筑物,还可能会从建筑物的侧面击中建筑物,所以在设计均压环的同时,我们也要求将每层的金属门、窗与就近均压环可靠连接,做侧击雷防护使用。

而目前有许多像大型商场之类的人员密集公共建筑,在设计上为了美观都喜欢采用玻璃幕墙做外墙,对于这种设计有玻璃幕墙的建筑,我们要求其每层均应设计均压环,并将每层的玻璃幕墙与均压环进行可靠的电气连接。

对于人员密集公共建筑内常设计有的自动扶梯,其自动扶梯导轨上下两端应接地,以实现等电位连接。

4 SPD设置方面

SPD即浪涌保护器,其作用主要是为了防止雷电电磁脉冲引起的过电压和过电流产生的瞬态波对建筑管线系统的破坏。新版的《建筑物防雷设计规范》对于SPD的要求较为详细,除了对其安装的位置做了要求之外,还对SPD的具体参数做了详细要求。所以我们在评价其电气系统图时,除查看其SPD是否安装、安装位置外,还要查看其所示的参数值,即SPD的电压保护水平值和保护模式的冲击电流值是否在规范要求范围之内。对于人员密集公共建筑内常设计有的封闭式电梯和自动扶梯,由于封闭式电梯作为一种特殊场所,若电力线路遭受雷电电磁脉冲侵入,导致线路损坏,人员会被困于封闭的空间内,造成危险。而自动扶梯作为一种载人的活动装置,其电力线路若遭受雷电电磁脉冲侵入,同样由于电力中断、运转突然停止而导致人员挤压和摔倒,造成危险。所以我们要求电梯和自动扶梯各自的专用配电箱内都应加装一级适配的SPD。

对于人员密集公共建筑里常设计有的自动消防报警装置,其连接至消防报警中心的119电话外线也应加装一级SPD,以保障其与城市消防指挥中心的通信畅通,及时将火灾危险情况通知消防指挥

中心。

人员密集的公共建筑,无论是其设计方案还是建成后使用,都存在其特殊性,要做好此类建筑的技术评价,首先要了解这类建筑的特殊性,包括建设地址、建筑规模、内设装置、内部布线方式、今后大致的使用人数等等,只有了解了这些信息,才能充分地、准确地利用相关规范,对其做出一个客观的、正确的技术评价。

参考文献

[1] 建筑物防雷设计规范(GB50057-2010)[S].北京:中国标准出版社,2010.

[2] 防雷装置技术评价规范(QX/T 106-2009)[S].北京:气象出版社,2009.

[3] 建筑物电子信息系统防雷技术规范(GB50343-2004)[S].中华人民共和国建设部,2004.

[4] 虞昊,等.现代防雷技术基础[M].北京:气象出版社,1995.

防雷建筑标准范文3

关键词 岳飞庙;防雷保护;设计

中图分类号TU895 文献标识码A 文章编号 1674-6708(2011)40-0021-02

0 引言

古建筑是某一地区、某一时代文化发展的标志,历经沧桑的古建筑因为所具有的独特造型和风格以及丰富的历史文化内涵,成为我国历史文化的宝贵遗产。然而古建筑多为木质或砖木结构,若建筑防雷稍有疏忽,就可能成为雷击对象,引发火灾,造成不可挽回的损失。据统计,建国以来,雷击古建筑火灾约占古建筑火灾的15%左右,而未引发火灾的雷击事故就更多了。现存的古建筑中有很多是遭雷击受损后修复或重建的,因此古建筑的防雷安全工作事关重大,加强古建筑物的综合防雷是非常有必要的。

岳飞庙址位于河南省安阳市汤阴县城内西南街,是一处完整的古建筑群。现有面积4 000多m2,殿宇建筑近百间,坐北朝南,外廊呈长方形。临街大门为精忠坊,木结构牌楼。属于部级重点保护建筑。

通过现场勘察,根据《建筑物防雷设计规范》、《古建筑木结构维护与加固技术规范》、《建筑物防雷设施安装》图籍中“古建筑防雷作法”等标准,对岳飞庙古建筑群进行了综合防雷设计。

1 岳飞庙防雷类别的确定

根据GB50165-92《古建筑木结构维护与加固技术规范》第5.3.1条的规定,古建筑分为三类:第一类:部级重点保护的古建筑;第二类:省、自治区、直辖市保护的古建筑;第三类:其他古建筑[1]。根据古建筑物的特殊结构和对防雷的要求,将古建筑物防雷标准纳入到建筑物防雷设计规范GB50057-94之中。根据《建筑物防雷设计规范》,建筑物的防雷分类根据其重要性、使用性质、发生雷电事故的可能性和后果来确定[2]。部级重点文物保护单位的古建筑物根据其大小至少应划为二类以上防雷建筑物。

2001年,岳飞庙被国务院公布为全国重点文物保护单位,其建筑规模较大,而且整个建筑群以木结构为主,遭受雷击时极易起火燃烧,将造成无法弥补的巨大损失。根据GB50057-94规定,第一类防雷建筑物是指有爆炸危险,因电火花而引起爆炸,会造成巨大损失和人身伤亡者。因此岳飞庙古建筑群应按照第一类防雷建筑物标准进行防护。

2 岳飞庙外部防雷设计

对岳飞庙古建筑群的防直击雷措施主要从接闪器、引下线、接地装置等几个方面进行设计。

2.1 接闪器

根据《建筑物防雷设计规范》,岳飞庙古建筑群按照第一类防雷建筑物级别进行直击雷防护,在各祠宇屋顶上安装尺寸不大于5m×5m或6m×4m的避雷网格。在屋脊、屋檐上暗敷避雷带,为保持古建筑的美观,避雷带应沿古建筑物屋脊的轮廓弯曲,避雷带应高出正脊、斜脊、屋檐瓦当的高度20cm。在脊顶、宝顶、宝顶、尖塔、塑像、兽头、人物、挑檐等处用Φ16以上的铜棒做避雷小针,使整座祠宇建筑最易受雷击的部位均处于接闪器的保护范围内[3]。全部接闪器共需使用紫铜棒Φ16×50cm94根、Φ18×80cm22根、Φ18×100cm的43根、Φ18×120cm的18根和Φ25×50cm的3根。使用紫铜既耐腐蚀,又与古建筑相匹配,不会影响岳飞庙的原貌。

2.2 引下线

防雷引下线根数与雷电流分流的大小成正比,与每根引下线所承受的雷电流成反比,因此在引下线设置不合理时,易产生雷电反击及其二次危害。各祠宇多为砖木结构,应采用明敷,敷设时应注意引下线要对称,为保持各祠宇的外型美观,在间距符合规范的前提下,尽量不要在正面敷设引下线,引下线的间距不应大于12m。岳飞庙内东西厢房、岳云祠、四子祠、岳珂祠、孝娥祠等面积较小,每座祠宇只需对称的引下线两根便满足要求。精忠坊因外形较大,应在其四角设置引下线。

2.3 接地装置

古建筑物接地装置的布设应根据其用途、性质、地理环境和游客多少等情况来选择结构方式和位置。在岳飞庙内做接地装置时应注意游客集中场所与地下管线路的安全距离。对于面积较小的几个祠宇的接地装置应连接成一体,构成均压接地网,使接地网界面以内的电场分布均匀,减少跨步电压对游客的危害,同时减小地面电位梯度大而产生的反击高压危害。为降低雷击跨步电压对游客的危害,当接地体距建筑物出入口或人行道小于3m时,接地体局部应埋深1m以下,若深埋有困难,则应敷设50mm~80mm厚的沥青层,其宽度应超过接地体2m。埋在土壤中的接地装置,其连接应采用焊接,并在焊接处作防腐处理[2]。

3 岳飞庙内部防雷设计

为了加强对古建筑物文化遗产的保护和监管,各文物保护管理单位在古建筑群内设置监控、电话、消防、照明等设施,增强了古建筑物的防雷安全隐患,因此在做好外部防雷的同时,还应做好等电位连接、安装SPD、合理布线、接地等内部防雷。

1)电源系统的防雷:岳飞庙内各祠宇的高度一般较低,电源线不易采用架空线路引入,因此应采用穿钢管埋地敷设的方式引入电源线路,并且在引入端电源箱内安装电源浪涌保护器;

2)把各类金属管包括铠装电缆的金属外皮在相应的防雷交界区处就近与防雷接地或建筑基础地作等电位连接,使沿各类金属管和电缆侵入的雷电流及时泄入地中。各祠宇内防雷电感应的接地干线与接地装置的连接不应少于两处。同时在天馈线、通讯、电话线、信号线路进入各祠宇时安装信号浪涌保护器;

3)岳飞庙古建筑群各祠宇内外安装的监控摄像系统,在保护范围内,金属外壳应接地,并与各祠宇的防雷接地连接;在摄像头端安装三合一避雷器,作为对摄像头电源、信号、控制的雷电防护。在监控主机前安装多端口BNC接口避雷箱,作为对监控主机的防护;

4)沿木质介质敷设的电缆采用阻燃型电缆。

4 结论

通过以上设计,能够对岳飞庙古建筑群内存在防雷安全隐患的部位进行了有效的防护,最大程度的减小了雷电灾害造成的损失。然而根据现行的《建筑物防雷规范》,也不能保证建筑物防雷达到百分百的安全,古建筑物的防雷并不是很完善。因此,各级防雷安全管理部门要加强监管,定期进行安全检测,每年至少检测一次,发现问题及时解决,切实做好古建筑物的防雷安全保护工作。

参考文献

[1]古建筑木结构维护与加固技术规范(GB50165-92).

防雷建筑标准范文4

关键词:建筑物;电气设备;防雷;设计

随着现代社会的发展,建筑物的规模不断扩大,其中各种电气设备的使用日趋增多,尤其是计算机网络信息技术的普及,建筑物越来越多采用各种信息化的电气设备。我国每年因雷击破坏建筑物内电气设备的事件时有发生,所造成的损失非常巨大。因此建筑物的防雷设计就显得尤为重要。

直击雷和感应雷是雷电入侵建筑物内电气设备的两种主要形式。直击雷是雷电直接击中线路并经过电气设备入地的雷击过电流;感应雷是由雷闪电流产生的强大电磁场变化与导体感应出的过电压,过电流对电气设备的毁坏。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)规定,建筑物的防雷区划分为LPZOA,LPZOB,LPZ1,LPZn+1等区(各区的具体含义本文不再赘述)。将需要保护的空间划分为不同的防雷分区,是为了规定各部分空间不同的雷击电磁脉冲的严重程度和等电位联结点的位置,从而决定位于各区域内的电子设备采用何种电涌保护器在何处以何种方式实现同联合接地体的等电位联结。

建筑物直击雷防护的保护区域为LPZOB区,其保护设计已为电气设计人员所熟知,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版),设计由避雷网(带),避雷针或混合组成的接闪器,基础内的钢筋网、柱筋及钢屋架等构成一个整体,避雷网通过全部立柱基础内的钢筋作为接地体,将强大的雷电流入大地。建筑物感应雷的保护区域为LPZOB,LPZ1,LPZn+1区,即不可能直接遭受雷击区域;感应雷是由雷击电磁脉冲感应而产生的,形成感应过电压的机率很高,对建筑物内的电气设备,尤其对低压电子设备威胁更大,所以说对建筑物内部设备的雷电保护的重点是防感应雷入侵。感应雷产生的过电压、过电流主要有以下三个途径:(1)由供电线路入侵;高压电力线路遭直击雷袭击后,经过变压器耦合到各低压0.38KV/0.22KV线路后传送到建筑物内各低压电气设备;另外低压线路也可能被直击雷击中或由于附近雷闪感应出过电压。据测,低压线路上感应的雷电过电压平均可达10KV,完全可以击坏各种电气设备,尤其是电子信息设备。(2)由建筑物内信息线路入侵;可分为三种情况:①当地面突出物遭受直击雷时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。②雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电气设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。③若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电气设备。(3)地电位反击电压通过接地体入侵;雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近放射型的电位分布,若与有连接电子设备的其他接地体靠近时,即产生高压地电位反击。建筑物防直击雷的避雷装置接受了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机,反而可能引入了雷电。计算机网络系统等设备的集成电路芯片耐压能力很弱,通常在100伏以下,因此必须建立多层次的防雷系统,层层设防,确保计算机网络系统的安全。由此可见,对建筑物内各电气设备进行防感应雷保护设计是必不可少的一项内容;设计的合理与否,对电气设备的安全使用与运行有着至关重要的作用。

根据国家标准《建筑物防雷设计规》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。

现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。

一类防雷建筑物,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为200×50%/3/3=11.11KA;后续雷击:总配电间每根供电线缆雷电流分流值为50×50%/3/3=2.78KA;如果电缆已经进行屏蔽处理,每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA×30%=3.33KA及2.78KA×30%=0.83KA,且电涌保护器承受10/350 us的雷电波能量相当于8/20 us的雷电波能量的5~8倍,所以选择能承受8/20 us波形电涌保护器的最大放电电流为11.11×8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA。

二类防雷建筑物,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150×50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5×50%/3/3=2.08KA;如果电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即 8.33KA×30%=2.5KA及2.08KA×30%=0.62KA,且电涌保护器承受10/350 us的雷电波能量相当于8/20 us的雷电波能量的5~8倍,所以选择能承受8/20 us波形电涌保护器的最大放电电流为8.33×8=66.6KA;即设计应选用电涌保护器SPD的最大放电电流为65KA。 三类防雷建筑物,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100×50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25×50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即 5.55KA×30%=1.66KA及1.39KA×30%=0.42KA,而在电涌保护器承受10/350 us的雷电波能量相当于8/20 us的雷电波能量的5~8倍,所以选择能承受8/20 us波形电涌保护器的最大放电电流为5.55×8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA。

防雷建筑标准范文5

关键词:智能建筑物;内部防雷;综合防雷设计;防护

Abstract: this article through to the guangdong province by intelligent building integrated even lightning protection measures of the system, the paper intelligent building and its internal electronic equipment lightning protection plans and measures.

Keywords: intelligent buildings; Internal lightning protection; Integrated lightning protection design; protection

中图分类号:TU856文献标识码:A文章编号:

引言:连州市位于广东省西北部,五岭南麓,北江支流连江上游。近年来,随着经济的不断发展,连州市智能建筑物越来越多,在其内部密集众多的电子设备和各种计算机系统,雷电是其主要干扰源之一,由雷灾引发的各种灾害和事故呈现上升的趋势,对建筑物自身及其内部电子设备的防护有一定的实际应用价值,能够带来较高的社会效益和经济效益。所以做好智能建筑物内部防雷的势在必行的。

1 智能建筑物的概念及需求

智能建筑是现代高新技术的结晶,是建筑艺术与信息技术相线路合的产物。随着计算机技术应用的普及,通信技术,控制技术,网络技术的不断发展,建筑物内的所有公共设施都可以采用“智能”系统来提高大楼的服务能力。智能化建筑是由智能化建筑环境内系统集成为中心(以计算机为主的控制管理中心),它通过大厦结构化综合布线系统(PDS)与各种信息终端,如通信终端(微机、电话、传真、数据采集等)和传感器(如烟雾、压力、温度、湿度传感等)连接“感知”大厦内各个空间的“信息”,并通过计算机处理给出相应的对策,再通过通信终端或控制终端(如步进电机、各种阀门、电子锁、开关等)给出相应的反应,使大楼具有某种“智能”。

2 智能建筑物的集成系统及防雷设计理念

2.1现代社会计算机通信网络和数字逻辑控制设备受电源线路、电压波动及雷击电磁脉冲的干扰影响日趋严重,因此智能大厦集成系统设计时必须考虑系统安全保护措施,以保障系统安全正常运行。

2.2智能大厦防雷设计理念

现代防雷技术主要通过接闪、分流、接地、等电位连接、屏蔽、安装SPD等方式对建筑物进行防护,智能大厦作为科技含量较高的建筑物,包含各种集成系统,它的雷电防护措施应是一个全方位、立体型的综合设计方案,主要解决防雷分区保护和雷电通道以及接地的问题,作为现代防雷的主要措施,在建筑物的弱电系统上加装SPD已经成为现在防雷的重要的一环,但必须强调的是防雷是一个系统的工程,需要上面的六大基本措施的相互配合,紧密协作才能真正得到防护的效果。在IEC和GB的标准中,这一点得到了很好的体现。

3 智能大厦外部防雷措施

3.1避雷针

智能大厦外部防雷设施不仅要求具有良好的防雷效果,并且对避雷针的外观也有很高的要求,避雷针与大厦整体建筑风格应协调统一,且美观,甚至成为大厦引人注目的亮点。GB50057-94中关于避雷针用材的要求显然已不能满足现代智能大厦的在防雷效果和美观上的要求,国内外一些避雷器生产厂商设计生产了一些外观独特、性能优良的避雷针可供我们选择使用。

3.2避雷带和避雷网

根据《建筑物防雷设计规范》GB50057-94(2000版)第4.1.2条的要求:避雷带可采用圆钢或扁钢制成,其材料应符合以下要求:圆钢直径不小于8mm ,扁钢截面积不小于48mm2,厚度不小于4mm。避雷带可沿建筑物四周女儿墙上敷设,并与避雷针、引下线、天面电磁屏蔽网做良好的连接。

4 电源系统的防雷防护措施

IEC中电源系统的防护要求采取分级防护的措施,一般来说电源系统分为三级进行防护。但是现在智能大厦的弱电设备很多,对通过输电线路进来的电流极其敏感。所以智能大厦的很多设备采取了4到5级的精细防护。

5 电视监控系统防雷

电视监控系统(CCTV)的防雷保护比较复杂,首先需要明确监控系统遭受雷击损害的主要原因以及雷电可能的侵入途径,尤其是雷击损坏较为严重的室外监控设备,在分析其损坏原因的基础上,以及研究和探讨信号、电源线路的布放、屏蔽及接地方式等,方可以正确选择和使用监控系统设备的防雷保护装置。

6 电话通信系统防雷

智能大厦的电话系统的防雷防护主要针对的电话交换机和以及重要的人员的办公室。根据电话外线的数目安装一定数目的电话通讯防雷器,主要主要的就是电话的接口和保护的线路的数目。再有就是供电的考虑,安装适当的电源防雷器。

7 火灾报警系统防雷

主要有火灾报警及消防联动控制系统(FAS)是有建筑物内部装置感烟探测器、感温探测器及模拟显示盘构成的,当发生火灾时能自动喷洒水或其他灭火液体气体,经防排烟系统排除火灾所产生的烟雾并防止其蔓延的系统总称。通常火灾自动报警系统的保护对象根据其使用性质、火灾危险性、疏散和扑救难度等分为特级、一级和二级。一类建筑、二类建筑的划分,符合现行国家标准《高层民用建筑设计防火规范》GB50045的规定;工业厂房、仓库的火灾危险性分类,应符合现行国家标准《建筑设计防火规范》GBJ16的规定。

8 有线电视防雷

对于卫星通信(VSTV)、有线电视(CATV)、卫星电视(SATV)等系统,其卫星天线一般安装在建筑物天面,如卫星天线未在建筑物防直击雷避雷针、带的保护范围之内,需要增加接闪器作保护,如在建筑物防直击雷避雷针、带的保护范围之内,只需要将天线馈线等外设线路穿金属管屏蔽,外端连接避雷带、天线支架或者引下线,内端连接机房接地汇流排或者建筑物柱内钢筋即可起到良好的雷电防护作用,在此基础上在机房设备进线端安装通讯信号电涌保护器就可将设备的雷击损坏风险降到极低的水平。

参考文献:

1.国家标准建筑物防雷设计规范GB50057-94(2000年版)

防雷建筑标准范文6

关键词:高层建筑;防雷;设计

1 建筑设施防雷等级评定

在日常工作运用中,我们在对建筑设施进行防雷预设计时,首先要评定建筑设施的防雷等级。在国家颁布的《建筑物防雷设计规范》(GB50057—97)中,对建筑设施防雷类别的划分标准,除了由建筑设施的功能对其进行定性以外(第二、三类防雷建筑),还要根据建筑物的预计年雷击次数 N进行评定。在公式N=K·Ng·Ae(Ng=0.024Td1.3)中:N为建筑设施的年预计雷击次数 (次/a)、K为校正系数,多数情况取值为1.0。Ng为建筑设施所属地区雷击大地年平均强度(次/Km2·a),Td为地区每年平均雷暴日(d/a),Ae为与建筑物截收同等雷击次数等效的面积大小(Km2),L为建筑设施长度(m),W为建筑设施宽度(m),H为建筑设施高度(m)。按照《规范》标准,上述类型民用住宅的年均预计雷击次数均大于0.06次每年且少于0.3次每年。综上分析,可以将这部分建筑划为第三类防雷建筑物。

2 防雷技术的规范标准

任何新建建筑的防雷设计依据必须有据可依,因此其建设项目工程设计图纸必须是完整且严谨的。在做好防雷工作前,要认真查看工程建筑设计总说明和电气设计说明。目前气象部门常用防雷技术依据有:《建筑物防雷设计规范》(GB50057—942000版)、《建筑物电子信息系统防雷技术规范》(GB50343—2004)、《民用建筑电气设计规范 》(JGJ/T16—92)、《接地装置安装》(03D501—4)、《建筑物防雷设施安装》(99D501—1)、《低压配电设计规范 》(GB50054—95)、《供配电系统设计规范》(GB50052—95)、《建筑物防雷设施安装 2003年局部修改版》(99(03)D501—1)、《有线电视系统工程技术规范》(GB50200—94)、《民用闭路监视电视系统工程技术规范》(GB50198—94)、《火灾自动报警系统设计规范》(GB50116-98)、《智能建筑设计标准》(GB/T50314—2000)、《利用建筑物金属体做防雷及接地装置安装》(03D501—3)、《等电位联结安装》(02D501—2)等。

3 防雷接地系统

概括起来防雷就是在建筑物上通过预先安装的接闪器,把雷电引入建筑物下面的地面的一个过程,通过这样的方式,可以有效避免建筑物内部不受雷电打击造成损害。目前我国的防雷接地系统主要由接闪器、引下线和接地装置三部分组成。

3.1 三种接闪器

接闪器目前主要有避雷针、避雷带 ,避雷网三种,一般安装在建筑物的顶部,作用是引雷或截获闪电,概括起来就是把雷电流从建筑物上引下来。通常在建筑物内屋面女儿墙压顶处设置一圈镀锌圆钢Ф12,建筑电气上将其称为避雷带 ,使用间距为1.5m高为0.2m的支撑硬卡,将圆钢Ф12固定在建筑设施屋面、墙壁及楼梯上端,同时将刚性屋面或建筑结构层上的钢筋与避雷带进行焊接,通过这样的方式使屋面形成一定规格的避雷网格,然后再将屋面避雷网与引下线进行焊接,最后再传入基础通过接地装置最终引入大地。当建筑设施标高高于30M时,还应考虑均压环的问题,非屋面框梁或圈梁钢筋通焊一圈。

3.2 引下线

引下线即上与接闪器连接,下与接地装置连接的装置。其作用是把接闪器截获的雷电电流疏引至接地装置。引下线应优先利用建筑设施的钢筋混凝土柱,或者是剪力墙中的主钢筋,此外建筑物的消防梯钢柱、金属烟囱等也可以作为引下线的选择。但应注意的是,当采用钢筋混凝土柱中的钢筋、钢柱作为自然引下线的时候,一定要采用基础钢筋作为接地装置,一般不设置断接卡,还要保证在室外适当场所设置一定数量的与柱内钢筋相接的连接板,采用以上方法的目的,是为测量和外接人工接地体等电位联结。如果建筑结构是砖混结构的建筑设施,就要在建筑外墙四周另设引下线,并在距离建筑外部地面离地1.8m处增设断接卡。此外还要在离地1.7m至地下0.3m的一段采取其它保护措施。

3.3 接地装置

接地装置一般位于建筑设施地下一定深度之处,其的作用是促使雷电流能够顺利流散到大地中去。我们可以通过建筑设施的基础作为接地装置,这种方法不仅美观、经济,更有利于雷电流场的流散,此外还有减少维护次数和增加寿命等诸多优点。由于笔者工作的江苏省东海县地区的建筑物大部分均是采用人丁挖孔柱基础,条件符合《建筑物电子信息系统防雷技术规范》(GB50343—2004),混凝土内基础也能达到作为自然基础接地体的要求,因此建议各地推广使用。长期实地工作经验总结,利用建筑柱基础作接地体的过程在建筑物地梁整体的处理过程中是极其重要的一环。首先地梁内的主筋一定和柱基础主筋连接起来,同时还应该把各段地梁的钢筋连接成一个整体环路,通过上述方法才能将各个基础连接成一个联合接地体,并且同时保证地梁的钢筋能够形成一个效果良好的水平地环,综合成一个完整可靠的接地防雷系统,其接地电阻小于等于4欧姆。

3.4 等电位连接

等电位联结的目的在于将建筑设施内部间接接触电击的接触电压和不同金属组成部件间存在的电位差降到最低,建筑设施外部经电气线路和附近其它金属管道引入的潜在危险故障电压可能会产生一定危害,等电位联结可以从一定程度上消除这种危害。但凡穿越不同保护区界面的金属物都应该进行等电位联接,并要求多点接地。通常的做法是,一幢建筑设施一般在一层或地下一层电源总配电箱附近,设计如下装置:总等电位连接(MEB)箱,卫生间、电梯机房、监控机房等弱电机房,同时设计局部等电位连接(LEB)端子板。

4 结语

综上所述,一套完整的建筑物防雷设施,为了实现其能够应对不同程度雷害的防护目的,防雷设施应包括完整的接地体、引下线、避雷网、避雷带、避雷针、均压环、接地体、等电位共计八个技术装置,这八个防雷设施的作用也是相互关联的,对于新建建筑物无论是从设计还是到施工,都要考虑和确保整个防雷设施体系的完整性。

参考文献