煤化工范例6篇

煤化工

煤化工范文1

【关键词】煤气化工艺煤气化循环发电技术特点运行分析

CoalGasificationTechnologyinFourLargeIGCCPowerPlantsAbroad

AbstractTherearefour250MWandaboveIGCCpowerplantsbuiltandputintooperationnowintheworld.TheyareU.S.WabashRiverandTampa,DutchDemkolecandSpainPuertollano.ThecoalgasificationprocessesemployedareDestec,Texaco,ShellandPrenflopressurizedjet-flowbedgasificationprocessrespectively.Thisarticlecomprehensivelyanalyzestheequipmenttechnicalfeatures,technicalandeconomicalindexesofthesefourkindsofcoalgasificationprocesses,aswellastheirapplicatiousinIGCCpowerplants.

Keywordscoalgasificationprocesscoalgasificationcombinedcyclepowergenerationtechnicalfeaturesoperationanalysis

迄今为止,世界上已投入运行的4座250MW以上的IGCC电站分别是美国的WabashRiver(260.6MW)和Tampa(250MW)、荷兰的Demkolec(253MW)和西班牙的Puertollano(300MW)。它们分别采用Destec、Texaco、Shell和Prenflo加压喷流床煤气化工艺。Destec和Texaco是水煤浆加压气化的主要代表,而Shell和Prenflo则是干粉进料加压喷流床气化的主要代表。用于IGCC的4种煤气化炉容量都达到2000t/d以上,都是这些气化炉首次最大容量的工业应用。它们的运行状况直接影响着IGCC的可用率和可靠性,是IGCC电站最关键的技术之一。了解这4种气化炉的设备和技术特点及在IGCC电站中的运行状况,对我国IGCC电站选择煤气化工艺路线具有一定的参考价值。

1Texaco煤气化工艺

1.1Texaco气化工艺的结构特点

(1)制浆系统。煤和水在常规的煤浆磨中被制成浓度通常是60%~68%的水煤浆,TampaIGCC电站的水煤浆设计浓度为68%。对于一些灰熔点较高的煤或者制浆困难的煤,经常在煤浆磨中同时加入石灰石助熔剂或者煤浆添加剂,使得煤的灰熔点降低或者使煤浆均匀性提高。在煤浆磨的出口有一个筒形的筛子,合格的煤浆流入煤浆储罐中,不合格的煤浆溢流到循环槽中被送回煤浆磨入口。在煤浆储罐中设有一个搅拌器,并根据检测结果加入一定量的水,使储罐中的煤浆始终保持在一定浓度下的均匀状态。气化炉所需的煤浆量一般由2级隔膜泵从煤浆储罐中抽取并加压送入气化炉喷嘴,在气化炉入口的煤浆输送管上设有2级流量检测器,严格控制煤浆的流量,煤浆流量的调节全靠隔膜泵来控制。

(2)气化炉和煤气冷却系统。水煤浆和95%纯度的氧气被同时送入气化炉喷嘴,在气化炉内进行气化反应,反应区的温度一般在1200~1500℃,气化炉的压力根据不同行业的需要可以是2.5~8.5MPa。TampaIGCC电站的气化炉压力为2.8~3.0MPa,气化区的温度为1482℃。水、煤和氧气在气化炉中发生气化反应,主要生成CO、H2、CO2、H2O、CH4、H2S和N2,此外,还有少量的NH3、COS、HCN和飞灰。由于采用水煤浆进料,煤气中的H2O含量较高。

Tampa电站的Texaco气化炉内设耐火砖(一般为4层),内径约4.0m,高约3.0m。气化反应的速度很快,粗煤气在气化炉内的停留时间一般在2~3s。热煤气离开气化炉进入特殊设计的辐射式冷却器,使热煤气的温度降低至700℃,同时使热煤气中的熔融态渣凝固。冷却后的粗煤气进入对流式冷却器中被进一步冷却到480℃。煤气中的显热在2级冷却器中得到回收,产生10.4MPa的高压饱和蒸汽。气化炉与辐射式冷却器做成一体,外径约5m,高约39m,总重约900t,气化炉安装标高约106.75m。

(3)排渣和黑水处理系统。气化炉内的熔渣经辐射式冷却器后冷却凝固成玻璃状的渣进入充满水的锁斗系统,锁斗上下部各有2级阀门控制渣进入和排出。从压力锁斗排出的渣落入粗渣糟中,粗渣被分离出来,进一步处理或直接销售。细渣和水一起被抽入一个细灰沉降槽中进行重力沉降或过滤,使水和细渣分离。从洗涤器出来含灰的水也进入沉渣槽中,使含碳的飞灰与水分离,从沉渣糟中溢流出来的水一般含非常少量的细灰,它被再循环至水洗涤器人口作为洗涤器用水,多余的水送回煤浆制备系统。从沉渣槽底部流出的细灰进入一个压滤机中,将细灰制成细灰饼。Tampa电站采用了将细灰再循环至煤浆磨的工艺,目的是为了提高碳的转化率。

1.2Texaco气化工艺的性能和运行指标分析

Texaco气化工艺的性能特点:

(1)与干法进料相比,水煤浆进料系统工艺相对简单、安全可靠、操作灵活、制浆系统的厂用电较小,无煤粉爆炸危险性,制浆系统无粉尘排放。煤不必进行干燥处理,可直接进入制浆系统。此外,水煤浆进料可处理不同物料(煤、石油焦、其它废料),进料种类灵活。此外,使用水煤浆进料,气化炉可以在更高的压力下运行(2.5~8.5MPa),这对一些化工过程非常必要。

(2)气化炉采用单喷嘴运行,所有的气化物料都从一个喷嘴喷入,它具有结构简单的优点,但由于局部热负荷较高,流量较大,不可避免地会发生过热损坏或磨损问题。到目前为止,Texaco气化炉喷嘴的最长累计运行时间仅3个月就需要进行检修更换。

(3)Texaco气化炉内设耐火砖,没有水冷系统,结构简单,初投资较小。但由于炉内温度较高,加之磨损和腐蚀,目前Texaco气化炉向火侧的耐火砖最长寿命仅2a,靠近炉壁的耐火砖寿命为5~10a。

(4)全厂的灰水可综合利用,除去大渣和细灰的水也在制浆系统中循环使用。

(5)由于煤气在气化炉内的停留时间短,Texaco气化炉的碳转化率较低,一般在96%~98%。由于水煤浆的水分含量大,气化过程的O/C比较高,耗氧量大,而且煤气中的水分含量也较高。与干法进料相比,冷煤气效率较低,热回收系统复杂。

(6)与其它气化炉相比,Texaco气化炉大容量商业运行的台数和经验更丰富。

(7)Tampa电站Texaco气化炉可用率1996年可达到57%,1997年达到78%。1998年的目标是85%,根据电厂介绍此目标可望达到。

1.3TampaIGCC电站中Texaco气化炉曾出现的主要问题及解决办法

(1)排渣锁斗堵塞。后通过调整运行工况及改动部分管道基本得到解决。

(2)辐射废热锅炉和对流废热锅炉的泄漏问题。主要原因可能是由于高温腐蚀,改进的方法是:采取保护措施,改善气化炉的运行状况。对流废热锅炉也曾出现管壁泄漏和积灰堵塞问题。改进的方法是:组织好气化炉的运行工况,加强检查和吹灰。

(3)黑水和灰水系统的磨损问题。目前的办法是更换耐磨材料、改变管路结构、加强细灰的分离,但不能彻底解决。

(4)当煤种有变化时,气化炉最不适应的就是排渣锁斗系统和细灰分离系统,容易发生堵塞。目前的办法是控制运行参数,积累运行经验,改善锁斗系统的设计,增强承受能力。

(5)位于对流煤气冷却器后的4个气-气热交换器(2个粗煤气与净煤气,2个N2与粗煤气)曾出现积灰堵塞和腐蚀问题,造成管子泄漏,导致灰尘进入洁净煤气中,使燃气轮机叶片严重损坏,同时在氮气和煤气通往燃气轮机的Y形滤网也发现裂纹。主要原因有:设计的气-气热交换器入口煤气温度偏低、热交换器的管径偏小及停机时泄漏的水的腐蚀(氯离子腐蚀)等。目前尚无好的解决办法,不得已取消了这4个气-气热交换器,改用蒸汽预热净煤气,这使全厂的净效率下降1.5个百分点。

2Destec煤气化工艺

2.1Destec煤气化工艺结构特点

Destec气化炉是2段氧气气化、连续排渣、内设耐火砖的煤气化工艺。80%的水煤浆(浓度为67%)和纯氧(纯度为95%)混合后喷入气化炉第1段,在第1段除对称布置2个水煤浆喷嘴外,在第1段的顶部还有一个从除尘器回来的飞灰再循环喷嘴。第1段的气化温度为1371~1427℃,气化压力为2.76MPa。经过第1段反应产生的粗煤气进入第2段气化区。第2段气化是一个垂直的内设耐火砖的压力容器,20%的水煤浆从第2段喷嘴喷入,与粗煤气混合并发生蒸馏、裂解和气化反应,使粗煤气的热值进一步增加,而温度降低。在气化炉顶部的出口,煤气温度约为1038℃,故只需要设置对流式煤气冷却器。WabashRiverIGCC电站安装了2台100%负荷的气化炉,1台运行,1台备用,煤气冷却器只有1套。该电厂的煤气冷却器之前有1根与气化炉高度相当的导流圆筒,垂直布置,内设耐火材料。从导流筒出来的煤气进入对流式煤气冷却器,热煤气在管内流动,水在管外流动,产生11.03MPa压力的饱和蒸汽,流量约90.7~113.4kg/h,这部分蒸汽再进入余热锅炉过热。煤气被冷却到371℃,然后进入煤气除尘和脱硫系统。该电厂的煤气冷却器直径约3m。

Destec煤气化工艺的水煤浆制备和黑水处理系统与Texaco工艺基本相似。

2.2Destec煤气化工艺的性能和技术经济指标分析

(1)截止1997年底,在WabashRiver电厂也已累计运行4656h,气化了469220t煤,气化炉的最大负荷可达到100%~103%,气化炉最长连续运行小时数可达到362h,冷煤气效率可达到71%~74%。气化炉的可用率1996年为84%,1997年达到98%,1998年也达到96%。当然,这是当气化炉1台运行,1台备用情况下的数据,单台运行时,尚不能达到如此高的可用率。气化炉的喷嘴寿命一般为2~3个月,耐火砖寿命一般为2~3a,2段耐火砖寿命更长。

(2)Destec气化炉采用2段气化,提高了煤气的热值,降低了氧耗,并使煤气的出口温度降低,省去了庞大而昂贵的辐射废热锅炉,使气化炉的造价降低。而煤气热值的提高,也有利于提高IGCC电站的总效率。Desetc气化炉的煤气在标准状态下热值约10425.5kJ/m3,而Texaco煤气热值一般为8563.8kJ/m3。

(3)采用的火管式对流冷却器造价和安装费用较低,检修和清洗方便。

(4)Destec气化炉采用压力螺旋式连续排渣系统,泄压和碎渣设备的造价较低。

2.3WabashRiverIGCC电站中Destec气化炉曾出现过的主要问题及解决办法

(1)曾出现过2次连续排渣口堵塞现象。这是由于水煤浆中的粗大颗粒较多,使水煤浆供给波动,导致气化不稳定而堵塞。解决的办法:严格执行运行操作规程,控制水煤浆质量,保证气化过程稳定。

(2)煤气冷却器入口管道的灰渣沉积,限制了机组运行时间。主要措施是改进了对流冷却器前煤气管道的尺寸、形状,使煤气流速提高,减轻管道中大块沉积物的形成,从而避免了这些大块沉积物随气流进入煤气冷却器,并严格控制气化炉操作温度。为了更保险,在煤气冷却器入口管道上装有滤网,防止有较大的沉积物进入煤气冷却器。

3Shell煤气化工艺

3.1Shell煤气化工艺的结构特点

(1)煤粉制备和送料系统。Shell煤气化工艺采用干煤粉进料系统。原煤的干燥和磨煤系统与常规电站基本相同,但送料系统是高压的N2气浓相输送。与水煤浆不同,整个系统必须采取防爆措施。经预破碎后进入煤的干燥系统,使煤中的水分小于2%,然后进入磨煤机中被制成煤粉。对烟煤,煤粉细度R90一般为20%~30%,磨煤机是在常压下运行,制成粉后用N2气送入煤粉仓中。然后进入2级加压锁斗系统。再用高压N2气,以较高的固气比将煤粉送至4个气化炉喷嘴,煤粉在喷嘴里与氧气(95%纯度)混合并与蒸汽一起进入气化炉反应。

(2)气化炉。由对称布置的4个燃烧器喷入的煤粉、氧气和蒸汽的混合物,在气化炉内迅速发生气化反应,气化炉温度维持在1400~1600℃,这个温度使煤中的碳所含的灰分熔化并滴到气化炉底部,经淬冷后,变成一种玻璃态不可浸出的渣排出。

粗煤气随气流上升到气化炉出口,经过一个过渡段,用除尘后的低温粗煤气(150℃左右)使高温热煤气急冷到900℃,然后进入对流式煤气冷却器。在有一定倾角的过渡段中,由于热煤气被骤冷,所含的大部分熔融态灰渣凝固后落入气化炉底部。

Shell气化炉的压力壳内布置垂直管膜式水冷壁,产生4.0MPa的中压蒸汽。向火侧有一层很薄的耐火涂层,当熔融态渣在上面流动时,起到保护水冷壁的作用。DemkolecIGCC电站的气化炉直径约5~6m,高约50多m,标高达到60多m。气化炉的运行压力约2.6~2.8MPa。

(3)煤气冷却器。粗热煤气在煤气冷却器中被进一步冷却到250℃左右。低温冷却段产生4.0MPa的中压蒸汽,这部分蒸汽与气化炉产生的中压蒸汽混合后,再与汽轮机高压缸排汽一起再热成中压再热蒸汽。高温冷却段产生13MPa的高压蒸汽,它与余热锅炉里的高压蒸汽一起过热成主蒸汽。

Demkolec电厂的煤气冷却器直径约4m,高约64m,冷却器顶部标高约74.5m,是气化岛的最高点。冷却器的压力外壳里布置有8层螺旋管圈,上下共分成5段,热煤气由上而下在螺旋管外流动与螺旋管内的水换热。每一层螺旋管圈都有一个气动锤振打清除积灰。

由于Shell气化炉组成的IGCC系统采用的是干法除尘,所以,它的黑水和灰水处理系统相对比较简单,但其主要的流程与Texaco相似,在此不再赘述。

3.2Shell煤气化工艺的性能及技术经济指标分析

(1)Shell气化炉的煤气中CO和H2含量远大于Texaco煤气,而CO2和H2O却远小于Texaco煤气。由于可燃气成分较高,其冷煤气效率较高(约80%~83%),组成的IGCC电站发电效率也较高(43%LHV)。而水煤浆进料的冷煤气效率一般仅为74%~77%。组成的IGCC效率也较低(41%LHV)。

(2)由于煤气中水分含量较少(2.0%),Shell气化炉组成的IGCC因常温净化而损失的热煤气能量较小,而水煤浆进料的煤气中一般都含有16.8%左右的水分,那么当热煤气冷却到常温时,必然损失大量的显热和潜热。水煤浆进料气化工艺对高温净化的需求更迫切。

(3)Shell气化炉的喷嘴和水冷壁寿命较长,在Demkolec电站累计运行10000h以上未见损坏,气化炉的可用率已达到95%。

(4)由于采用干法进料,气化过程的氧耗比水煤浆进料少,煤气中的CO2含量也远小于水煤浆进料的煤气。对于相同容量的气化炉,Shell气化所需的空分站可小于15%~25%。

(5)采用干灰再循环,提高了碳的转化率(可达到99%)。

(6)干法进料系统与水煤浆相比要复杂得多,操作和保护也要严格得多。进料系统的防爆和防泄漏问题十分关键。进料系统的占地和造价比水煤浆大。此外,干法进料系统的粉尘排放远大于水煤浆进料系统。

(7)由于Shell气化炉采用4个(或更多)喷嘴运行,易于在低负荷和高负荷下运行,操作的灵活性大,实现大型化的可能性大。据介绍,Shell气化炉的最低负荷可达到25%,即一个喷嘴运行。

(8)Shell气化炉运行过程中最重要的控制参数如下:气化炉出口温度;合成气冷却器进口温度;煤气成分;蒸汽的参数(流量、温度、压力);炉渣的排出量及外观状况。

(9)气化炉的变负荷率每分钟大于5%,IGCC的变负荷率每分钟接近3%。

3.3DemkolecIGCC电站中shell气化炉曾出现过的问题及解决办法

在Demkolec电站运行中,Shell气化炉及其辅助系统的运行基本正常,可用率也较高。在运行初期出现过以下问题:(1)排渣的锁斗堵塞;(2)细微炉渣影响黑水处理系统。上述2个与气化工艺有关问题的原因及解决办法与前文相同,在此不再赘述。

4Prenflo煤气化工艺

4.1Prenflo气化工艺的结构特点

(1)制粉和输送系统。与Shell煤气化工艺的进料系统相似,Prenflo气化工艺也采用干法进料系统。对制粉系统的要求是:对烟煤的煤粉细度R100为25%,且含水量小于2%(Wt);对于褐煤要求煤粉细度R100为25%,且含水量小于6%(Wt)。

(2)气化炉和煤气冷却器。Prenflo煤气化炉有4个燃烧器,对称布置,从给料系统送来的煤粉与氧气(85%纯度)和水蒸汽一起喷入汽化炉反应区进行反应,反应区的温度1500℃左右,焰心的温度高达2000℃。煤气中不含过高的碳氢化合物、焦油和酚。反应器区域的炉衬通过水冷壁来冷却,同时可产生高压饱和蒸汽,它与余热锅炉的高压蒸汽相连。

从气化反应区排出的液态渣,在集渣器的水槽中冷却并用碎渣机破碎大渣,经过闸门式锁斗排出,并与水分离,渣被送入渣场或销售,水可循环使用。粗煤气在下部的反应区里形成后向上流动,在进入气化炉上部的煤气冷却器之前,采用除尘后的冷煤气对热煤气进行急冷,目的是迫使热煤气带来的熔融态灰渣凝固而落入气化炉底部排渣口。被急冷的煤气继续上升进入第1级煤气冷却器,煤气先从冷却器的中心圆筒上升至气化炉顶部,然后折转向下,从中心圆筒与炉壁间的环形对流冷却区域从第1级冷却器的底部(即气化炉的腰部)离开进入第2级对流冷却器,第1级冷却器的环形冷却区布置有4层螺旋管换热器,热煤气在管外流动,水在管内流动,并产生高压饱和蒸汽。这是Prenflo与Shell气化炉的不同之处。

第2级冷却器的结构与Shell气化工艺的对流冷却器相似。内部也是布置多层的螺旋盘管换热管束,西班牙PuertollanoIGCC电站中的Prenflo炉第2级对流冷却器螺旋盘管共6层,上下共分3组,热煤气经过第2级冷却器后,一般被冷却到250℃左右,同时也能产生饱和蒸汽。

(3)除尘和飞灰再循环系统。冷却后的粗煤气经一级干式除尘器(陶资过滤器或旋风分离器使大部分飞灰被收集,经锁斗,用N2送回气化炉,以提高碳的转化率。粗煤气再经一级水洗涤器使煤气中的灰尘含量小于1mg/m3,然后进入脱硫系统。

4.2Prenflo气化工艺的性能及技术经济指标分析

(1)冷煤气效率可达到80%~83%,气化炉的总效率可达到95%。对美国Pittsburgh8号煤的试验结果证明85%纯度的氧气做为气化剂,煤气的热值、碳转化率、冷煤气效率、总效率与95%纯度的氧气气化相比相差不大。因此,Prenflo炉采用85%的纯度的氧气做为气化剂。Prenflo气化炉在小试验台可达到每分钟2%~15%的变负荷率,而此时煤气中的CO2以及煤气压力几乎不变。由于也采用4个燃烧器,当50%负荷时,只用2个燃烧器可以很容易地操作。

(2)西班牙PuertollanoIGCC电站中Prnflo炉的运行情况。1998年初开始用煤气发电,迄今累计运行198h,最长连续运行时间为25h,此时的负荷为80%。气化炉在75%负荷下曾运行了40h。截止1998年9月气化炉乃至整个IGCC电厂没有在100%负荷运行的记录。50%煤和50%石油焦混烧时的试验表明实际运行数据与设计值非常接近。1998年7~8月机组大修,主要检修Siemens的燃气轮机。目前机组已重新启动。

4.3在Puertollano电站中Prenflo气化炉曾出现过的主要问题及解决办法

(1)压力供料锁斗下粉不畅。在2级锁斗间有一根回流N2的管,由于管径设计太小,使N2排气不畅而导致煤粉下落不连续。解决的办法是在回流管上增加了一个文丘利抽气器,以提高N2回流的速度,从而使排气畅通,煤粉下落连续而均匀。

(2)黑水和灰水处理系统的细渣过滤问题。与Demkolec和Tampa电站的问题类似,PuertollanoIGCC电站的气化岛也出现过因细渣太多,而导致黑水含渣量大,造成黑水系统磨损堵塞的问题,解决的办法也是采取过滤的办法将黑水中的细渣除去,即可解决此类问题。

54种气化炉的综合比较

4种气化炉技术特点的综合比较见表1。

表14种气化炉的技术特点比较

技术项目TexacoDestec/DynergyShellPrenflo

进料方式湿法/水煤浆湿法/水煤浆干法/煤粉干法/煤粉

反应器形式喷流床喷流床喷流床喷流床

氧气纯度/%95959585~95

喷嘴/个13(+1)44

喷嘴的寿命/h14401440~2160>10000待考检

气化炉内衬耐火砖耐火砖水冷壁+涂层水冷壁+涂层

内衬的寿命/a23>10(待考验)>10(待考验)

冷煤气效率/%71~7674~7880~8380~83

碳转化率/%96~9898>98>98

单炉最大出力/t.d-12200~2400250020002600

示范电站的净功率/MW250.0260.6253.0300.0

最大容量气化炉的最长运行时间/h>8860>7500>1000040

示范电站最长追续运行时间/h720~1000>324>200025

示范电站的气化炉可用率/%80~8590~95(一开一备)95(待考验)

组成IGCC示范电站的效率/%设计值:41.6(HHV)

试验值:38.5(HHV)设计值:37.8(HHV)

试验值:38.8(HHV)43(LHV)

(未公布试验值)45(LHV)

(待试验)

组成的IGCC达到43%(LHV)效率的

可能性有可能

(但必须改进全热回收)容易达到容易达到能达到

存在的问题喷嘴、耐火砖寿命短,

全热回收系统和黑水

处理系统尚待改进喷嘴、耐火砖寿命短,

黑水处理系统待改进黑水系统待改进供料系统待改进

是否气化过类似于中国IGCC电站的煤种是否是否

目前IGCC电站的造价低最低较高较高

6结论

6.1美国的水煤浆进料气化工艺(Texaco和Destec)和欧洲的干法进料气化工艺(Shell和Prenflo)的单炉出力都达到了2000~2500t/d等级,并都进行了250~300MW等级的IGCC示范,4种气化炉都采用氧气喷流床气化工艺。这对于我国选择气化工艺提供了较为全面的选择范围。

6.2Texaco气化炉的运行经验和已商业化的台数最多,用于IGCC发电,气化炉的可用率也可达到80%以上。但它的喷嘴和耐火衬里的寿命较短,冷煤气效率和组成IGCC的效率目前还较低。若IGCC效率设计为43%(LHV),采用Texaco气化炉,必须使其废热锅炉和全热回收系统有较大的改进,才有可能达到。

6.3Destec气化炉虽然也是水煤浆进料,但它是2段气化,冷煤气效率比Texaco高,而且可省去辐射废热锅炉,加之火管式的对流冷却器使造价大幅度降低。若组成IGCC,许多专家认为是能够达到43%(LHV)的效率,且造价较低。但与干法进料相比,其喷嘴和耐火砖寿命较短。

6.4Shell气化炉的可用率已达到了95%,可以说已经进入商业化运行,其喷嘴和水冷壁的寿命都较长。冷煤气效率和组成IGCC效率与湿法进料气化工艺相比较高,对43%(LHV)的IGCC效率,采用Shell工艺容易达到。但它的造价与Texaco和Destec相比较高。

6.5Prenflo气化炉与Shell气化炉基本相似,只是冷却器结构有所不同,由于西班牙Puertollano示范电站的运行时间很短,Prenflo气化炉的性能尚待时间检验。

6.6煤种对气化炉的性能有很大影响,对于我国IGCC示范电站所选用的煤种,目前只有Texaco和Shell气化炉有类似煤种的气化经验,这一点对气化工艺的选择也十分重要。

6.7从4座示范电站的运行情况看,气化炉本身的可用率都很高(>85%),但与之匹配的辅助系统是制约气化岛和整个IGCC机组可用率的最大障碍。其中排渣和黑水处理系统及进料系统的问题最多,有些目前尚未解决。这一点在我们选择气化工艺承担者时应予以高度重视,尽量选择这一方面的专业厂商。

6.8根据世界上4座示范电站的经验和教训,对于我国IGCC示范电站在气化工艺选择方面应综合考虑以下几个原则问题:气化炉的最大出力是否能达到要求;是否气化过类似的煤种;最大容量的气化炉的运行时间和台数;示范运行的可用率;冷煤气效率及组成IGCC的总效率;目前还存在哪些问题;气化炉和辅助系统设计和制造者是否都是专业厂商。

7参考文献

1TheTampaIGCCProject.AReportofDOEandTampaElectricCompany,1996.12

2JohnEMcDaniel,CharlesAShelnut,TampaElectricCompanyPolkPowerStationIGCCProjectStatus.SixthAnnualCleanCoalTechnologyConference,Reno,Nevada,May,1998

3TheWabashRiverCoalGasificationRepoweringProject.AReportofDOEandWabashRiverCoalGasificationJontVenture,1996.12

4CliftonGKeeler,JackStultz,OperatingExperienceattheWabashRiverCoalGasificationRepowerProject,SixthAnnualCleanCoalTechnologyConference,Reno,Nevada,May,1998

煤化工范文2

对发展现代煤化工产业存在的认识误区

1对新型煤化工的认识简单化且传统化

煤化工产业包括传统煤化工和现代煤化工。有不少人认为,新型煤化工与传统煤化工并无多大的区别,也无非就是煤的焦化、煤制化肥以及电石化工等初级产品。新型煤化工主要是煤炭转化,经过气化,深加工为醚醇燃料,以生产洁净能源和可替代石油化工产品为主,包括煤制油、甲醇、二甲醚、烯烃等4种。它与能源、化工技术结合,可形成煤炭—能源—化工一体化的新兴产业。在后石油时代,新型煤化工产业有望替代石油产业,支撑未来经济社会的持续发展。与传统煤化工产业相比,新型煤化工产业具有装置规模大、科技含量高、能耗低、环境友好、原料来源广泛、产品附加值高等特点。目前,煤化甲醇、二甲醚技术已经相当成熟,转化效率相当高,且成本相当低。甲醇在作为新能源燃料应用的同时,以其为原材料生产的二甲醚已经是国际公认和重点发展的新能源材料,我国二甲醚的生产技术与国际基本同步,部分技术甚至高于国外。

2认为新型煤化属于高耗能与高污染行业

长期以来,传统煤化工产业的粗放型发展积累的矛盾日益突出。一是行业内部结构不尽合理,初级产品多,精细产品少。二是整体装备水平偏低,缺少具有国际先进水平的特大型煤化工装置。三是产业布局不合理,还没有形成具有明显循环经济特征的大型煤化工园区。四是环境、水资源压力较大,节能减排任务艰巨。当前,越来越严格的产业政策和环保政策也要求新型煤化工产业的发展必须以循环经济为依托,延伸产业链条。针对以上问题,山西省政府要求分阶段、分步骤实施技术改造,以层层递进的方式促进产业升级,并在节能减排方面明确提出以下要求:万元产值综合能耗要控制到2.8t标煤;工业余热、余压利用率要达到80%以上;焦炉煤气、工业固体废弃物综合利用率分别要达到90%以上;工业污水回用率要达到90%以上;万元产值二氧化硫排放量控制在8kg以下;万元产值化学需氧量控制在3.5kg以下;万元产值废水排放量控制在10t以下;新型煤化工装置能耗水平和“三废”排放达到国内同行业先进水平。

3对新型煤化工产品认识单一化

新型煤化工产品通常指煤制油、甲醇、二甲醚、烯烃4种,主要用作化肥、塑料、合成橡胶、合成纤维、炸药、染料、医药等多种重要化工原料,还是工业上获得芳香烃的一种重要途径。据统计,新型煤化工的基本产品有32种,各项目直接延伸加工的产品有58种,各项目资源横向结合可安排的产品有22种。不少人认为,新型煤化工就是简单的生产甲醇,认为甲醇目前的产能已严重过剩。其实甲醇在作为一种化学燃料的同时也是一种化工原料,仅甲醇的衍生物项目就有甲醛、聚甲醛、酚醛树脂、醋酸等数种,在甲醇制烯烃产业链中可以用甲醇生产乙烯,进而生产聚乙烯。

发展现代煤化工项目的必要性

1保障国家能源安全的重要手段

我国能源赋存结构的特点是富煤、贫油、少气。从1993年开始,我国开始成为石油净进口国,到2007年我国原油对外依存度达到46%,到2010年已达到54%。因此,以丰富的煤炭资源为基础发展现代煤化工,对于平衡我国能源结构、缓解油气资源短缺、保障国家能源安全有着十分重大的意义。

2提高县域经济抗风险能力的重要举措

阳城县的工业经济是以煤炭为主导的经济,可以说因煤而兴,同时又因煤而困。当前,全国煤炭产量的54%用于发电,焦炭行业用煤量占到24%,水泥行业用煤量占到12.7%,其他行业占到2.3%,而化工行业仅占到7%左右。由于当前国家产业政策对火力发电、水泥等高能耗产业实行区域限批,“十二五”期间火电装机容量以及水泥产量等并没有明显的增长,而煤炭产量随着大量资源整合矿井的建成投产,煤炭产量到“十二五”末将成倍增长,因此发展现代煤化工对保障县域经济平稳可持续发展以及提高县域经济抗风险能力有着重要意义。

阳城县发展现代煤化工产业的比较优势

1水资源丰富

阳城县境内河流纵横,主要有以沁河、获泽河、芦苇河等为主的四大河流和八小河流,与华北其他煤炭主产地相比,阳城县属于相对富水区。根据2005年第二次水资源评价,阳城县水资源总量为3.37亿m3,其中可开发利用量为2.04亿m3。人均水资源1050m3,相当于全晋城市人均量的近两倍。芹池工业园年可利用水资源5000万m3,并且在园区东侧留有配水口,分别是张峰水库(3000万m3)、望川水源(1500万m3)、五龙沟水源(500万m3)、芦苇河截潜流工程(200万m3)。远期可用水量将达到0.8亿m3~1.0亿m3。

2煤炭资源丰富

资源整合后,全县共有29座煤矿,总产能2475万t/a,再加上现有的亚美大宁400万t/a矿井和在建的龙湾400万t/a矿井以及现有部分煤矿的提升扩能,全县到“十二五”末,煤炭总产能将达到3500万t/a的规模。仅芹池化工园区周边就有9座煤矿,总生产能力达到1000万t/a,还有产能达300万t/a的15号煤资源。

3电力供应充足

全县现有总装机容量达到330万kW,电网已初步形成220kV/110kV/35kV主网架。已竣工的阳城北500kV输变电工程,距园区直线距离约3km,将作为化工园区的主力电源。4.4交通物流发达此外,阳城县区位优势明显,交通物流发达。专为园区配套设计的大宁铁路专用线扩建工程设有狐尾坡专用装车站,距园区南侧仅2km,距北侧5km,可实现1500m整列装车。同时,抓住新一轮土地修编的机遇,完成了芹池化工园区530hm2土地修编,再加上芹池镇330hm2可利用地,芹池化工园区周边可利用地达860hm2。

煤化工范文3

9月底,中石化在京正式挂牌成立长城能源化工有限公司(下称“长城能源”)。长城能源将作为中石化旗下发展煤化工业务的唯一平台,专业负责公司煤化工业务的投资经营、项目建设和专业化管理。

中石化官方对外宣称,此举“标志着中国石化煤化工业务已进入快速推进、专业化管理的新阶段” 。按照规划,中石化将在“十二五”期间建设内蒙古、新疆等6大煤化工产业基地,“力争用8—10年时间,发展成为我国煤化工领域的行业领先者。”

在傅成玉入主中石化之后,煤化工被委以公司“调整结构、转型发展”之重任。这是一招狠棋:借助煤化工迅速补齐上游短板,缩小与中石油的资源差距。而同时,这也是一步险棋:煤化工技术、成本、环境的风险不容忽视。在押下重注之后,傅成玉领导下的中石化会成为最后的大赢家吗?

转折点

煤化工,指的是以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品。主要包括煤的气化、液化、干馏以及焦油加工和电石乙炔化工等。煤化工开始于18世纪后半叶,19世纪形成了完整的工业体系。

中国的煤化工产业,一直以来都是以煤企为主角。受油价高企影响,煤化工产业在五年前一度形成热潮。但是,作为石油化工领域的三巨头之一,中石化在该领域并无太大建树。在外界看来,只是一副浅尝辄止的姿态。

2007年,中石化曾在新疆登记了350平方公里的煤炭区块,区块煤炭储量预计在150亿吨左右。中石化本打算在此地发展煤化工项目,但此后并无动作。中石化内部人士称,主要还是因为技术不成熟而不敢轻举妄动。

此后数年,中石化在煤化工领域都并无大动作,更多的是人才储备与技术研发。直到2011年4月,时任中国海洋石油总公司“掌门人”的傅成玉转调中石化,中石化对煤化工产业的兴趣才全面激发出来。

傅成玉上任不久,在一次内部高层会议上,即毫不客气地指出了中石化所存在的问题:“与竞争对手相比,上游资源‘短板’的差距在扩大,中下游“长板”的优势在缩小!”傅成玉提出目标:上游油气年度总产量需要达到2亿吨当量,其中原油产量1.5亿吨,天然气产量500亿立方米。

而实现补齐上游短板的关键一环,就是大力发展煤化工产业。在中石化发给记者的一份资料中,清晰表明了傅成玉对发展煤化工产业的看法:“富煤,缺油,少气”是我国资源的自然禀赋,目前煤炭仍是我国能源消费的主体部分,且在未来20至30年,这一能源消费格局不会有实质性的变化,如何更好地利用煤炭变得尤为重要。

基于这一判断,中石化将发展煤化工产业的重要性提到了前所未有的高度,并已经把煤化工战略写入了公司资源获取战略的组成部分,明确提出:力争用8—10年时间发展成为我国煤化工领域的行业领先者,在煤炭资源清洁高效利用上走到世界前列。

加速度

在傅成玉的大力推动之下,中石化的煤化工业务开始了加速发展阶段。在一次内部会议上,中石化提出了雄心勃勃的发展目标:未来四年,将建设内蒙古、新疆、贵州、安徽、河南和宁夏等6大煤化工基地。如果中石化的煤化工项目全部铺开,外界预计其总的投资额将超过2000亿元。

这是一个异常庞大的计划。不仅仅在外界看来有些激进,一位中石化内部人士也向记者表达了惊奇之意:2011年,中石化的净利润是716亿元。如果将来真要投资2000亿作煤化工,这样的投资额与公司盈利额相比占的比例太大。

不过,这似乎并没有影响到傅成玉大力发展煤化工产业的决心。在中石化内部,专门成立了煤化工领导小组,傅成玉亲自出任组长,目的是加速推进公司煤化工产业的发展。

而中石化在煤化工技术的突破,也为傅成玉吃下了一颗“定心丸”,这让中石化的煤化工产业发展有了坚强的技术依托。

早在2010年,中石化旗下分公司中原石化即在建设一个年产60万吨的甲醇制烯烃项目。这是一个实验性项目,采用的是中石化拥有自主知识产权的甲醇制烯烃工艺(S—MTO)。2011年10月10日,项目开车一次成功。

对于该项目的成功,中石化官方对外宣称为:建成了中国石化首套自主知识产权的甲醇制烯烃示范装置,也标志着中国石化自主研发的甲醇制烯烃工艺(S—MTO)成套技术步入产业化。这也被外界看作是中石化取得自主知识产权煤化工技术突破的标志。

在胸有成竹之后,中石化整合现有煤化工资源、加速推进煤化工布局已成水到渠成之势。9月28日,在北京总部大厦,中石化举行了中国石化长城能源化工有限公司揭牌仪式,中石化的煤化工发展正式有了实质性推进。

按照中石化的布局安排,长城能源为中国石化股份有限公司全资所有。

胜负手

中石化如此大力度的布局煤化工产业,着实让业界为之侧目。这首先牵动的是另一油气巨头中石油的神经。

与中石化的大张旗鼓相比,中石油在煤化工产业几乎没有大动作。而傅成玉领导中石化想借煤化工补齐上游短板,其剑之所指,即是中石油无可比拟的资源优势。以煤化工后发制人,傅成玉落下的这个棋子成为了胜负手。

面对发展煤化工产业中煤炭瓶颈的问题,中石化采取了“合资合作”的策略迅速抢占资源。2011年11月,中石化与河南省政府签署战略合作补充协议,中石化将与河南煤化集团合资建设年产180万吨的煤制烯烃项目,投资总额约为210亿元。

前述中石化内部人士告诉记者:河南模式将成为中石化发展煤化工产业的主要方式,中石化出资金、技术,煤炭企业出资源,双方各取所得。依靠这种方式,中石化可以迅速解决发展煤化工产业的资源问题。

据了解,目前中石化计划中的六大煤化工基地,内蒙古、新疆、贵州、安徽、河南5个煤化工项目已取得实质性进展。到2015年,中石化煤制烯烃的产能应该能够占到目前烯烃产品(主要是乙烯)产量的1/3;煤制气能力则有望超过每年100亿立方米。

这些步骤走下去,中石化对中石油的资源差距将明显缩小。与此同时,中石化紧锣密鼓推进的煤制天然气管输工程,更是对中石油步步紧逼。

10月16日,中石化筹建的新粤浙管道在网上进行环境影响评价公众参与调查的首次公示。这一煤制气管道包括一条干线、5条支线,输气能力与西气东输三线相当,为每年300亿立方米。

该管线干线的起点是新疆伊宁首站,终点为广东省韶关末站。支线包括准东支线、南疆支线、豫鲁支线、赣闽浙支线和广西支线。值得玩味的是,其走向与中石油刚刚开工建设的西气东输三线相似,建成之后将与中石油形成贴身肉搏之势。

煤化工范文4

关键词:褐煤 煤化工 热解提质 液化 气化

中图分类号:TD84 文献标识码:A 文章编号:1007-3973(2010)09-034-01

我国褐煤资源丰富,褐煤资源量为3194.38×108t,占我国煤炭资源总量的5.74%;褐煤探明保有资源量为1291.32×108t,占全国探明保有资源量的12.69%;主要分布于内蒙古东部、黑龙江东部和云南东部。褐煤煤化程度较低,属于低阶煤,发热量低、水分高、易风化自燃、热稳定性差,不适宜长途运输,长期以来没有得到合理应用。但是近年来褐煤产量增长迅速,并且成本低廉。褐煤的加工与利用逐步被人们所重视,本文主要探讨褐煤的煤化工技术现状及以后的发展前景。

1、褐煤的煤化工技术及应用

煤化工是以煤为原料,经过化学加工使煤转化为气体,液体,固体燃料以及化学品的过程,生产出各种化工产品的工业。由于褐煤的煤化程度最低,其化学反应活性比较好,且无粘结性,褐煤的这些特性决定了它十分适宜进行就地综合加工和利用。而且煤化工技术也日趋成熟,这使得褐煤在煤化工应用中有很大的优势。目前褐煤煤化工技术主要有褐煤的热解提质,褐煤的气化,褐煤的液化等。

1.1 褐煤的热解提质

褐煤热解(干馏)提质是指在隔绝空气(或在惰性气体、或在氢气存在)条件下将褐煤加热,最终得到焦油、热解煤气和半焦产品的加工方法。热解后产生的热解煤气可以直接作为生活燃料用气或化工合成气,得到的半焦具有低灰、低硫、固定碳高的特点,可以用于合成气、电石等行业的生产,也可用作铜矿或磷矿等冶炼时的还原剂或用作炼焦配煤,也是生产活性炭等化工产品的原料。由于上个世纪70年代石油危机后,人们重新重视廉价的褐煤资源的开发利用,对褐煤热解工艺进行了研究,开发了一些新的加工工艺。国内外典型的褐煤热解工艺包括:德国的Lurqi―Ruhurgas低温热解工艺、澳大利亚的流化床快速热解工艺、中国的多段回转炉工艺、中国固体热载体新法干馏工艺等。

1.2 褐煤的气化

褐煤的气化是指在一定温度和压力下,用气化剂对褐煤进行热化学加工,将固体的褐煤转变为煤气的过程。对所产煤气进一步深加工,可制得其它气体、液体燃烧料或化工产品。褐煤气化技术是洁净、高效利用褐煤的重要技术之一。它是煤炭化工合成、煤炭直接/间接液化、IGCC技术、燃料电池等高新洁净煤利用技术的先导性技术和核心技术。

褐煤是化学活性非常好的煤种,与烟煤和无烟煤相比,更容易气化,褐煤气化技术已经非常成熟,其气化工艺主要有固定流化床、流化床气化、气流床气化和熔浴床气化等工艺。褐煤气化在我国也已得到广泛应用,目前,有化肥厂利用小龙潭褐煤生产合成氨,沈阳加压气化厂利用沈北褐煤生产城市煤气,第一汽车制造厂用舒兰褐煤生产燃料煤气。另外大唐发电股份有限公司也规划利用内蒙古褐煤资源生产城市煤气。

1.3 褐煤的液化

煤的液化方法主要分为煤的直接液化和煤的间接液化两大类。(1)将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程称为直接液化。裂化是一种使烃类分子分裂为几个较小分子的反应过程。因煤直接液化过程主要采用加氢手段,故又称煤的加氢液化法。(2)煤间接液化间接液化是以煤为原料,先气化制成合成气,然后,通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化工产品的过程。

褐煤碳含量相对比较低,氢碳比高,其结构单元中含有较多的羰基,羧基,亚甲基和氧桥,具有较高的液化活性,是比较适宜直接液化的煤种。目前,我国褐煤液化投产的有云南先锋煤液化厂,采用直接液化技术,规模为年处理(液化)褐煤原煤257万t。神华集团对日本NEDOL和美国HTI工艺的技术进行集成和创新,开发了煤的直接液化工艺和新型的高效煤液化催化剂,煤的转化率和液化油产率都已达到国际领先水平,并申请了发明专利。

2、褐煤煤化工技术发展前景

我国褐煤煤化工技术发展前景主要如下:

(1)目前我国褐煤资源主要用来发电,由于褐煤本身含水量较高,所以发电厂在用褐煤发电前要进行脱水,这一过程不仅消耗大量的动力和资金,而且对褐煤资源也比较浪费,如果将褐煤资源进行煤化工加工,将使产品具有更高的附加值,更高的利用价值。

(2)由于国际性油价上涨和供油的不稳定性,使得煤化工产业发展非常迅速,可以利用煤化工技术将褐煤加工成可代替石油化工产品如柴油、汽油、液化石油气、乙烯原料、聚丙烯原料等。

煤化工范文5

【关键词】 煤矿;综合机械化;采煤;设备

为创建高产高效矿井,最大限度提升矿井综合机械化采煤水平,大力发展机械化,优化工作面技术装备、引进全采高生产工艺,优化综合机械化采煤工作面设计,实现综合集中生产,建立与完善保障制度,引入竞争和精力机制,并且经过20多年的实践、完善以及提高,综合机械化采煤工艺已成为我国矿井实现高产高效的主要途径。

煤炭井下开采的发展方向是实现矿井高产高效集中化生产。而实现矿井高产高效的前提是提高综采工作面的单产,实现工作面高产高效,达到一矿一面或一矿二面的高度集中化生产,增加工作面的出煤点,提高综合机械化采煤设备及矿井生产系统的可靠性,减少工作面辅助工序的影响时间。

1、综合采煤工艺的装备要求

近几十年特别是近十年以来,我国综合采煤工艺已经取得了长足的发展,形成了具有中国特色的现代化开采技术与装备体系,特别是煤机装备方面,在电牵引采煤机、系列化液压支架、大型刮板输送机以及大运量、大运距带式输送机开发上取得了显著的突破。

首先,自主研发了适应不同开采条件的智能化、高可靠性煤机装备。比如,不同系列的电牵引采煤机。就目前来说,我国电牵引采煤机形成了割煤高度0.8~7.0 m、适应倾角0~60°、总装机功率238~2500kW的系列产品,牵引速度超过20m/min,最大落煤能力达到6000t/h,并且装备了以微处理技术为基础的智能检测、监控与保护系统,采用先进的信息处理技术与传感技术,实现了机电一体化。对于采煤工作面落媒,在我国多数煤矿采用可调高的双滚动采煤机,它的结构以及动作原理和普采工作面采煤机相仿,但是功率上以及生产能力方面的技术特征要大于普采工作面采煤机。

其次,适应大断面巷道快速掘进的要求,研发了大功率掘进机和连续采煤机,采用工作面输送机,液压支架和转载机。我国研发的掘进机可截割单轴抗压强度达到100MPa的半煤半岩巷道,部分重型掘进机不移位截割断面达到35~42㎡,形成了切割功率为50~315kW、总功率达到500kW以上的10余种系列产品,完全满足不同条件下煤岩巷道的掘进要求。连续采煤机截割功率最大达到350kW,总功率达到597kW,满足了超大断面掘进与短壁工作面回采的要求。综合工作面采用可弯曲刮板输送机,要求运输能力大,铺设长度长,结构强度高,作为运煤机械和采煤机运行的导轨与移动液压支架的支点,有着显著作用。此外,还有靠高压液体作主动力完成顶板支护、支架前移、推移输送机和采空区处理等工序的液压支架以及安装在工作面下出口的区段运输平巷内的转载机等机械装备。

2、煤矿综合机械化采煤工艺

综合机械化采煤工艺工作面全部实行机械化作业,其生产过程大体如下:采煤机落媒与装煤、输送机运煤、自移式液压支架前移、推移输送机至新位置、采空区顶板强行放顶。由于综合机械化采煤是现代化低下作业的大规模生产,而其生产是连续性的高技术,高产高效的,并且又是有条件的。因此,设计时,要求进行综合机械化采煤工作面优化,矿井哪些层面和哪些区段适于此种技术,多少储量可供其开采,这些都需要比较高的工艺要求。随着综合机械化采煤设备性能以及装机功率的不断提高,传统的综合机械化采煤工艺在原先使用范围基础上,出现了新的变化趋势:在现有长壁综合机械化采煤模式下,依据工作面设备能力,不断加大工作面长度;“短工作面”开采的短壁综合机械化采煤工艺。

就短壁综合机械化开采这种方法来说,“短壁机械化开发技术包括所有适用于开采煤柱和不规则块段煤炭资源的机械化开采方法”,[1]“工作面采用布的主要特点:第一,工作面的长度短,一般为30m~80m,采后用后退式开采。第二,双滚筒采煤机工作面采用中部斜切进刀、单向割煤方式,单滚筒采煤机自开切口往返割一刀煤,采煤机截深加大。第三,单机头刮板输送机可采用端卸、侧卸布置或直角拐弯布置,并使工作面刮板输送机与装载机为一体。第四,工作面采、支、运设备轻型化,便于实现设备快速搬家和安装。”[2]而长壁综合机械化开采与短壁开采有颇多相似,主要特点如下:“加大综采工作面的长度,增加采煤机割一刀的煤量,相应地可减少工作面斜切进刀及端头作业等工序对生产的影响时间,因此能获得较高的产量。确定综采工作面的合理长度,一般以工作面日产量最高或吨煤成本最低为准则,制约工作工作面长度的主要因素是工作面地质条件和刮板输送机的铺设长度。增加工作面的推进长度是减少工作面搬家次数最有效的方法。制约工作面走向长度增加的主要因素是回采巷道的掘进和支护、可伸缩带式输送机的铺设长度以及采场的地质构造。”

3、该工艺的端头作业和快速搬家

影响综合机械化采煤工作面生产的主要辅助的工序为上、下出口的端头支护、转移载机等,而随着综合机械采煤工作面采煤机割煤速度以及工作面推进速度加快,端头工作问题越来越突出,解决工作面端头的开采技术,实现工作面上下端头快速作业是综合机械化采煤工艺的关键之一。为了适应工作面装备快速搬家,我国已经研发出了不同能力的支架搬运车来满足快速搬家的需求。工作面的搬迁工艺包括撤架的通道支护或掘进、停采前的顶板维护、工作面支架的撤装支架运输等。组织工作面快速搬家对最大限度的增加综合机械化采煤工作面的连续生产时间,提高工作面单产以及效率都是十分有效用的,要实现工作面快速搬家的关键在于先进的搬家设备、工艺和管理工作。这主要包括:工作面设备运输和撤装采用无轨运输车、单轨吊和拖车等设备,并且目前我国已经研制出了具有独立知识产权的辅助运输设备,拥有包括轻型卡、工程车、特种车等在内的20多个品种,基本上满足了快速搬家的需求;改进采煤系统,缩短设备搬迁距离,减少运输环节,加大巷道断面,用液压支架等大型设备进行整体搬家;合理组织搬家工序,组织平行作业。

4、结束语

建设高产的、高效的矿井是煤炭企业生存并谋求发展的必由之路,是增强煤炭企业整体的竞争实力和可持续发展能力的途径。综合机械化采煤工艺在煤矿开采中的应用获得了良好的经济效益和社会效益,同时实现煤矿的高产、高效以及现代化。

参考文献

[1] 王金华.中国煤矿现代化开采技术装备现状及其展望[J].煤炭科学技术,2011,(1),p5.

煤化工范文6

前言:在国际油价高位震荡的背景下,世界已进入能源和化工原料多元化的时代,不同国家或者地区应根据资源和经济发展的需求选择现实、优质的原料和技术。煤炭资源已成为我国能源的重要保障和支撑;煤化工的发展更是受到了煤资源国和有关科研机构的高度关注。煤炭煤炭是世界上储量最丰富的化石能源。在当前世界石油价格居高不下和倡导保护环境的情况下,发展煤化工特别是新型煤化工,调整我国的能源化工结构,就显得日益重要。

1.煤焦化

将煤隔绝空气加强热使其分解的过程,也称做煤的干馏。煤焦化产品主要有焦炭、煤焦油(苯、甲苯等)、焦炉气(氢气、甲烷、乙烯、一氧化碳等)精氨水等。这些产品已广泛应用于化工、医药、染料、农药和炭素等行业。有些甚至是石油化学工业无法替代的,如吡啶喹啉类化合物和许多稠环化合物等。

2.煤气化

煤在高温条件下借助气化剂的化学作用将固体碳转化为可燃气体(气体混合物)的热化过程。用空气、水蒸气、二氧化碳作为气化剂。它们与煤中的碳发生非均相反应。此外,煤热分解出的气态产物如CO2、H2O及烃类等也能与赤热的碳发生均相反应。依气化法、气化条件及煤的性质不同,气化气的组成也不同。根据煤气发生炉内所进行的气体过程特点,可以将煤层自上而下地分为干燥带、干馏带、还原带、氢化带和灰层,在干燥带和干馏带中,煤受到高温炉气的加热而放出水分并挥发。剩下的焦炭在还原带和氧化带中进行氧化反应。煤经过气化后得到的是粗煤气,再经过净化和加工后,可以得到各种化学品。常用于煤气化的方式有:固定床常压气化气,鲁奇加压气化气、考伯斯一托茨气流床气化气(K-T)、德士古流床气化气(Texaco)、改良型温克勒流化床气化气等。

3.煤液化

所谓煤液化,是将煤中有机质转化为流质产物,其目的就是获得和利用液态的碳氢化合物来替代石油及其制品,包括直接液化技术和间接液化技术两部分,产品市场潜力巨大,工艺、工程技术集中度高,是中国新型煤化工技术和产业发展的重要方向。

4.煤的直接液化

煤的直接液化首先是德国科学家F.Bergius于1913年发明的。其原理是煤炭在溶剂作用和高温高压条件下,直接与气态氢发生反应,使煤的氢含量增加,最后转变为液体的过程。1927年德国燃料公司Pier等人开发了硫化钨和硫化铜催化剂,将液化过程分为糊相加氢和气相加氢两阶段进行,解决了工程化问题,建成了世界第一座工业化规模生产的煤直接液化企业,并陆续建设了20套煤直接液化装置。

5.煤的间接液化

煤的间接液化是德国皇家煤炭研究所的F.Ficher和H.Tropsch两个化学家于1923年首先提出的,所以又称为F.Ficher-H.Tropsch(简称为F-T)合成或者费托合成。其原理是以煤为原料先经气化制合成气(CO+H2),再以合成气为原料,在催化剂的作用下合成(F-T合成)液态烃类产品。受两次世界石油危机的影响,美国、德国、英国、日本和前苏联等国家重新重视煤炭直接液化的新技术开发工作,纷纷组织了一批科研开发机构及企业开展了大量的研究开发工作,相继开发了多种工艺。

6.煤间接液化的深加工

南非SASOL公司于20世纪50年代开始商业化生产,根据SASOBURY矿区煤为高挥发分、高灰分劣质煤,更适合于间接液化的实际,与鲁奇、鲁尔化学和凯洛克三家公司进行合作,不断取得煤气化(鲁奇炉),煤气净化(低温甲醇工艺)和合成(鲁尔化学固定床和凯洛克气流床)技术而陆续分别建成了三家煤间接液化工厂,成为世界上规模最大的以煤为原料生产合成油和化工产品的化工厂。随着C1化工的发展,间接液化后的产品范畴也在不断扩大,出现了由合成气—甲醇—汽油MTG技术、由合成气直接合成二甲醚和低碳烃燃料技术等煤化工发展新趋势。煤的间接液化通常分为三步:一是制取合成气。将经过适当处理的煤送入反应器,在一定温度下通过气化剂(空气或氧气+蒸气),使煤不完全燃烧,这样就能以一定的流动方式将煤转化为由一氧化碳和氢气混合的合成气,将形成残渣排出;二是进行催化反应,将合成气经过净化处理,在特定的催化剂作用下,让合成气发生化合反应,合成烃类或液态的烃类的类似石油和其他化工产品,三是对产物进行进一步的提质加工。由于经过催化反应出来的油品可能有很多指标不符合要求,如十六烷值含量、硫含量、水分以及黏度、酸度等,因此还要将产品进行进一步处理以使其达到合格标准,满足市场需要

7.新型煤化工

新型煤化工是以煤炭为基本原料(燃料),C1化工技术为基础,以国家经济发展和市场急需的产品为方向,采用高技术,优化工艺路线,充分注重环境友好,有良好经济效益的新型产业。它包括了煤炭液化(直接和间接),煤炭气化、煤焦、煤制合成氨、煤制甲醇、煤制烯烃等技术,以及集煤转化、发电、冶金、建材等工艺为一体的煤化联产和洁净煤技术。其中煤炭焦化、煤气化-合成氨-化肥已经是我国主要的煤化工产业,随着科学技术的快速发展和市场的巨大需求,煤炭焦化、煤气化-甲醇、煤制油、烯烃及下游化工产品也得到了快速发展。新型煤化工实际上是建立在传统煤化工基础上的,与传统煤化工密不可分。其特点如下。

(1)以清洁能源为主要产品。新型煤化工以生产洁净能源和可替代石油化工产品为主,如柴油、汽油、航空煤油、液化石油气、乙烯原料、丙烯原料、替代燃料(甲醇、二甲醚)、电力、热力等以及煤化工独具优势的特有化工产品,如芳香烃类产品。

(2)煤炭-能源化工一体化。新型煤化工是未来中国能源技术发展的战略方向,紧密依托于煤炭资源的开发,并与其它能源、化工技术结合,形成煤炭-能源化工一体化的新兴产业。

(3)高新技术及优化集成。新型煤化工根据煤种、煤质特点及目标产品不同,采用不同煤转化高新技术,并在能源梯级利用、产品结构方面对工艺优化集成,提高整体经济效益,如煤焦化-煤直接液化联产、煤焦化-煤气化合成联产、煤气化合成-电力联产、煤层气开发与化工利用、煤化工与矿物加工联产等。同时,新型煤化工可以通过信息技术的广泛利用,推动现代煤化工技术在高起点上迅速发展和产业化建设。

(4)建设大型企业和产业基地。新型煤化工发展将以建设大型企业为主,包括采用大型反应器和建设大型现代化单元工厂,如百万吨级以上的煤直接液化、煤间接液化工厂以及大型联产系统等。在建设大型企业的基础上,形成新型煤化工产业基地及基地群。每个产业基地包括若干不同的大型工厂,相近的几个基地组成基地群,成为国内新的重要能源产业。

(5)有效利用煤炭资源。新型煤化工注重煤的洁净、高效利用,如高硫煤或高活性低变质煤作化工原料煤,在一个工厂用不同的技术加工不同煤种并使各种技术得到集成和互补,使各种煤炭达到物__尽其用,充分发挥煤种、煤质特点,实现不同质量煤炭资源的合理、有效利用。新型煤化工强化对副产煤气、合成尾气、煤气化及燃烧灰渣等废物和余能的利用。

(6)经济效益最大化。通过建设大型工厂,应用高新技术,发挥资源与价格优势,资源优化配置,技术优化集成,资源、能源的高效合理利用等措施,减少工程建设的资金投入,降低生产成本,提高综合经济效益。

(7)环境友好。通过资源的充分利用及污染的集中治理,达到减少污染物排放,实现环境友好。

(8)人力资源得到发挥。通过新型煤化工产业建设,带动煤炭开采业及其加工业、运输业、建筑业、装备制造业、服务业等发展,扩大就业,充分发挥我国人力资源丰富的优势。

8.当前新型煤化工技术开发有以下几个热点:

(1)煤气化制甲基叔丁基醚:采用多组分催化剂,可从合成气制含60%异丁醇和40%甲醇的混合物,异丁醇脱水成异丁烯,从而可完成由合成气直接制取甲基叔丁基醚,这是一条很值得重视的由天然气和煤为原料制取高辛烷值添加剂的技术路线。

(2)以煤为原料生产甲醇及多种化工产品。甲醇作为一种重要的基础化工原料,通过羰基化可进一步制取醋酸、醋酸酐、甲酸甲酯、甲酸、草酸等重要的化工产品。另外还可以用于甲醇汽油(掺烧或者全烧),甲醇转化为甲醚替代液化石油气和柴油或制造燃料电池等等。因此,作为可替代石油化工产品的甲醇下游产品是未来大规模发展甲醇生产提高市场竞争力的重要方向。

(3)以煤为原料合成低碳烃类。甲醇裂解制烯烃(MTO)技术由DOP和NOSRKHYDRO公司联合开发。鲁奇公司(LURGI)研制的甲醇制丙烯(MTP)技术,已经在工业化设计中,准备进行商业化生产。

上一篇市场管理部

下一篇处分通报