化工废水处理范例

化工废水处理

化工废水处理范文1

关键词:氢氧化钾;生产废水;处理;工艺

众所周知,KOH生产废水大多为阴、阳离子交换树脂塔在再生过程中生成的酸性废水。某KOH化工企业运用了先进的离子膜技术,对水和无机盐进行全面分离,中水即循环水作为补充用水,浓缩水则应用于生产环节KCl的溶解,使水资源可以有效循环利用[1]。基于化工废水处理的重要性,本文深入研究了其处理工艺。

1常规处理技术

KOH生产废水大多呈酸性。现阶段,一些企业都将这种废水排至废水池,通过投加碱中和其酸性,直至废水呈中性。其间需要使用大量的水资源来进行稀释,废水达标后才能排放。这样浪费了水资源,却无法从实质上解决污染源问题。本研究以某企业为例,研究了KOH生产废水的有效处理方式,即采用水和无机盐的分离技术,中水能够反复利用,CW(浓缩水)则用于生产时KCl的溶解,从而保证水资源利用率达到最大化。该企业采用常规膜处理工艺,其工艺流程主要包括预处理、UF(超滤)与CW(浓缩水)处理系统。预处理的作用即为去除废水内的悬浮颗粒、胶体等,因为大量的悬浮颗粒、胶体会影响后续工艺。根据废水性质,企业设置的预处理装置主要有:废水均合池、原水泵以及氧化剂加药装置[2]。而UF系统则包括水箱、增压泵、还原剂加药装置以及反洗泵。MC功能即为脱盐,因此其设备有高压泵、CW增压装置、阻垢剂加药器以及保安过滤系统等。

2改进后KOH生产废水处理工艺

改进KOH的生产废水处理工艺主要有UF系统和MC(膜浓缩)系统。处理后的废水可以充作循环水的补充用水,CW生产流程可以对KCl予以有效溶解,改进工艺后,废水处理后的水质如表1所示。废水处理工艺的改进,从根本缩减了运行费用,同时有效地控制了废物的排放,进而达到清洁生产的目的。

2.1对离子交换树脂再生技术的改进

常规处理工艺大多择取NaOH再生树脂技术,造成KOH生产废水具有大量可溶性的混合物(KCl和NaCl)。再生树脂技术使用的是KOH,膜分离所产生的CW能够有效溶解KCl,使K+可以生成于系统内,这样一来,中水能够有效循环使用,进而从根本避免CW污染。

2.2科学地完善预处理方法

废水内的大量物质都会在一定程度上影响膜材料,若不能及时进行处理,系统有可能在短期内出现中毒失效的问题。所以,在氧化还原反应中需要加入一定量的KClO,相应地,采用传统工艺时,要加NaClO来清除污染膜上的菌类微生物和藻类微生物。还原剂加药系统要加入K2SO3•2H2O,相对应的传统工艺要加入Na2SO3来清除水中的Cl-,进而避免Cl-影响RO。反渗系统内加入MDC756型复合阻垢剂,可以有效地避免反渗浓水内CaCO3、MgCO3、CaSO4析出后发生结垢而导致RO膜损伤[3]。选择MC作为工艺的主要方向,UF系统能够将完成预处理的水再次应用,尽可能将膜系统进水的污染系数控制在3.0以下,同时降低其清洗频次,从而延长系统的使用寿命。

2.3实施特殊工艺路线,控制能耗

RO(反渗透)装置是废水处理全过程的主要设备。所需预处理的废水会输送至一号RO装置,予以加压处理,这时大量的水分子与离子都可以穿透膜,在一段时间后即可进行循环利用。而胶体等物质无法穿透膜,被留置于CW中,再通过加压后即可传输至二号RO装置,这时清水回流至UF产水箱,在此状态下CW能够有效溶解KCl。研究证实,废水内存在大量可溶性KCl,其质量系数浓度为5~9g/L,浓缩十倍后,质量分数达到50~90g/L。如果仅仅使用RO工艺,达到同样的浓缩效果就要消耗更多能源。反复实践多种工艺后,笔者发现,在UF系统中加入NF(纳滤)设备,并使用UF-NF-RO工艺,能满足浓缩十倍要求。

2.4合理运用清污分流

常规生产工艺是把生产废水都排入废水均合池,通过中和达到标准后才能排放。为达到生产废水零排放和减少设备运行费用的目的,根据废水水质特征,需把片碱蒸发工序中产生的一次蒸汽冷凝水利用板式换热器换热,然后送入总纯水储槽中,片碱车间的二次蒸汽冷凝水需要在换热器换热后送入电解车间的纯水储槽中,泵中的冷却水可集中送到循环水系统中,并要按时补充循环水系统的消耗。使用清污分流的方式可以改变生产废水循环路线,每年就能节约水资源6万t,成功地降低了废水排放量。

2.5调整控制BaCl2用量

不管是纯水生产中的树脂再生还是二次盐水精制过程中的螯合树脂再生,被树脂吸附的重金属在再生时必定进入CW中。若在废水处理时没有及时去除被带入的重金属,重金属会不断积累,最终导致重金属超标,出现不合格产品。在淡盐水中加入还原剂K2SO3•2H2O可以除去游离Cl-,让系统生成SO42-。传统工艺可以加入BaCl2除去SO42-,人们可以通过改进工艺来减少BaCl2的用量,让SO42-与BaCl2发生反应,出现沉淀后过滤去除,从而达到除去重金属的目的。跟踪并分析工艺前与工艺后的重金属含量,期限为1个月,结果表明,新工艺处理后的重金属含量是处理前的8%左右。因此,通过合理调整废水处理工艺,人们可以解决重金属累积问题[4]。

3分析运行效果

该企业的废水处理量为300t/a,如果按照90%进行回收,就可以实现水资源的循环利用。若KCl废水处理按3元/t计算费用,每天就能节约810元。如果KCl每吨2900元,每天可以获利3413元,废水回收利用与回收KCl一共可以节省资金4223元/d。若按照常规工艺,每天会产生废水300t,并且集中处理后达标才能排放。而改进工艺利用膜浓缩系统处理废水,每天再生的中水大约为270t,而每天的浓缩水大约为30t。中水可以循环利用,那么每天就能节约水资源270t。利用浓缩水溶解并回收KCl,不仅达到了清洁生产的目的,同时可以有效提升经济效益与环境效益。

4结论

改进KOH的生产废水处理工艺主要有超滤系统、预处理系统和膜浓缩系统。完成处理后的中水可以作为循环水的补充用水,浓缩水在生产过程中可以有效溶解KCl,改进工艺后,废水处理效果有了显著的提升。废水处理工艺的改进,不仅从根本降低了运行费用,也有效地控制了废物排放量,进而达到清洁生产的目的。常规工艺处理KOH废水,不但浪费了大量水资源,而且对环境造成一定污染。改进后,新工艺可以最大限度地控制废水排放,从而达到降低能耗的目的。

参考文献

1桂红艳.城市污水处理厂对周边环境污染及防治初步研究[D].广州:中国科学院研究生院(广州地球化学研究所),2017.

2张汉明,俞明宏.政府投资个人参股加快城镇污水处理步伐——德国城镇污水处理厂考察的几点启示[J].环境导报,2015,(2):15-17.

3李洁,邓楚洲,王玲,等.湖北江汉盐化工业园污染的特征探讨[J].三峡环境与生态,2016,(1):14-15.

化工废水处理范文2

关键词:化工;废水;处理;技术

由于我国石油化工产业的大力发展和进步,从很大程度上带动了我国经济的增长,为我国经济的发展提供了十分有利的条件。然而,凡事都有两面性,化工产业在带动我国经济增长的同时,也对我国的环境产生了一定的伤害和威胁,在化工产品生产的过程中,会排放出一些对环境有毒有害的物质,而且这些物质往往结构较为复杂,不仅具有一定的伤害性,同时难以得到降解,如此也就给化工废水的处理工作增添了巨大的难度,同时,也增添了处理的成本。因此,我们应该针对化工废水的处理技术,进行深入的探究和分析,如此才可以对我国化工产业的可持续发展以及我国环境的保护提供一个可靠的保障。

1.化工废水的特点

首先,对于化工废水来说,它的水质构成组份较为复杂,而且会产生过多的副产物。在化工产品生产的过程中,通常情况下,反应原料都是溶剂类的物质或是环状的化合物,这些化合物往往都难以降解,因此,对于废水的处理工作增添了巨大的难度。其次,在化工废水中,它的污染物含量较高,产生污染物含量较高的主要原因,是由于原料和原料之间所产生的反应不完全或是在生产的过程中使用溶剂过量,从而导致过多的污染物流入到了废水之中。第三,在化工废水中含有较多的有毒有害物质。这些有毒有害物质,往往会对微生物产生一些伤害的作用,例如硝基化合物,卤素化合物,表面活性剂等物质。最后,在化工废水中的另一个主要的特征就是,废水的色度较高。虽然在近几年以来,我国化工行业对于环境所产生的污染所采取的治理对策,取得了一定的进步和效果,废水治理的效率也有所提升,排放的达标率也在不断的完善,然而,目前来看,在我国废水排放的过程中,仍然存在着一定的问题和漏洞。废水排放率的达标率依旧不是十分的乐观,而且处理化工废水也会产生较高的成本,因此,对于世界各国的化学科学家来说,研发出低成本,高效率的化工废水处理方式,已经成为了一项重点的工作内容。

2.常用的化工废水处理技术

(1)常用的物理方法。对化工废水进行处理的常用物理方法主要有重力沉淀法,过滤法以及气浮法等。过滤法指的是将废水通过孔粒状的粒料层,过滤出废水中的杂质,降低水中的悬浮物成分。在对化工废水进行处理的过程中,通常采用的都是微孔过滤机和板框过滤机。在微孔过滤机中,微孔管是由聚乙烯制成的,孔径的大小可以进行调节,具有一定的便捷性。而重力沉淀法指的是利用水中悬浮颗粒的可沉淀性,在重力的作用下进行沉降,从而实现固体和液体的分离。气浮法指的是通过生成的微小气泡,覆裹在悬浮颗粒表面的方式,将悬浮颗粒带出水面。这三种物理方法不仅工艺上较为简单,而且管理起来也较为方便,但是这三种物理方法仅仅适用于分离废水中不溶性的物质,对于可溶性物质的去除并不能实现。

(2)常用的化学方法。处理化工废水的化学方法,通常都是利用一定的化学反应,从而对废水中的一些可溶性物质进行去除,主要的化学方法有氧化法,电化学法以及混凝法等。对于化学混凝法来说,它主要是对水中一些较为微小的悬浮物和胶体进行作用,通过向废水中投入絮凝剂的方式,将这些物质沉降出来,从而实现固体和液体的分离。对于化学氧化法来说,它通常是向废水中投入氧化剂,从而对一些有机物进行氧化,实现净化废水的目的。在废水中实现氧化还原反应,可以降低废水有机物质的含量,或是将一些有毒的有机物质,转变成毒性较小或是无毒的物质,从而对工业废水进行净化。

(3)常用的生物方法。处理化工废水的生物方法,指的是通过微生物新陈代谢的作用,来对有机物进行降解。随着化学工业的不断发展和进步,污染物的组成成分也在不断的朝着多元化的方向发展,在化工废水中,会含有大量的有机污染物,如果仅仅是通过化学或是物理的方式,很难实现彻底去除的目标。而利用微生物的生物方法,可以通过微生物自身的新陈代谢,对废水中的有机物质进行转化,使其转化为无毒无害的物质,从而实现净水的目的。就生物方法而言,它主要分为了两种类型,分别是好氧处理和厌氧处理,在好氧处理中也分为了活性污泥法和生物膜法两种,生物膜法指的是将生物膜和废水结合在一起,通过生物膜的吸附作用,对废水中的有机物进行吸收。而废水的厌氧处理方法指的是在无氧的条件之下,通过厌氧的微生物的新陈代谢作用,将废水中的有机物进行分解,使有机物转化为甲烷和二氧化碳,从而实现净水的目的。厌氧生物处理的过程中,它会产生较为复杂的生物化学过程。在利用生物方法对废水进行处理的过程中,虽然它的操作成本较为低下,而且操作起来也十分便捷,可是一些微生物会受到一些因素的影响,例如废水的酸碱性、温度、成分等,对于废水中水质的变化很难适应,因此,单纯使用生物的方法来处理废水,还是具有一定的难度的。

(4)常用的物理化学法。首先,对于离子交换法来说,它指的是借助于离子的作用,通过离子和离子之间的交换,让离子和水中的离子进行交换反应,从而对有害物质中的离子进行交换和剔除,最终实现净水的目的,在水的软化以及有机废水的处理过程之中,离子交换膜获得了广泛的应用。对于萃取法来说,它的原理是通过物质在物质中的溶解度的差异来实现最终的萃取效果,通常它都会采用一些和水之间不能够互相溶解的物质,来对水中所溶解的污染物进行萃取,将萃取剂与废水充分的接触,利用萃取剂在污染物和水中的溶解度不同,从而将污染物从水中分离出来,对污染物进行提纯,从而对水起到净化的作用。电渗析法是由渗析法为基础而演变出来的一项废水处理方法,它指的是在直流电的作用下,通过阴阳离子的交换,来实现溶液中阴阳离子的选择透过性,从而使溶液中的溶质和水能够进行分离,是一种物理化学的反应过程。而膜分离技术是采用了半透膜对分子进行过滤,从而对废水进行处理,膜分离技术也可以称之为反渗透作用,它主要是利用了半透膜的特点,实现有毒物质和废水的分离,在这种半透膜里,只允许水通过,而水中的有毒物质会被阻挡在外,因此它可以对水中一些溶解性的有机物和胶质状态起到一个阻挡的作用,实现物质和水的分离,从而实现净水的目的。

3.总结

随着我国科学技术的不断进步和发展,我国对化工废水处理的技术也获得了进一步的提升,不断的朝着全面化和科学化的方向发展,要想保障我国的化工废水得到一个妥善的处理,我们就必须要针对化工废水的处理对策进行深入的研究,对技术进行创新和改革,从而为我国化工工业的发展奠定坚实的基础。

【参考文献】

[1]殷永泉,邓兴彦,刘瑞辉,张凯,崔兆杰.石油化工废水处理技术研究进展[J].环境污染与防治,2016.

[2]刘颖,宋淑云,许晔.采油废水处理技术的应用及研究进展[J].油气田环境保护,2015.

化工废水处理范文3

煤化工废水主要来源于煤炼焦、煤气净化和化工产品回收利用等生产过程。这种废水中的水质以酚和氨为主,其中还含有300多种污染物质,主要有焦油、苯酚、甲酸化合物、氨、氰化物、COD、硫化物等,其中氨氮200-500mg/L,是一种具有难降解有机物的工业废水,十分典型。而CODcr的含量甚至高达5000mg/L。废水中易降解有机物主要是萘、呋喃、咪唑类等酚类和苯类,而难降解有机物则主要是喹啉、异喹啉、联苯等。煤化工废水的色度和浊度较高的原因是废水中含有各种生色集团和助色集团物质来使其色度和浊度高。

二、煤化工废水处理方法

煤化工废水处理工艺路线基本遵行:物化预处理+A/O生化处理+物化深度处理。

1.预处理

废水预处理大多是用隔油、沉淀、气浮等物化法,其中隔油法分为重力分离型、旋流分离型和聚结过滤型,而重力分离型又分为平流式(API)、斜管式(CPI)、平流斜管式(API-CPI)、平行波纹板式(CPS)、斜交错波纹管式(OWS)隔油池和重力沉降分离隔油罐等;气浮法则包括溶气气浮、扩散气浮和电解气浮等。若工业废水中含较高浓度的酚和氨,则需要对酚和氨进行回收预处理。对于酚的预处理方法一般有蒸汽脱酚法、吸附脱酚法、溶剂萃取法、液膜技术法、氧化法和离子交换法等,工业上常用溶剂萃取法做酚的预处理,溶剂为异丙基醚;对于氨来说,一般采用蒸汽汽提-蒸氨法。

2.生化处理

煤化工废水经过预处理后,再进行生化处理,一般采用厌氧/好氧法、厌氧/缺氧/好氧法、、生物接触氧化、载体生物流化床、序批式活性污泥、上流式厌氧污泥床和在活性污泥曝气池中投加活性炭等进行处理。一般来说,当用好氧法处理过后,需要针对废水的特性再进行再处理。

(1)厌氧/好氧法:厌氧/好氧是利用微生物的硝化和反硝化的作用进行脱氮、脱碳的原理的普通活性污泥法改进的方法。污水经过预处理后,在进行厌氧/好氧法处理,COD质量浓度和氨氮的质量浓度均会下降,其中较难降解的有机物萘、喹啉和吡啶的去除率分别为67%,55%和70%,而一般的好氧处理这些有机物的去除率不到20%。采用厌氧固定膜-好氧生物法处理煤化工废水,也得到了比较满意的效果。

(2)厌氧/缺氧/好氧法:厌氧/缺氧/好氧法中的厌氧处理,是为了把废水中难以降解的有机物变为链状化合物,长链化合物变为短链化合物。这种方法用于焦化废水处理,当焦化废水经过处理后,废水中的COD质量浓度、挥发酚的质量浓度和氨氮的质量浓度均会大幅度的降低,比如说:COD质量浓度会由3257mg/L降至143.5mg/L。

(3)载体生物流化床:载体生物流化床主要是运用生物膜法和活性污泥法基本原理由鼓风曝气系统和填料及筛网系统组成。利用载体生物流化床,不仅能够在生化处理前端高负荷脱除COD,生化处理后端高负荷脱除氨氮,而且还能代替BAF进行深度处理。载体生物流化床投资成本少,仅是活性污泥曝气池投资成本的70%,并且所占的面积也相对较小,仅仅占活性污泥曝气池的一半。其密度低,填料易丢失,需要专业人员进行专业性的技术操作。

(4)序批式活性污泥:序批式活性污泥是根据好氧、厌氧微生物自身的代谢机能,在进行好氧和厌氧交替反应过程中降解污水中的有机物和氨氮等污染成分的原理对传统活性污泥法进行改良后的产物。应用序批式活性污泥处理后的污水能够达到《合成氨工业水污染物排放标准》中一级排放的标准。

(5)上流式厌氧污泥床:上流式厌氧污泥床能够使大部分的有机物转化成甲烷和二氧化碳,并且能够利用反应器上部的分离器分离气体、液体、固体。生化法能够较好地去除废水中的苯酚类和苯类物质,但是对于一些难降解的有机物比如说喹啉类、吲哚类、咔唑类等效果较差。所以,近年来对煤化工污水防治技术研究方兴未艾,出现了生物膜反应器、湿式氧化、等离子体处理、光催化和电化学氧化等先进技术,这些技术已在某些煤化工企业得到实施或取得试验成果,由于应用成本普遍较高,所以还未大规模推广应用。

3.深度处理

经过生化处理的煤化工废水,出水的CODcr、氨氮等质量浓度大幅度下降;但是,因为存在难降解有机物,生化处理后的COD、色度等仍然没有达到可以排放的标准,因此,需要继续进行深度处理。深度处理方法主要有:超滤、反渗透、混凝沉淀、絮凝沉淀、活性碳吸附和化学氧化、MBR等。有研究发现,强化生物脱碳脱氮以臭氧生物活性碳技术作为深度处理单元和回收工艺来处理煤化工废水后,废水中的高COD、高氨氮质量浓度大幅度下降,具有很好的处理效果,其水质可以达到《城市污水再生利用工业用水水质》的标准。(1)臭氧生物活性碳技术通过对臭氧生物活性碳技术在深度处理过程中的强化生物脱碳脱氧及回用工艺处理煤化工废水时,发现了此工艺技术对于COD、高氨氮中所含油不容易降解煤化工废水的处理时,有着非常良好的废水处理效果,处理出来的水质符合《城市污水再生利用工业用水水质(》GB/T19923-2005)标准。

4.膜浓缩废水的蒸发处理技术

煤化工废水进行浓盐水处理时所用的浓盐水主要是来源于双膜处理后的反渗透浓水,含有盐质量浓度为3000-25000mg/L。一般采用膜浓缩和热蒸发技术来进行浓盐水的再浓缩。把含盐量较高的盐度提升到50000到80000mg/L之后,就进行蒸发处理,通常使用的是机械蒸汽压缩再循环技术,处理废水的过程中,所需要的热能,是由蒸汽冷凝以及冷凝水冷却时所产生的热能。处理过程中不会流失潜热。处理过程中只需要消耗一些废水(蒸发器内的)以及所产生的蒸汽和循环的冷凝水还有电能等。蒸发器将盐含量提升到了20%之上。所排出来的盐卤水被输送到蒸发塘通过自然地蒸发,结晶干燥后成固体,运到堆填区埋放。膜浓缩技术经常用于浓盐水处理的前段,可以将废水中的盐质量浓度提高到50000-80000mg/L,膜浓缩技术处理成本较低、规模大、技术成熟,能够减小浓盐水处理后续蒸发器的规模,这样能够降低成本并节约资源。伴随着环境保护的呼声高涨,在未来的煤化工业的发展中也将是低成本投入、高产量回报,降低污染,进行可循环的发展。使污染物可以减少量化、得到循环利用,提升资源的可使用率,将经济实现可持续化发展。

三、结语

化工废水处理范文4

关键词:化工;废水;处理

有一组调查数据显示,在我国的污水排放总量中,化工行业排放的污水占到全国污水排放总量的百分之二十左右。化工废水排放到环境中将对环境产生很大的危害,这就要求化工企业严格落实环保理念,对化工过程产生的的废水进行妥善处理。化工废水还有以下特点:第一,废水排放量大。化工生产离不开水,生产过程中需要大量的水作为溶剂、吸收剂和循环冷却剂等,使得废水的排放量很大。第二,污染物种类多。排出的水体中会含有一些生产中的原材料、副产物等,会使得成分复杂,种类繁多。第三,污染物毒性大、不易生物降解。在化工生产中,排放的有毒污染物大部分为硝基化合物、分散剂以及卤毒化合物等,这些化合物虽然比重小,但是由于其毒性大,导致排放的水毒性很大。第四,化工废水的水量和水质视其原料路线、生产工艺方法及生产规模不同而有很大差异。第五,污染范围广。我国的600多个化工企业,小型企业约占90%,小型企业遍布全国各地。这些中小企业工艺落后,设备陈旧,技术力量薄弱。

1化工废水的常见处理方法

1.1物理法

物理处理方法有离心分离、过滤、气浮和破乳等。其中过滤法指的是通过具有孔粒状滤料层截留水里面的杂质,主要是减少水里面的悬浮物;气浮法指的是向水中通入空气,使水中产生大量的气泡,并促使其粘附在杂质颗粒上,形成比重比水小的浮体,在浮力作用下,上浮到水面,实现固液分离;破乳主要用来处理含油废水,破坏液滴界面上稳定的乳化层,使油和水得以分离。这几种方法工艺简单,处理前后水的物理性质并没有发生变化,只能去除一些不溶于水的悬浮物,因此局限性较大。近些年以来发展的物理技术包含非平衡等离子体技术,声波技术以及磁分离法等。

1.2化学法

化学处理法是通过化学反应来分离、去除废水中呈溶解、胶体状态的污染物质或将其转化为无害物质的废水处理法,对于废水的深度处理也有着重要作用。主要的化学处理法有:混凝、中和、化学沉淀和氧化还原法。

1.2.1混凝法

混凝法是废水处理中一种经常采用的方法,它处理的对象是废水中利用自然沉淀法难以沉淀除去的细小悬浮物及胶体微粒,还可以用于除油和脱色。这种方法可以用于化工、煤炭、造纸等各种工业废水的预处理和中间处理阶段。它优点在于设备简单,操作容易掌握,处理效果好;缺点是运行费用高,沉渣量大,且脱水较困难。

1.2.2中和法

中和就是酸碱相互作用生成盐和水,也即pH调整或称为酸碱度调整。酸、碱废水的中和方法有:(1)酸、碱废水互相中和法:可以达到以废治废的目的,既简便又经济;(2)投药中和:可以处理任何浓度、任何性质的酸碱废水;(3)过滤中和:可以进行废水的pH调整。

1.2.3化学沉淀法

化学沉淀法是指向工业废水中加入一些化学药剂,使它和废水中的某些溶解物质产生反应,生成难溶物,沉淀下来。这种方法常用于处理含金属离子的工业废水。

1.2.4氧化还原法

氧化还原法是通过药剂与污染物的氧化还原反应,将废水中有害的污染物转化为无毒或低毒物质的方法。废水处理中最常采用的氧化剂是空气、臭氧、二氧化氯(ClO2)、氯气(Cl2)、高锰酸钾(KMnO4)等。药剂还原法在废水处理中应用较少,只限于某些废(如含铬废水)的处理,常用的还原剂有硫酸亚铁(FeSO4)、亚硫酸盐、氯化亚(FeCl2)、铁屑、锌粉、硼氢化钠等。另外,采用高能量脉冲发生器或者电子发射器形成的电子束和水分子发生碰撞,产生激发态而导致有机物质发生氧化降解作用的辐照技术等也渐渐开始应用于污水处理实践过程中。

1.3生物法

废水的生物处理法就是利用微生物的代谢作用,把废水当中的有机物转化为简单的无机物的过程,简而言之,就是利用微生物的生命活动过程来转化污染物,最后达到无害的一种方法。这种方法可以根据参与的微生物种类,分为好氧生物处理和厌氧生物处理。伴随着化工行业的发展,废水成分越来越复杂,含有的难降解的有机物质和有毒物质也越来越多,单纯的用物理处理法或者化学处理法是不行的。这时候,需要运用微生物的处理方法,利用微生物的新陈代谢作用,获取废水中的养分,同时使得废水中的有机污染物质得以净化。生物法处理污水具备运作成本不高、操作管理便捷的优势,在污水处理系统中的二级处理占主体地位。但是微生物对营养物质、温度以及pH值等条件有一定的要求,这种方法不容易适应化工污水水质变化快、成分繁琐、毒性强、降解困难的特点[3],单独采用生物法处理化工污水达标工作难度很高,因此生物物理或者生物化学处理方法的相互结合成为化工行业污水处理发展的必然趋势。

1.4物化法

物化处理方法有吸附、离子交换、电渗析等。吸附法是采用多孔介质(例如磺化媒树脂以及活性炭等)吸附污水里面的非极性有机物质,此方法简便而且易于施行,不过仅能够用于处理非极性有机物质吸附之后的污水,需要深化处理吸附质,必须再生,吸附仅仅是一种污染物质的物理迁移过程而并不是真正的降解作用;离子交换法是利用离子交换树脂将废水中的阴、阳离子通过交换反应交换出来,这种方法处理效果好,不仅可以去除重金属离子,也可以去除一些阴离子[2]。不过离子交换树脂需要一系列的再生,再生费用较高;膜分离技术可以分为反渗透、超滤和电渗析。膜分离的优点在于其具备对有机污染物质去除效果好,流程简便,结构紧密,容易操控等优点,在废水深化处理方面显示出非常广泛的应用前景,不过膜污染缺陷严重影响着膜的推广和应用。

2化工废水的新型处理工艺

基于以上的处理方法,国内外的研究人员开始针对化工废水进行了大量的研究。研究人员将不同的学科及技术应用于其中,某些新技术也呈现出良好的应用前景。

2.1微电解技术

将具有电极单位差的金属与金属(非金属)在传导性较好的废水中接触,形成原电池效应或发生电解反应来处理废水的工艺,又称电解、铁屑过滤法、零价铁等[4]。微电解技术常用于含有高浓度盐、高浓度有机物的难降解废水的预处理。Zhou[5]等利用微电解接触氧化法处理混合化工废水,处理后m(BOD5)/m(CODCr)值大于0.6,CODCr的去除率为64.6%,同时对氨氮和铅有一定的去除。微电解技术有效地利用了固体废弃物,是一种"以废治废"的处理技术。

2.2MBR技术

MBR污水处理技术,是采用膜生物反应器(MembraneBioreactor,简称MBR)技术是生物处理技术与膜分离技术相结合的一种新技术,取代了传统工艺中的二沉池,它可以高效地进行固液分离,得到直接使用的稳定中水。这种新型工艺应用在在处理废水的具体操作中,地面积小,出水水质好,一般不须经三级处理即可回用。它有其工艺简单、操作方便等优点,并且全程可以实现全自动运行管理。南京工业大学开发了一种“MBR处理PTA废水的高效组合工艺”,该工艺利用活性炭作为催化剂、空气为氧化剂对聚酯企业的PTA废水进行催化氧化处理。实验结果显示,工艺出水水质符合国家废水综合排放一级标准,且有效的缩减了水处理装置的占地面积、水力停留时间以及运行费用[6]。

2.3光催化氧化技术

光催化氧化技术利用光激发氧化将O2、H2O2等氧化剂与光辐射相结合。所用光主要为紫外光,包括UV-H2O2、UV-O2等工艺,可以用于处理污水中CHCl3、CCl4、多氯联苯等难降解物质。另外,在有紫外光的Feton体系中,紫外光与铁离子之间存在着协同效应,使H2O2分解产生羟基自由基的速率大大加快,促进有机物的氧化去除。在空穴附近的OH-和H2O被氧化成•OH,同时污水中的O2与激发的电子结合为•O2-,所生成的•OH和O2-将有机物氧化分解为CO2、H2O[7]。光催化氧化还原以n型半导体为催化剂,如TiO2、ZnO、Fe2O3、SnO2[8]等。Wang[9]等使用纳米TiO2作为催化剂进行了脱硫废水中的氯化物的光催化降解,实验发现当TiO2加入量为800mg/L、温度25℃、pH值=2时,使用UV照射仅10min,就除去了废水中47.9%的氯化物。

3总结

化工废水的处理是化工行业发展的一大难题,对于国家经济社会的发展也具有十分重要的意义。仅仅靠着上述的一些基本的处理方法还远远不够,在化工生产过程中,要使废水的排放量大大减低,从源头上减少污染。同时,我们也要努力探索废水处理的新工艺,来推动废水处理技术的发展。

参考文献

[1]蒋克彬,张小海.国内化学工业废水与治理措施情况综述[J].科技情报开发与经济,2008,18(7):139-140.

[2]朱建军.化工安全与环保[M].北京:化学工业出版社,2011.

化工废水处理范文5

[关键词]化工废水;有机物污染物质;难以降解;废水处理技术;混凝沉降法

0引言

随着化工行业的发展,工业废水的数量日益增多,成分也日趋复杂,对大量的工业废水如不能很好地处理,势必导致水体的严重污染,危害环境[1]。化工厂在产品加工过程中会排放出大量的有毒有害、结构复杂和生物难以降解的有机污染物质,处理过程中,存在极大的困难,并且治理成本高、过程复杂,我国工业废水综合治理问题一直未能从根本上得到解决[2]。因此高效、低成本处理化工废水的新工艺、新技术是目前研究的重点内容。

1化工废水概述

在我国工业生产迅速崛起的同时,环境污染成为行业面临的重大难题。我国大部分水源应用在了工业方面,工业废水的排放在污水排放列表中名列前茅。工业废水的排放直接或间接地影响了我国各大江河湖泊的水质,其中化工废水的排放约占全国污水排放量的一半以上。按照污染物的种类来分,化工废水主要分为3大类:有机废水、无机废水和既含有机物又含无机物的废水[3]。这些不同种类的废水却有相同的特征:①水质的成分复杂,含污染物浓度较高。化工废水中出现的最常见的污染物质是溶剂类化合物和有机高分子化合物。这类物质结构复杂,很难降解,增加了废水的COD值。②温度高。化工工艺一般是在高温下进行的,所产生的废水一般温度较高,形成水域热污染。③有毒有刺激性。工业所排放的有机物包括苯类、有机氯、硝基化合物、有机汞、多环芳烃、醛类等致癌物质,无机物含有Hg、Cd、Pb、Gr等重金属离子,这类物质对菌类有抑制作用,对人体有直接危害。④水量、水质变化大。在化工生产过程中,有的是连续生产,也有很多是间歇性生产,不同时间段所排放的废水种类、水量波动比较大。⑤水质含油污量较高。石油化工厂排放的污水加重了含油物质的含量,现很多工业生产排放的污水都有一层油类物质漂浮,加重了水质的污染程度。⑥富含营养化物质。工业废水常常会含有N、P等化合物,会造成水质富营养化,致使鱼类大量死亡,使水质中的微生物及藻类大量繁殖。⑦污染后难恢复。一般被工业废水污染过的生态水域,需要长时间恢复,对于被生物富集的重金属,即使停止污染物排放,仍很难消除污染状态。化工废水的来源主要有以下7种途径:①生产过程产生的废水。这类化工废水一般是由汽提、蒸汽蒸馏、酸(碱)洗等过程排放出来的。②清洗生产设备。化工生产所使用的设备、管道、容器等需要定期定时清洗,其残留的化工物料会随着清洗水排放,形成废水。③生产过程中原料和产品的流失。在化工生产和原料、产品运输等过程中,会有一部分物料、产品损失,再经过风暴雨雪的冲刷,形成废水。④未反应完的原料。在生产过程中,原料由于自身纯度和反应条件的限制,化学反应不完全而产生的废料、废物。对于需要经过几个步骤来完成的工艺,原料的损失会更大。这些未反应完全的原料,被循环或冲刷等过程进入水体,形成废水。⑤副产物的生成。实际生产中,难免会有很多副产品生成,虽然量不是很大,但其成分一般比较复杂,不容易处理,作为废液排放。⑥生产管道、设备等泄露。由于管道或设备密封不严,在化工生产或物料运输过程中,造成泄露,形成废液。⑦冷却水。冷却完物料,排放冷却水时会带走少量物料形成污染;在冷却时,会在水中投加水质稳定剂,形成污染;间接冷却,循环过后冷却水温度升高,形成热污染。

2化工废水主要处理技术

我国化工种类繁多,化工产品达万种之多,故化工废水的污染物质也是多种多样的。我国目前研究的处理废水的方法,主要有以下几大类:①物理法。物理法是废水处理中最简单的一种方法。主要包括沉淀法、过滤法、调节法、气浮法等。一般用于处理废水中的悬浮物及部分胶体。物理法运行成本较低,设备简单,效果稳定,管理方便,但是只能对废水进行初步预处理,对于可溶性污染物质没有净化作用。②化学法。化学法主要包括酸碱中和法、电解法、化学氧化还原法、化学沉淀法等。化学法是水处理中常用的一种方法,它利用一些化学反应,对污染物进行分解、反应、沉淀等,使其对水体的危害降低。③物理化学法。物理化学法比较常用的是萃取法、混凝沉淀法、离子交换法、膜分离法、吸附法等。是先采用物理的方式沉降一些悬浮物小颗粒、胶体类物质,再采用化学的方法消除一些可溶性污染物质。该方法是物理法和化学法的有机结合,对水处理的效果非常明显。④生物处理技术。生物法是利用微生物降解作用进行水处理的一种效率高、成本低的废水处理方法,但是它对处理的水质要求比较高,故一般与其他预处理技术联合使用。

3常用水处理方法———混凝沉降法

混凝沉降法是目前最常使用的化工废水处理方法,在很多领域都有广泛的应用。混凝剂的选择直接决定了混凝效果的好坏,从而影响到水处理的效果。现阶段最常用的混凝剂主要是铝盐、铁盐等无机混凝剂[4]。混凝剂的种类多种多样,按照混凝剂的作用机制大致可分为3类:絮凝剂、凝聚剂和助凝剂[5]。按照混凝剂的化学性质划分,可分为无机混凝剂、有机混凝剂和微生物混凝剂。目前应用最广的是高分子混凝剂,包含有聚合氯化铝、聚合硫酸铁、聚合硫酸铝铁等。高分子混凝剂比传统的无机混凝剂分子量大,用量少,且电中和能力强,它的多核结构使其具有明显的吸附作用。因此,高分子无机混凝剂的研究一直是水处理的重点课题。混凝法主要有4种作用机理:①双电层压缩。在废水中加入盐类电解质,压缩双电层,使得分子间的静电排斥作用减少,两胶体间距缩短,吸引力增大。当加入的药剂量达到一定数值时,微粒的动能就能超过静电斥能,使得离子在碰撞时就会发生凝聚、沉降[6]。②化学-架桥作用。化学-架桥作用是指混凝剂中的粒子与胶体粒子通过相互桥连作用发生碰撞时,形成胶粒-聚合物-胶粒式的化学架桥,这样就形成了絮凝体。③吸附-电中和。吸附电中和是胶粒表面电荷对异价粒子的吸附作用使其脱稳,从而发生絮凝作用。④网捕或卷扫式。当金属氧化物或金属盐作为絮凝剂时,随着加入量的增加形成沉淀,这些沉淀对水中污染物进行网捕、卷扫从而混凝沉降。在实际应用中,这4种机理一般会同时使用,只是不同水质使用的机理有主次之分。混凝剂用于处理化工废水已经有很长一段时间,现已成为工业废水处理的重要环节。混凝剂最常用于去除废水中的固体、胶体颗粒物,降低废水色度等指标,也对重金属离子及微生物有一定的消除作用。混凝剂可以自成水质预处理系统,也可以与其他处理系统组合,一起发挥去除水质中有毒有害物质的功效,为水质改善作出最大的贡献。

[参考文献]

[1]梁桂玲.化工废水污染状况及主要处理对策探析[J].资源环境与节能减灾,2009(10):122-123.

[2]丁春生,李达钱.化工废水处理技术与发展[J].浙江工业大学学报,2005,33(6):647-651.

[3]吴志超,顾国维,何义亮,等.高浓度有机废水厌氧膜生物工艺处理的中式研究[J].环境科学学报,2001,21(1):34-38.

[4]王锐刚,王亮梅.煤矸石制备聚合氯化铝及其废水处理研究[J].水处理技术,2013,39(3):48-50.

[5]毕可军,王瑞,闫杰栋,等.煤化工废水除油技术探讨[J].化肥设计,2015,53(6):5-8.

化工废水处理范文6

关键词:化工厂;废水污染;处理流程

前言

近年来,随着中国经济的跨越式发展,化工行业逐渐成长起来,化工厂产生的废水对周围环境造成的污染问题也日益凸显出来。在化工厂生产过程中成产工艺、处理等操作下,可以释放大部分的有机污染物,这些有机污染物结构是十分复杂的、难降解的、有毒的和有害的,而在这个废水处理过程中,存在着非常大的挑战,成本耗费也是巨大的。而我作为环保公司里的一名专业化工工程师,优化废水处理工作,选择高效、低成本处理化工废水的新工艺、新技术在我们的环保工作上有着很重要的作用。

1深圳某化工厂废水污染状况调查分析

我们以深圳某一化工厂为例进行分析,为了解化工厂生产废水的环境污染状况,从而把为污水处理措施的选择提供依据。我们对某化工厂围墙前20m周围的水样进行探测并对污染原因进行了调查分析。结果如下:调查范围以化工厂前围墙外20m水沟水以及农用水为主,取500mL,分别对取样水中的pH值,NaC1,N03-,NO2-,NH4+、铅、砷、汞等含量进行分析。检验方法主要按照国家规范方法进行。评价标准则按照按国家标准规范。调查数据显示pH值、砷、汞含量,化工厂20m外沟水均高于农田水。而NaC1,N03-,NO2-,NH4+等含量该厂15m外农田水也高于沟水(详细调差数据见表1)。沟水中汞的浓度严重超标10倍,农田水中超标达到30倍;农田水、沟水中铅的浓度也都超标5倍,砷的浓度两者也都超标10倍左右,对于人体来说,上述三种物质都是有毒的和有害的,显然该化工厂排出的废水在很大程度上影响了我们的环境保护工作,对周围环境造成了严重的污染,对人民群众的生产和生活也带来不同程度的危机,引起我们环保公司的高度重视,所以我做为我们公司化工专业的工程师也应该采取有效措施来进行废水的处理。以下文章是我对化工厂废水处理方法以及流程的简单介绍。

2化工废水处理的特点

化工废水处理过程的针对性相对较强,技术极其复杂多变。在我们生活中一般常用的化工废水处理技术如下:对于重金化学废水中的有害物质进行分离,常用的分离方法油水分离、沉淀、混凝,膜过滤、重力过滤、活性炭吸附、离子交换、臭氧氧化、电化学等特殊技术;在化工废水处理中也会运用到化学和生化技术,如接触氧化法、水解酸化、纯氧曝气,曝气、厌氧、好氧活性污泥等。目前,化学废水处理按照工作原理可分为物理、化学、物理化学和生物四类。由于各种类型化学废水的污染,造成各种各样的小污染,不能仅仅依靠一种加工方法来去除所有的污染物,必须选择各种加工技术和接口方式。结合多种处理方法,有效地合成了新的处理系统,达到了国家标准的要求,等废水处理符合国家废水排除准则后,再将水源排出。我们环保公司致力于改善生活环境,对于一切污染均会采取各种各样的方法进行解决,无论化工废水处理过程如何困难,我们都会一一解决。

3废水处理技术

3.1物理处理法

所谓物理处理法就是对废水中的溶解性小物体和悬浮污染物进行回收和分离。由于其物理性质不同,可分为重力分离法、筛滤法和离心法等。物理处理法成本低,但经过处理后废水中污染物含量还是相对较高。

3.2化学处理法

化学处理法是通过氧化还原反应或中和有毒有害物质将其分解成无毒、无害的物质。例如,通过添加化学物质来产生化学反应(常见的中和反应、氧化还原反应和混凝反应)。在化工废水处理过程中采用化学实验的方法,所使用的设备都具备配套的水池、灌、塔和一些辅助设备。化学处理法具有低投资、低成本、操作简单的优点,一个成熟的技术优势,能承受量大、含量高的负荷冲击,可适用于各种化工废水处理,但化工原料需要不断的消耗和产生污泥、排出水回用是困难的,并且占地面积较大。图1为镀铬废水处理流程。

3.3物理化学法

用传质法处理废水时,不仅只涉及化学作用,还与物理作用有关,故称为物理化学法。他是净化废水中一种物理和化学处理相结合的处理方法。这些方法主要包括苯取、剥离、吸附、电渗析、离子交换、反渗透等在使用此方法之前,废水应进行预处理,去除油污,悬浮在废水中的有害气体,且在必要时pH值需要进行调整。

3.4生物处理法

生物处理机理是通过微生物代谢去除废水中有机污染物和悬浮物、胶体溶液的状态,通过转化使原本的污染物成为无毒无害的物质。

4废水三级处理流程

4.1一级处理

废水处理的主要目的是去除废水中的悬浮物,调节废水的pH值。主要方法有自然沉降法、滤网过滤法、气浮法和油水分离法。一级处理后,小型污水并未达到正常排放标准。因此,通常还需要进行二级和三级处理使废水正常排放。

4.1.1筛滤法

筛网过滤是去除废水中悬浮污染物的一种方法。这种方法的使用往往会用到格栅和筛网等基本设备。格栅的作用主要是控制污水中大于格栅间隙的悬浮物。通常,它被放置在污水处理厂,以避免堵塞管道和一些容易堵塞的设备。在使用格栅排渣的过程中,有两种方法分别是机械和手动。必要时,残渣将被排放到格栅的下游。

4.1.2沉淀法

沉降法的核心机理是重力沉降,利用重力作用可将污水分离出来。沉淀法的主要设备是沉淀池和沉砂池,可用来去除污水中沉积的大部分悬浮物,从而提高后续处理效果。

4.1.3上浮法

浮法的核心是去除污水中相对较小的污染物,主要体现在去除污水中的油类物质和悬浮物。

4.2二级处理

二次处理主要是进一步处理废水,去除废水中的大量有害污染物。废水经沉淀、过滤或漂浮处理的早期处理后,悬浮物经一级处理后去除,但对于那些目前存在于废水中以胶水体位或溶解态氧化物或有机污染物不能有效去除。因此,废水可达到国家排放标准,不能自接排放。此时,需要进行二次处理。二次处理的主要方法如下所示。

4.2.1活性污泥法

在废水的化学处理中,活性污泥法是一种重要的处理方法。主要操作过程是以废水中的有机污染物为基础。在连续供氧的特殊条件下,将各种微生物混合并连续培养形成活性污泥。废水中的微生物群落通过吸附、冷凝、分解、沉淀、氧化和活性污泥的形成,去除废水中有毒有害的有机污染物,从而进一步净化污水。活性污泥法成立至今已有90年的历史,技术水平相当成熟。目前,活性污泥法已成为处理工业废水和城市污水最有效、最有效的生物处理方法。

4.2.2生物膜法

生物膜法,主要的操作方法是将废水在固定的表中进行载体生物膜的生长,然后通过生物氧化和物质交换相结合的方法,使废水中的有机污染物降解。该方法在污水处理设备中的应用主要包括旋转生物接触器、生物滤池和生物接触氧化池,并逐步发展成为悬浮填料流化床,广泛应用于生物接触氧化池中。

4.3三级处理

三级污水处理又称深度处理或污水高级处理。在最初的两级处理之后,仍然存在一些污染物,包括一些可溶的无机物质和可以轻易处理掉的小物质。三级处理与深度处理相似,但也有重要区别。三级处理是经过二次处理后废水中的一些特殊污染物,并建立了辅助处理装置。然而,深度处理主要是基于废水回收和再利用。值得注意的是,三级加工阶段投资相对较大,管理过程繁琐复杂,但能充分利用水资源。使资源得以重复利用。

5结束语

化学污水处理有着悠久的历史,化工废水中的部分污染物,如重金属离子、氮、磷等有毒元素和一些有机物质,会给人们的生产生活带来很多不便。能够更好的处理好废水,改善我们的生活环境,是我们环保公司负起的责任。为此,本文分析了废水中污染物的特性,提出了物理处理、化学处理、物理处理方法和生物处理方法以及多级处理流程。这些废水处理技术基本解决了化工厂废水排放在实际应用中所产生的严重污染问题,为今后化工厂的发展奠定了坚实的基础。只有解决了化工厂废水排污问题,我们的环保工作才算到位,我们的生存环境才能得到更好的保持与发展。

参考文献

[1]曾睿,杜茂平.化学法处理含铬电镀废水的研究进展[J].涂料涂装与电镀,2006,3(4):42~45.

[2]王广华,隋军,汪传新,等.氧化还原和混凝沉淀组合上艺处理电镀综合废水[J].中U给水排水,2007,23(20):57~59.

[3]苏巧红.用旋流化学一步法处理电镀综合废水[J].能源环境保护,2007,21(20):40~42.

[4]张顺利.电镀废水处技术概况与展望[J].科技信息,2007(2):322.

[5]陈新,杨海真,黄翔峰.北妆品生产废水处理技术研究进展[J].环境科学与技术,2010(5).

[6]罗波.化妆品生产废水处理的对策[J].浙江化工,2014(45).

[7]吉雪红.复合混凝剂在日用化上废水中的应用实例[J].山西建筑,2010(15).

化工废水处理范文7

关键词:石油化工;化工工艺;废水处理

引言

随着我国社会经济的快速发展,对于石油及其相关产品的需求量与品质都有着较高的需求。我国石油化工处理工艺还有着广阔的发展空间,同时其石油化工废水处理技术也有待完善。因此需要的石油化工工艺以及其废水特征等进行分析,并以此为基础对石油化工中存在的问题进行解决,促进石油化工行业实现可持续发展。文章主要以我国某石油化工企业为例进行分析。

1石油化工工艺

1.1处理工艺

刚刚开采的原油通常含有较为丰富的水与盐类物质,而氯化物为主要的盐类物质,其对设备管线具有较强的腐蚀作用,并会在设备中形成结垢等对油品质量造成严重影响,所以需要利用预处理工艺对其水与盐的含量进行降低[1]。目前,原油预处理主要是对油中的盐进行溶解,在破乳剂和高压电的共同作用下使原油中的水产生聚合现象,盐也会在水中溶解,促进水分清除。

1.2催化裂化工艺

这种工艺的目的是促进原油的深度加工,也是高品质汽油与柴油生产的主要方法。这种方法的主要作用是将原油逐渐转变为轻质燃料油品。其主要由三部分组合而成,即原油催化裂化、催化再生以及产品分离[2]。通过催化裂化的物质在经过分馏后会得到汽油、液化气以及柴油等物质。在未来其也是我国汽油生产与重油轻质化的主要技术。

1.3催化重整工艺

其主要是利用H2与催化剂,并通过烃类进行重排反应,将常压蒸馏获得的轻汽油逐渐转变为具有较高芳烃含量的重整汽油。流程通常由预处理与重整两部分组合而成,其在各发达国家重整汽油调合中具有较为重要的作用与地位。同时各种温度的馏分在通过催发重整后会形成各种石油产品[3]。如:80℃~180℃馏分产品为高辛烷值汽油,60℃~165℃馏分产品为甲苯以及二甲苯等。这一反应的主要条件为反应温度在490℃以上,反应压力为1MPa~2MPa。催化重整的通能通常有三种:其一,可将辛烷值较低的直溜汽油转变为80或90的高辛烷值汽油。其二,重整期间形成的芳烃是较为基础的化工原材料。其三,催化重整会形成大量的H2,其也是炼油企业加氢施工的主要原材料。

1.4加氢裂化工艺

这种工艺主要是在高压环境下受到催化剂作用,将各种重质原料(催化裂化循环油、重质馏分油等)逐渐转变为轻质的石油产品(如柴油、汽油、以及煤油等)。在这一技术中催化剂的运用有着较为重要的作用。其生产的石油产品通常为轻质优质的油品,其中还可对优质的航空煤油以及低凝点柴油进行生产。加氢裂化工艺在其生产加工灵活、原料具有较强适应性、产品回收率较高等优势作用下。受到石油化工企业的广泛关注与运用。

2石油化工废水处理

2.1废水物理处理工艺

在对石油化工废水进行处理期间,隔油方法是基础的流程。这一措施是利用隔油池对废水中的污染物进行沉淀。其中隔油方法的隔油模式也具有较大的差别,其隔油质量也有极大差异。相关研究表明,斜板隔油方法具有较强的隔油效率。气浮法主要是利用气泡对石油化工废水中存在的悬浮物进行吸附,这种处理方法进行使用时,不会出现二次污染现象,处理成本也相对较低,使得其在石油化工废水处理中有着重要的地位。吸附法在石油废水处理期间,也受到了人们的广泛关注,其主要是对固体物体多孔特征进行使用,对废水中存在的杂质进行全面的吸附,由于活性炭具有较强的吸附性,因此经常在吸附法中进行使用。虽然吸附法具有较强分废水处理效果,但其处理成本却相对较高,而且活性炭还通常会造成二次污染,因此需要将絮凝方法、氧化方法以及吸附方法同时进行使用。在科学技术快速发展推动下,吸附材料也有着较为快速的更新,新的吸附材料在废水处理中已经得到了极为广泛的使用。

2.2废水化学处理方法

絮凝法。絮凝法可较好的对石油化工废水中的乳化油、溶解油以及各种难以进行分解的有机物进行良好的清除,因此在石油化工废水处理中有着较为广泛的使用。絮凝方法主要是在废水中加入适量的絮凝剂,对其中存在的胶体颗粒进行破坏,这时胶体颗粒相互碰撞则会出现聚集现象。通过絮凝形成的物质通常可较好与废水进行分离。在使用絮凝法进行废水处理期间,经常与吸附法与气浮法进行联合使用[4]。絮凝法经常与物理处理方法同时进行使用,并具有较高的废水处理质量。现阶段微生物絮凝剂受到较为广泛的使用,这种絮凝剂具有二次污染较小、适用性较强,生物降解质量高等优点,在废水处理中的有着广泛的使用。氧化法。作为石油化工废水处理中的全新技术,光催化氧化方法具有较强的废水处理效果,同时还不会形成任何二次污染。但是这一处理技术还需要不断的创新与优化。在臭氧氧化期间,也不会形成二次污染与污泥,但设备的运行成本等相对较高,使得在处理较大废水量时不宜进行使用。现阶段,工作人员通常将生物活性炭吸附法与臭氧氧化法进行结合使用,可较好对废水中的有机污染物进行分解与氧化。另一方面,氧化法具有较为丰富的氧化模式,相关调查研究表明,在对浓度较高以及难降解石油化工废水进行处理期间,氧化法具有较强的废水处理效果。

2.3废水生物处理方法

好氧法。这种方法主要是利用好氧微生物对废水中的有机物进行降解,达到无害化处理目的。好氧法主要包括好氧生物反应设备、生物接触氧化、间歇活性污泥法、生物膜反应设备以及悬浮填充生物反应等方法。同时相关研究数据显示,这种处理技术对于石油化工废水处理具有较强的效果。厌氧法。所谓厌氧法主要是在无养环境中,利用微生物对废水中的有机物进行分解,使其形成CH4与CO2。石油化工废水中COD浓度相对较高,同时生化性也相对较差,利用厌氧可为之后的废水处理生化性能进行提升。厌氧法虽然操作较为简洁、使用成本较小以及污泥形成量也相对较少,但其操作缺乏稳定性,处理时间也相对较长。当前经常使用的厌氧法主要为、厌氧附着膜膨胀床以及升流式厌氧污泥床等方法。

3结语

在科技与经济不断发展作用下,石油化工工艺与废水处理技术等都得到了为完善的创新与优化。工作人员在实际工作期间,通常需要结合实际需求,对原油预处理工艺、催化重整工艺等进行选择与使用,并根据废水处理需求等选择最为科学的处理技术,在提升其处理质量的同时,也应确保其处理成本处于合理范围中。

参考文献:

[1]黄建军.石油化工工艺标准及其废水处理的研究概述[J].中国石油和化工标准与质量,2017,37(10):165-167.

[2]陈晓峰,陈文茜,李芸.石油化工废水处理技术及有效运用研究[J].当代化工,2015,44(6):1371-1373.

[3]史建公,刘志坚,张敏宏,赵桂良,张毅.石油化工催化剂生产废水处理国内技术进展[J].中外能源,2012,17(7):93-98.

化工废水处理范文8

关键词:石油化工;废水;处理技术

0引言

随着当前我国社会的不断发展,石油化工行业得到了飞速发展,但是伴随而来的的污染问题也引起了社会的广泛关注,其中废水的有效处理就是其中的一个方面。对石油化工废水进行处理需要选择合理的处理技术,确保废水处理具备更强的针对性,以充分提升石油化工生产的无污染程度。

1石油化工废水特点分析

为了较好实现对石油化工废水的有效处理,需要重点把握好对废水的详细探究,明确废水的具体特点和表现,进而才能够更好提升其处理效果,为废水处理技术的选择提供参考。当前石油化工废水主要表现出了以下几个方面的特点:首先,石油化工废水的量一般比较大,随着石油化工生产的进行,其排放量较为突出,如此也就必然加大了废水处理的难度,相关工作量较大;其次,石油化工废水的成分相对而言较为复杂,涉及到的污染成分较多,并且很多污染成分都不容易被降解,如此也就更进一步加大了石油化工废水的处理难度,对于技术要求相对较高;再次,石油化工废水还表现出了较高的毒性,尤其是石油化工废水中存在的大量重金属离子以及其它毒性较高的化合物,都会对周围群众形成较为明显的影响和威胁。

2石油化工废水处理技术

2.1物理法处理技术

针对石油化工废水进行处理可以借助于物理法进行操作,充分提升其对石油化工废水中各类污染物质的去除,相对而言这也是较为传统的一类处理手段。结合物理法处理技术在石油化工废水处理中的应用,其在当前同样也涉及到了多个技术手段的应用,比如重力分离法就是比较有效的一类手段,其能够借助于不同物质的密度差进行液体的分离处理,在重油以及分散油的处理中具备较强的实际效益,降低了后续处理的难度。过滤法同样也是比较常见的一个物理法废水处理技术,其能够较好实现对于过滤层的充分运用,合理设置分离筛选指标,如此也就能够将石油化工废水中存在的一些污染物质进行有效过滤处理,最终提升水质。物理法废水处理还可以借助于离心分离法进行处理,利用离心力场进行不同密度污染杂质的清除,处理效果更为理想。

2.2化学法处理技术

针对石油化工废水进行处理还可以采用化学法进行操作,这种化学法处理技术的应用主要就是利用合适的化学试剂,促使其能够和石油化工废水发生理想反应,进而也就能够较好实现对于原有不可清除物质的有效清除,降低可能形成的明显污染程度。在石油化工废水中有毒污染物的清除处理中,就可以借助于这种化学法进行操作,促使其净化效果更强,并且还具备理想的回收利用优势。当然,往往仅仅依靠化学法很难达到十分理想的石油化工废水处理效果,需要协同其它方法进行共同处理。

2.3生物法处理技术

在石油化工废水处理中,合理运用生物法是比较重要的一类技术手段,其能够对于石油化工废水中的很多难以降解的成分形成有效处理,提升其纯净度。结合这种生物法处理技术的应用,针对其处理对象和需求的不同,在具体选择应用中也需要予以高度重视,确保生物法的应用效益较为突出。好氧微生物在该方法中的应用比较常见,能够较好实现在有氧环境下的反应,促使其对于石油化工废水中的大量有机物形成理想降解效果,提升其废水的无害化效果,尤其是在油污去除中,这种好氧微生物的应用是比较有效的,能够达到99.99%的去除效果。厌氧微生物的应用同样也是比较常见的一类处理方式,其可以在无氧环境下进行作用,实现对于有机物的充分降解处理,在含苯二甲酸的污水处理中能够表现出更强的实际效益,应该在具体石油化工废水处理中予以充分关注。当然,一般石油化工废水的复杂性较为突出,很难采取某一种微生物进行全面彻底处理,如此也就需要借助于组合污水处理法进行处理,促使其能够形成更强的污水处理效果尽量祛除废水中的不良物质。在现阶段社会发展中,石油化工废水的处理还可以借助于膜生物反应器进行操作,其能够较好利用合理的膜分离单元进行废水净化,处理效率比较高,经济性也比较强,在当前很多石油化工废水处理中都得到了理想运用,价值较为突出。

3结语

综上所述,对于石油化工废水进行有效处理是未来石油化工行业发展需要关注的重要问题,应该进一步加大对技术手段的创新研究,综合借助物理法、化学法以及生物法,提升处理效率。确保其能够具备更强的实际应用效果,有效实现对石油化工废水的彻底清理。

参考文献:

[1]付广旭,钟晓燕.石油化工废水处理技术及有效运用研究[J].化工管理,2018,(10):143.

[2]陈文宜,武思拓,蒋靖波,马红鹏.石油化工废水处理技术及有效运用研究[J].当代化工研究,2017,(06):94-95.