电力电子器件论文范例6篇

电力电子器件论文

电力电子器件论文范文1

关键词 半导体器件 半导体物理 教学思考

中图分类号:G642 文献标识码:A 文章编号:1002-7661(2017)02-0058-02

随着半导体技术的发展,微电子技术已渗透到渗透到国民经济的各个领域。《半导体器件物理》是微电子技术的理论基础,是理解半导体器件内部工作原理的课程,是分析器件物理结构、材料参数与器件电学性质之间的联系,其提供了半导体物理与电子电路设计间的物理逻辑与数学联系,是基于CMOS工艺设计集成电路的必备知识。因而,在教学过程中,如何将物理图像、数学模型与电子电路设计间的关系讲解清楚,让学生从物理和集成电路设计的角度深层次理解半导体器件成为授课关键。

一、教学内容与预期

《半导体器件物理》是微电子科学与工程专业的重要专业基础课程,是在半导体物理课程基础上继续开展器件物理的分析、建模和应用,具有物理理论抽象、概念细节多、半导体物理与电路等学科知识相交叉等特点,学生学习较为困难。基于此,本课程授课以施敏先生著的《半导体器件物理》为主要教材,依据教学大纲和学生未来的工作实践,对《半导体器件物理》课程教学内容进行了调整、充实和删减。具体来说《半导体器件物理》教学内容可分为以下几部分:1)介绍半导体材料、PN结、半导体表面的特性等,2)讲解双极型、MOS型晶体管的结构和工作原理,3)分析几种有重要应用的半导体器件,如功率MOSFET、IGBT和光电器件等。[1,2]期望学生接受教学后的预期能力:1)能够深入理解半导体器件关键物理概念和能带理论;2)能够将半导体物理与半导体PN结的行为结合起来理解分析;3)能够以半导体PN结为基础理解几种不同的半导体器件;4)能够理解和提出新型半导体器件设计中的关键物理和电学问题。

二、教学方法及学生能力目标

本课程以课堂授课为主,同时引入小组和班级讨论、课后建模实践等互动教学方法,培养学生构建器件物理图像、建模和与电子电路设计综合联系的能力,独立发现、分析、解决器件问题的能力。同时基于《半导体器件物理》课程的特点,在教学手段上采用板书公式推导与多媒体器件模型演示为主,网络教学资源为辅,同时邀请集成电路产业半导体器件资深专家讲座等形式,提高学生掌握知识和设计实践的能力,提高教学质量。让学生渐进达到如下能力:(1)知道基本概念,(2)从理论上理解和解释,(3)能够根据器件理论做出计算、模拟和实际的器件应用,(4)对器件进行综合、设计、分析;(5)对器件能够从物理和电学的角度做出专业评价。

三、学生学习效果评价方式

为了客观评价每个学生的实际学习效果和激励学习兴趣,改革评价方式是十分必要的。在期末闭卷考试基础上,对成绩评价方式作如下新探索:增加平时成绩比例,每个月进行一次小测试,针对几个集成电路广泛应用的建模理论和半导体器件,要求学生从半导体物理的角度作出独立的分析报告,可以在课后查阅文献资料,并在后续课堂上进行交流讨论,增强学生独立思考与实践动手能力,培养学生深度器件分析能力。

课堂教学改革需要教师不断思考、总结与创新,即要传授知识,又要与学生互动反馈,让学生更深刻迅速的理解专业知识,并能灵活的实践运用。

参考文献:

[1]施敏等,耿莉等译.半导体器件物理[M].西安:西安交通大学出版社,2008.

[2]Donald Neamen著.赵毅强等译.半导体物理与器件[M].北京:电子工业出版社,2013.

[3]杨虹等.面向21世纪的微电子技术人才培养-微电子技术专业本科生教学计划的制订[J],重庆邮电大学学报,2004.

电力电子器件论文范文2

关键词:中职;电子技术;EWB仿真

中图分类号:G712 文献标识码:B 文章编号:1006-5962(2013)07-0059-01

1中职学校电子技术教学的现状

首先,电子专业学习的电子技术基础,是一门理论性和实践性都较强的课程,理论方面不但知识面广,信息量大,基础概念繁多[1],而且在有限的学时内用传统的授课形式去讲授,教学效果不太理想。

其次,由于条件限制,电子专业实验室配备的教学实验设备种类和数量都很有限,仅仅只能满足课本中最基本的教学实验要求。且实验室元器件和仪器损坏、淘汰更新滞后,无形中是影响教学效果的消极因素之一。

再次,大多数中职学生,是以中考失败者的心态进入职业学校的,在理论知识学习方面基础差,积极性不高,他们如果无法顺利接受新知识、及时掌握新内容,就会在学习过程中逐渐丧失兴趣。

影响中职电子技术教学的不利因素可能还有很多,但以上三点现状较为普遍,它们严重影响着电子专业中职生的教育教学。如何改善这些不利教学现状,计算机仿真技术为我们提供了一条理想的途径,其中EWB就是有力的解决工具之一。

2EWB的功能与特点

EWB是一种电子电路计算机仿真软件,它被称为电子设计工作平台或虚拟电子实验室,英文全称为Electronics Workbench,是加拿大Interactive Image Technologies公司于1988年开发的,是目前教育与工业界流行的电路辅助设计软件之一。

EWB主要用于电子技术中模拟和数字电路的仿真,利用这款软件不仅能绘制电路图,还能进行电路功能仿真分析[2],可以方便的从计算机屏幕上观察到各种电路的输入输出信号参数及波形,以所见即所得的方式进行电路设计和获得电路仿真结果,通过它甚至还能进行PCB设计制版。

EWB具有以下突出的特点: 1、采用直观的图形界面创建电路,在计算机屏幕上模仿真实实验室的工作台,选择合适的元器件绘制电路图、电路设计仿真需要的器件均可直接从屏幕上选取;2、软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果;3、EWB软件带有丰富的电路元件库,提供多种电路分析方法;4、作为实用设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据;5、EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。

我校教学中使用的是EWB9版本,其核心组成部分是Multisim9。如果涉及到PCB制版,还应安装Ultiboard组件。当前EWB最新版本为Multisim11。

3电子技术教学引入EWB虚拟电子实验室的作用

3.1EWB使用方便,直观理解抽象概念。

EWB是个极好的电路设计仿真工具,稍有计算机操作基础的人只需略加学习就可以很熟练地使用该软件,无需动用电烙铁和面包板即可实现电路设计搭建。若想更换电路中的元器件或改变元器件参数,只需点点鼠标即可,它极方便于作为电子技术的辅助教学软件使用。

通过仿真可以直观理解抽象概念,降低知识理解难度。例如,学习共射极三极管放大电路时,对不同的极间偏置电压和不同的输入信号大小,三极管对应有三个工作区,输入输出特性曲线复杂。在理论讲解时,中职学生对于这些特性参数,理解起来有很大的困难。利用EWB仿真,教师就可以边理论边讲解,在进行参数调整的同时,用示波器来演示相应的结果,学生对三极管不同工作区及放大的概念理解就会很直观,并能理解透彻,使抽象的知识点变得形象化。还有模拟电路中的单管放大电路工作点设计,放大电路的负反馈,多级放大电路,差动放大电路,运算放大器的应用,稳压电源设计等很多电路都可以通过仿真来实现[3]。

3.2EWB资源丰富,弥补实验设备不足和更新滞后。

中职学校电子教学中涉及到许多元器件和抽象的电路,无论是元器件的功能讲解,还是仪器仪表的使用,或者电路功能的调试,都需要大量的实验来同步模拟和验证。而大多数中职学校都存在实验设备限制、学生难以理解和缺乏实践操作的普遍问题,而将EWB仿真软件引入中职学校的电子课堂,恰恰解决了这一难题。

EWB软件可以几乎100%地仿真出真实电路的结果,它提供了万用表、示波器、信号发生器和扫频仪等11种虚拟仪器进行电路动作的测量分析工具,元件库包含了世界主流元件提供商的超过17000多种元件,其中囊括了半导体元器件(如二极管、三极管、功率管)、集成电路、数字电路芯片(如74系列、COMS系列)和控制器件(如继电器)等等。同时能方便的对元件各种参数进行编辑修改,创建自己所需的元器件,使元器件的规格、误差和故障等参数完全模拟现实元器件。

3.3通过仿真实践教学,提高学生学习积极性。

在教学中发现,中职学生大部分是初中的"后进生",他们起点低、对理论知识的接受能力不强,但其计算机操作及实践动手能力却很强。抓住这个特点,可以多开设实验课,把理论学习过程所涉及的电路、仪器以及实验结果,通过电脑仿真的形式让学生在老师的指导下一一仿真验证。仿真还可作为过渡与补充放置在教学环节的中间,即:理论教学-计算机仿真-实验环节[4]。仿真电路应根据课程的教学内容选自教材或参考书中的典型例题及课后习题。

通过EWB仿真教学,在教师讲授理论的同时,可以很方便地进行实时实验仿真,使学生对知识理论牢固掌握。学生可以很好地把刚刚学到的理论知识通过计算机仿真真实再现,有效地增强学生的学习热情调动学习积极性。

4结束语

近年来,我校在电子技术教学中引入了EWB,通过仿真教学不仅形象化了理论教学而且弥补了实验教学的不足,学生在实践动手的同时,直观形象的了解了各种元器件的功能和使用各种仪器,提高了实践学习积极性,激发了学生的创新性思维,培养了学生自己动手解决实问题的能力。

总之,在中职《电子技术》课程教学中应充分利用CAI手段,使理论教学与仿真验证相结合,将抽象的理论知识变成直观的认识,解决教学中面临的实际问题,发挥EWB仿真教学的积极作用来增强教学效果、提高实验效率、提升学生能力,使职业教学取得好的效果。

参考文献

[1]童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,2001.

[2]李国丽,应艳杰,盛华等. 电工电子实验教学改革[J].电气电子教学学报,2008,(10):60-61.

电力电子器件论文范文3

关键词:电子科学与技术;实验教学体系;微电子人才

作者简介:周远明(1984-),男,湖北仙桃人,湖北工业大学电气与电子工程学院,讲师;梅菲(1980-),女,湖北武汉人,湖北工业大学电气与电子工程学院,副教授。(湖北 武汉 430068)

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)29-0089-02

电子科学与技术是一个理论和应用性都很强的专业,因此人才培养必须坚持“理论联系实际”的原则。专业实验教学是培养学生实践能力和创新能力的重要教学环节,对于学生综合素质的培养具有不可替代的作用,是高等学校培养人才这一系统工程中的一个重要环节。[1,2]

一、学科背景及问题分析

1.学科背景

21世纪被称为信息时代,信息科学的基础是微电子技术,它属于教育部本科专业目录中的一级学科“电子科学与技术”。微电子技术一般是指以集成电路技术为代表,制造和使用微小型电子元器件和电路,实现电子系统功能的新型技术学科,主要涉及研究集成电路的设计、制造、封装相关的技术与工艺。[3]由于实现信息化的网络、计算机和各种电子设备的基础是集成电路,因此微电子技术是电子信息技术的核心技术和战略性技术,是信息社会的基石。此外,从地方发展来看,武汉东湖高新区正在全力推进国家光电子信息产业基地建设,形成了以光通信、移动通信为主导,激光、光电显示、光伏及半导体照明、集成电路等竞相发展的产业格局,电子信息产业在湖北省经济建设中的地位日益突出,而区域经济发展对人才的素质也提出了更高的要求。

湖北工业大学电子科学与技术专业成立于2007年,完全适应国家、地区经济和产业发展过程中对人才的需求,建设专业方向为微电子技术,毕业生可以从事电子元器件、集成电路和光电子器件、系统(激光器、太能电池、发光二极管等)的设计、制造、封装、测试以及相应的新产品、新技术、新工艺的研究与开发等相关工作。电子科学与技术专业自成立以来,始终坚持以微电子产业的人才需求为牵引,遵循微电子科学的内在客观规律和发展脉络,坚持理论教学与实验教学紧密结合,致力于培养基础扎实、知识面广、实践能力强、综合素质高的微电子专门人才,以满足我国国民经济发展和国防建设对微电子人才的迫切需求。

2.存在的问题与影响分析

电子科学与技术是一个理论和应用性都很强的专业,因此培养创新型和实用型人才必须坚持“理论联系实际”的原则。要想培养合格的应用型人才,就必须建设配套的实验教学平台。然而目前人才培养有“产学研”脱节的趋势,学生参与实践活动不论是在时间上还是在空间上都较少。建立完善的专业实验教学体系是电子科学与技术专业可持续发展的客观前提。

二、建设思路

电子科学与技术专业实验教学体系包括基础课程实验平台和专业课程实验平台。基础课程实验平台主要包括大学物理实验、电子实验和计算机类实验;专业课程实验平台即微电子实验中心,是本文要重点介绍的部分。在实验教学体系探索过程中重点考虑到以下几个方面的问题:

第一,突出“厚基础、宽口径、重应用、强创新”的微电子人才培养理念。微电子人才既要求具备扎实的理论基础(包括基础物理、固体物理、器件物理、集成电路设计、微电子工艺原理等),又要求具有较宽广的系统知识(包括计算机、通信、信息处理等基础知识),同时还要具备较强的实践创新能力。因此微电子实验教学环节强调基础理论与实践能力的紧密结合,同时兼顾本学科实践能力与创新能力的协同训练,将培养具有创新能力和竞争力的高素质人才作为实验教学改革的目标。

第二,构建科学合理的微电子实验教学体系,将“物理实验”、“计算机类实验”、“专业基础实验”、“微电子工艺”、“光电子器件”、“半导体器件课程设计”、“集成电路课程设计”、“微电子专业实验”、“集成电路专业实验”、“生产实习”和“毕业设计”等实验实践环节紧密结合,相互贯通,有机衔接,搭建以提高实践应用能力和创新能力为主体的“基本实验技能训练实践应用能力训练创新能力训练”实践教学体系。

第三,兼顾半导体工艺与集成电路设计对人才的不同要求。半导体的产业链涉及到设计、材料、工艺、封装、测试等不同领域,各个领域对人才的要求既有共性,也有个性。为了扩展大学生知识和技能的适应范围,实验教学必须涵盖微电子技术的主要方面,特别是目前人才需求最为迫切的集成电路设计和半导体工艺两个领域。

第四,实验教学与科学研究紧密结合,推动实验教学的内容和形式与国内外科技同步发展。倡导教学与科研协调发展,教研相长,鼓励教师将科研成果及时融化到教学内容之中,以此提升实验教学质量。

三、建设内容

微电子是现代电子信息产业的基石,是我国高新技术发展的重中之重,但我国微电子技术人才紧缺,尤其是集成电路相关人才严重不足,培养高质量的微电子技术人才是我国现代化建设的迫切需要。微电子学科实践性强,培养的人才需要具备相关的测试分析技能和半导体器件、集成电路的设计、制造等综合性的实践能力及创新意识。

电子科学与技术专业将利用经费支持建设一个微电子实验教学中心,具体包括四个教学实验室:半导体材料特性与微电子技术工艺参数测试分析实验室、微电子器件和集成电路性能参数测试与应用实验室、集成电路设计实验室、科技创新实践实验室。使学生具备半导体材料特性与微电子技术工艺参数测试分析、微电子器件、光电器件参数测试与应用、集成电路设计、LED封装测试等方面的实践动手和设计能力,巩固和强化现代微电子技术和集成电路设计相关知识,提升学生在微电子技术领域的竞争力,培养学生具备半导体材料、器件、集成电路等基本物理与电学属性的测试分析能力。同时,本实验平台主要服务的本科专业为“电子科学与技术”,同时可以承担“通信工程”、“电子信息工程”、“计算机科学与技术”、“电子信息科学与技术”、“材料科学与工程”、“光信息科学与技术”等10余个本科专业的部分实践教学任务。

(1)半导体材料特性与微电子技术工艺参数测试分析实验室侧重于半导体材料基本属性的测试与分析方法,目的是加深学生对半导体基本理论的理解,掌握相关的测试方法与技能,包括半导体材料层错位错观测、半导体材料电阻率的四探针法测量及其EXCEL数据处理、半导体材料的霍尔效应测试、半导体少数载流子寿命测量、高频MOS C-V特性测试、PN结显示与结深测量、椭偏法测量薄膜厚度、PN结正向压降温度特性实验等实验项目。完成形式包括半导体专业实验课、理论课程的实验课时等。

(2)微电子器件和集成电路性能参数测试与应用实验室侧重于半导体器件与集成电路基本特性、微电子工艺参数等的测试与分析方法,目的是加深学生对半导体基本理论、器件参数与性能、工艺等的理解,掌握相关的技能,包括器件解剖分析、用图示仪测量晶体管的交(直)流参数、MOS场效应管参数的测量、晶体管参数的测量、集成运算放大器参数的测试、晶体管特征频率的测量、半导体器件实验、光伏效应实验、光电导实验、光电探测原理综合实验、光电倍增管综合实验、LD/LED光源特性实验、半导体激光器实验、电光调制实验、声光调制实验等实验项目。完成形式包括半导体专业实验课、理论课程的实验课时、课程设计、创新实践、毕业设计等。

(3)集成电路设计实验室侧重于培养学生初步掌握集成电路设计的硬件描述语言、Cadence等典型的器件与电路及工艺设计软件的使用方法、设计流程等,并通过半导体器件、模拟集成电路、数字集成电路的仿真、验证和版图设计等实践过程具备集成电路设计的能力,目的是培养学生半导体器件、集成电路的设计能力。以美国Cadence公司专业集成电路设计软件为载体,完成集成电路的电路设计、版图设计、工艺设计等训练课程。完成形式包括理论课程的实验课时、集成电路设计类课程和理论课程的上机实践等。

(4)科技创新实践实验室则向学生提供发挥他们才智的空间,为他们提供验证和实现自由命题或进行科研的软硬件条件,充分发挥他们的想象力,目的是培养学生的创新意识与能力,包括LED封装、测试与设计应用实训和光电技术创新实训。要求学生自己动手完成所设计器件或电路的研制并通过测试分析,制造出满足指标要求的器件或电路。目的是对学生进行理论联系实际的系统训练,加深对所需知识的接收与理解,初步掌握半导体器件与集成电路的设计方法和对工艺技术及流程的认知与感知。完成形式包括理论课程的实验课时、创新实践环节、生产实践、毕业设计、参与教师科研课题和部级、省级和校级的各类科技竞赛及课外科技学术活动等。

四、总结

本实验室以我国微电子科学与技术的人才需求为指引,遵循微电子科学的发展规律,通过实验教学来促进理论联系实际,培养学生的科学思维和创新意识,系统了解与掌握半导体材料、器件、集成电路的测试分析和半导体器件、集成电路的设计、工艺技术等技能,最终实现培养基础扎实、知识面宽、实践能力强、综合素质高、适应范围广的具有较强竞争力的微电子专门人才的目标,以满足我国国民经济发展和国防建设对微电子人才的迫切需求。

参考文献:

[1]刘瑞,伍登学.创建培养微电子人才教学实验基地的探索与实践[J].实验室研究与探索,2004,(5):6-9.

电力电子器件论文范文4

一、掌握重点、难点

1.课程的重点

各类电力电子器件的通断控制特性、四类基本电力电子开关电路拓扑结构、实现电力电子变换和电力电子补偿控制的原理、电力电子变换的过程中运行参数的变化及实时控制特性、输入输出电流电压波形分析。

2.课程的难点

电力电子电路种类繁多,当电路中含多个开关器件时电路的运行模态较多,且理解电力电子电路特性时常常要从s级、ms级和us级等不同时间尺度人手,因此学生学习时容易被本门课程表面的繁杂所迷惑,甚至感到无所适从。而且本门课程实践性很强,学生在课程学习时难以将所学知识与实践相结合。

二、整合教学内容

1.优化课程内容

晶闸管是半控型器件的代表,在20世纪90年代前期,应用范围相当广泛。但从20世纪80年代初,以P-MOS-FET和IGBT为代表的全控型器件发展迅速,目前已经成为电力电子领域的核心器件,这影响到主电路拓扑结构、控制方法,也同样影响电力电子技术课程的教学。在教学过程中,将半控型器件的相关内容删减,介绍全控型器件的特性,由全控型器件组成的斩波器、逆变器、变频器。压缩和删减一些已过时或在实际工程中应用较少的器件和电路。例如在整流电路章节中晶闸管直流电动机系统,原来它是可控整流装置的主要用途之一,但目前已由全控型器件构成的PWM脉宽调制电路所取代,因此在授课时就简单介绍。在删减晶闸管教学的同时,必须强化全控型器件及电路、控制方法的教学。

在课程内容上,将电力电子技术的内容分为有机的几个部分,提出了新的课程内容设置思路,即以电力电子开关器件为核心、以四类基本变换器和两种控制方法为基础、以四类应用为目标,兼顾当前技术发展,这种内容设置方法有利于学生掌握课程核心内容。

在器件学习中,就着重指出全控型尤其是电压型全控器件的优点,让学生知道全控器件制造工艺的发展决定电力电子的发展。在讲授斩波电路和逆变电路时,要以全控器件为基础。对脉宽调制PWM控制技术这一章要重点讲解,指出正是采用了全控器件才得以使这一技术得到大量应用,成为电力电子的核心技术,是电力电子技术的一场革命。另外结合应用,要加强交直交变频和直流开关电源的教学。

2.适当增加最新技术的教学

由于电力半导体器件和微电子半导体器件日新月异的发展,电力电子技术每隔不久便有一个新飞跃,其应用领域也在不断扩大。要及时传授该学科的前沿知识、介绍其发展趋势,使学生对该学科有一个清晰的认识。如对当前电力电子最新应用:矩阵式交一交变换器、电网谐波抑制技术、功率因数提升技术等内容作较为详细的介绍。另外,应加强理论联系实际,介绍一些和生活息息相关的应用,如电子镇流器,增加学生的见识,提高他们的学习兴趣。

三、改进方法和手段

1.培养学生的主动性,提高学习兴趣

从第一节课开始,通过大量的图片,演示了电力电子的多种应用,包括工业生产、交通运输、电力系统、家用电器、航天飞行器等。通过这些生动的实例,使学生明白电力电子其实就在身边。这门课的内容不是空洞的理论,而是与实际紧密结合的。在讲授DC-DC变换器时,与直流开关电源结合起来,并制作了小功率Buck变换器样机。演示时调节占空比,观察输出电压,学生印象深刻。此外,还向学生推荐阅读相关的期刊,并精选了几篇文章让学生仔细阅读。这些文章从理论分析、电路设计、控制系统设计到仿真和实验验证都比较完整,内容具备典型性,让学生初步了解电力电子科研和最新发展的动态。这些措施改变了以往学生被动接受的状态,学生对这门课的兴趣大大提高,学习有了主动性。

2.利用现代化教学手段,改善教学效果

近年来,多媒体教学逐渐代替了板书成为主流课堂教学手段,那么这种静态的演示文稿却还不能吸引学生。如何有效地利用多媒体手段,将枯燥的分析变得生动,也是该课程教学中一个棘手的问题。具体对于电力电子技术课程,方法是使图形、波形动起来。采用了相对易用的软件Matlab/Simulink。软件中有完善的电力电子工具包SimPow-ersystem,其中有各种器件、电源、负载、测量和波形显示元件等,可以搭建教材中的各种电路。在课堂上演示给学生,且可以方便地修改电路的参数。为了使演示界面更友好,我们在课下制作flash课件,可进一步丰富教学资源。采用这些方法后,大大改善了课堂讲授效果。

四、加强实践能力

在学校的大力支持下,近年来实验教学从教学思想、实验教学管理和教学条件上都有了很大改进,正在由演示性、验证性实验向设计性和创新性实验发展,由封闭实验室管理向开放管理发展,由单一的电力电子实验向综合性实验发展,由教师主导进行实验向发挥学生自主性发展。

调整实验的内容,保证实验的先进性、代表性和方向性实验内容,首先要考虑理论教学的进度及其知识的难点和重点,以利于学生对基本理论、基本原理的掌握;其次要对原有的实验内容进行筛选、补充、综合,减少验证性实验,多开一些综合性、设计性实验。对电力电子技术实验,保留原有的晶闸管整流、逆变的验证性实验,使学生对本课程的应用有初步认识,对直流斩波、交一交变换以及PWM控制技术部分的实验,则可开出设计型实验,由教师给出电路参数,由学生自行设计主电路,选择器件及其驱动电路、保护电路,进而完成实验,培养学生分析问题,解决问题的能力。

五、探索改革方向

电力电子技术课程的教学也是一门艺术,要上好这门课是不容易的。除了开发多媒体动态课件外,下一步的工作是开发出仿真实验平台,提供更多的虚拟实验项目,为学生的自主学习提供一个宽松的环境。

电力电子器件论文范文5

关键词 虚拟仿真 电工电子 教学 实践

中图分类号:G420文献标识码:A

The Application of Virtual Simulation Technology in

"Electrical and Electronic Technology" Teaching

YU Ruihong, LIU Shucong, WANG Quansheng

(Institute of Disaster Prevention, Sanhe, Hebei 065201)

AbstractSome reform and innovation were done on the traditional teaching model, combining with electrical and electronics teaching and curriculum design practice. Virtual simulation software Multisim10 were applied to the "electric and electronic technology" teaching, and the application of software Multisim10 in classroom teaching and curriculum practice were introduced, through the basic common-emitter amplifier and other examples. The teaching practice showed that simulation technology can compensate for the lack of traditional experiments, optimize circuit design, and improve the level of student to design and develop circiuts.

Key wordsvirtual simulation; electrical and electronic; teaching; practice

0 引言

电工电子技术是一门实践性很强的专业基础课,实验教学在这门课程中占有举足轻重的地位,它着重培养学生的实验操作技能和严谨踏实的科学作风,是提高学生分析问题、解决问题以及理论联系实际能力的重要环节。目前,传统的电工电子实验是学生在实验室根据给定的电路图和元器件搭建实验电路,用仪器测量数据,得出结论。传统实验教学在学生增加实物电子元器件知识、培养正确使用仪器仪表的方法及掌握基本的工程测量技术等方面有着无可替代的优势。但是,传统实验也存在实验器件老化,调试不方便,读数误差大,综合性和设计性实验比例偏少等缺点,不利于促进学生综合能力和创新能力的培养。

随着计算机技术的发展,现在已出现利用计算机仿真技术来完全或部分模拟实验设备的情况,运用电路设计仿真软件设计电路,是提高电子线路设计水平和能力的有效方法。利用虚拟仿真技术,教师在用电子教案教授理论知识的同时,可用仿真软件教学,使理论和实践相结合,让学生亲自感受到实际动手操作的乐趣,有效地提高了学生的学习兴趣和效率。

1 仿真技术在教学中的应用

仿真教学是现代教学中的一种全新的教学模式,它既是一种重要的教学方法、教学手段,又是一种新的教学理念。它在教学中显示出来不受时间、空间、经费、组织形式制约的优点和作用是传统教学无法比拟的。Multisi10仿真软件具有友好的用户界面,操作方便,具有数字、模拟及数字/模拟混合电路的仿真能力。它提供的测试仪器和某些仿真元器件的外形与实物非常接近,操作方法也基本相同,是一款非常好用的电子电路仿真软件。将Multisim软件应用于电子技术的教学中,有利于改善教学方法和提高教学效果,有利于学生理解抽象的知识,激发学生的学习兴趣,提高学生综合设计能力。下面结合具体的实例说明Multisim软件在课堂教学中的应用。

1.1 共射放大电路分析

图1基本共射放大电路

图2射极电压图3共射放大电路三极电压

在三极管的基本电路分析这一节中,有不少知识点学生感到难于理解,在做实验时所测得的数据也不一定与理论符合,而我们通过仿真可以很好地掌握各个知识点。首先,依照所设计的电路图搭建电路,如图1所示,接入电压表,编辑完元件(元件参数及标签,快捷键等)后进行电路仿真;然后双击万用表(XMM1)图标,就可以观察三极管e端对地的直流电压,如图2所示。

(1)静态分析。在前面搭建好的电路之上,调节滑动变阻器的阻值,使万用表的数据为2.2V。执行菜单栏中simulate/analyses/DC Operating Point,这样便可得到三极管的三个极的静态电压,即基极,射极,集电极的直流电压,如图3所示。

(2)动态分析。在图1中在输入端加入幅值为 10mV的正弦电压信号,输出端分别接1.5k负载和空载。单击仪表工具栏中的第四个按钮(即:示波器Oscilloscope),并将其接入电路中。单击工具栏中运行按钮,便进行数据的仿真。然后双击示波器图标,得放大电路在接1.5k负载和空载时的输出电压波形,如图4和图5所示。

根据以上仿真结果,学生们可得出如下结论:①静态时基极和射极间电压UBEQ为0.6V~0.8V;②输出电压比输入电压幅值大,电路具有电压放大作用;③输出电压与输入电压在相位上相差 1800,共射极电路具有反相作用;④放大电路的放大倍数与负载有关,负载越大,放大倍数越大。

学生通过观察仿真结果、思考、总结归纳得这些结果,因此印象深刻,理解较透彻。

1.2 低通二阶滤波电路分析

图6 低通二阶滤波电路

图7低通二阶滤波电路特性

2 仿真技术在课程实践中的应用

有源滤波器在信号处理中有广泛的应用,尤其是去除传输过程中无用或者有害信号的频率分量。以前通过理论计算分析有源滤波器的幅频特性,现在利用Multisim仿真软件可得到各种滤波器的幅频特性曲线图,与理论分析对比,学生能够更加形象地掌握各种滤波电路的功能和特性。搭建如图6所示的低通二阶滤波电路,进行仿真之后得到图7所示的频率特性,可以比较直观地看出此滤波电路就是低通滤波电路。通过仿真实验,学生可以自由改变系统的结构、参数,通过观察各个节点的波形来了解模型中每一部分对结果的影响,直到找到满意的理论模型和相应的参数,将呆板的实验变为研究性的学习。

将虚拟仿真技术应用于电工电子技术理论课教学,借助电子线路仿真功能,随时改变电路结构和参数,动态演示电路的特性变化,将原来非常抽象复杂的理论知识变得直观形象,增强了学生的感性认识,加深了对所学知识的印象,降低了学习难度,提高了课堂效率和教学效果。

在课程综合设计和实践中,受实验经费、实验场地、实验耗材等条件的限制,综合性、设计性实验比例偏少,不利于促进学生自主创新意识和创新能力的培养。Multisim软件如同一个大的电工电子实验室,不受器件种类、数量和实验设备的限制,教师可以指导学生做一些综合性、设计性实验,比如数字电路中的数字钟,多功能抢答器,频率计,信号发生器等综合性的实验,这些都能够很好地提高学生的能力,促进学生自主创新意识和创新能力的培养。下面以数字钟为例简单说明数字钟的设计原理。

2.1 设计要求

要求设计一个具有“时”、“分”、“秒”的十进制数字显示(小时从00~23)的计时器,具有手动校时、校分的功能,用74系列中小规模集成器件去实现。

2.2 数字计时器的基本设计原理

数字计时器一般都由振荡器、分频器、译码器、显示器等几部分组成。其中,振荡器和分频器组成标准秒信号发生器,由不同进制的计数器、译码器和显示器组成计时系统。秒信号送入计数器进行计数,把累计的结果以“时”、“分”、“秒”的数字显示出来。“时”显示由二十四进制计数器、译码器和显示器构成;“分”和“秒”显示分别由六十进制计数器、译码器和显示器构成。数字钟原理框图如图8所示,主要设计部分分析如下:

(1)振荡器:通常选用石英晶体来构成振荡器电路。一般来说,振荡器的频率越高,计时的精度就越高。

(2)分频器:功能主要有两个:一是产生标准秒脉冲信号;二是可提供功能扩展电路所需要的信号。选用中规模计数器74LS90D,每片为1/10分频器,选择合适的片数级连即可获得1Hz标准秒脉冲信号。如果振荡频率为100kHz,就得需要5片74LS90D进行级连。

(3)计数器:根据图8所示,显示“时”、“分”、“秒”需要6片中规模计数器。其中,“分”、“秒”位计时各为六十进制计数器,“时”位计时为二十四进制计数器。六十进制计数器和二十四进制计数器都选用74LS90D集成块,采用反馈清零法。

(4)校时电路:当刚接通电源或计时出现误差时,都需要对时间进行校正。将各模块连接成完整的电路,就能方便地设计出数字钟电路,使得学生们能够学以致用,激发了他们的学习兴趣,另外通过不断的改变控制逻辑电路部分,可以使电子钟表的功能不断地得到完善,使得学生们的创新能力得到了锻炼和提高。

图8数字钟设计原理图

3 结束语

Multisim软件如同一个大的电工电子实验室,可以弥补实验设施的不足,为实验提供了极大的便利,极大地提高了实践教学环节的质量;Multisim软件还可以辅助理论教学,教师可以在讲解完理论后直接进行实验和演示,使得物理过程更为形象直观;此外,Multisim软件用户界面直观,操作方便,学生在课后可自己设计电路,加理解电路功能及仪器仪表的使用,还可激发学生的学习兴趣,有效地调动学生的主观能动性,学生可以自主开发和设计一些电路,激发了学生的创新意识,培养了学生的创新能力。

利用Multisim软件提供的虚拟电子工作平台,可以方便地完成各项实验和教学工作。 但是仿真软件的操作不能代替实际电路,要充分发挥传统实验和虚拟实验各自的优势,在保留传统硬件实验的前提下,将以计算机仿真技术为主的仿真实验融合到传统的实验教学中来,构建一个新型的实践教学体系,以提高学生动手能力、分析问题解决问题的能力,提高学生自主创新意识和创新能力,全面提升学生的综合素质。

参考文献

[1]王冠华.Multisiml0电路设计及应用[M].北京:国防工业大学出版社,2008.

[2]马风格,梁夏,李桂香.Multisim在电子线路实验教学中的应用探索[J].实验技术与管理,2005(12):73-75.

[3]陈晓文.基于Multisim2001的电子线路仿真实验[J].山西电子技术,2005(5):14-16.

电力电子器件论文范文6

(河南省工业设计学校,河南 郑州 450002)

【摘要】该文叙述了高职院校电子产品制造工艺课程的项目化教学改革过程,以典型电子产品生产为主线,将整个课程的5大模块:元器件检测、电路板装配、焊接、调试、技术文件等理论知识与实践融为一体。激发了学生参与各项目的主动性,培养了小组间团队合作意识,体现了高等职业教育培养高素质、技能型专门人才的目标。

关键词 电子产品制造工艺;项目化教学;过程考核

Application of Project Teaching in Higher Vocational Electronic Product Manufacturing Process

GU Xiao-ya ZHANG Shuang-ling

(Industrial Design School of He’nan Province,Zhengzhou He’nan 450002,China)

【Abstract】This paper describes the process of electronic product manufacturing process of the higher vocational college curriculum project teaching reform, taking the typical electronic products as the main line, the 5 module of the entire curriculum: components detection, circuit board assembly, welding, debugging, technical documents and theory and practice into a body. Stimulate students´ initiative to participate in the project, foster a sense of team cooperation group, reflects the higher vocational education to cultivate high-quality, skilled talents who target.

【Key words】The manufacturing process of electronic products;Project Teaching;The process of assessment

1 课程简介

电子产品制造工艺课程是我校电子信息工程技术、电子工艺与管理两个专业的专业基础课程,是学生必修的专业技术课程,是学生专业能力的重要组成部分。通过本课程的学习,使学生全面了解电子产品制造流程中的几个主要环节:装配、焊接、调试和质量控制,成为适应现代制造业需要,能够从事电子产品生产、设备维护和工艺管理、质量控制的高端技能型人才。该课程注重培养分析问题、解决问题的能力,强化学生动手实践能力,紧密结合电类相关专业的发展需要,在专业课程体系中起到承上启下的作用。

2 项目化教学设计思路

2.1 传统教学模式之弊端

《电子产品制造工艺》课程内容丰富,它是电子制造企业培训不同层次工程技术人员的指导性课程,这就要求在教学过程中更多的体现实践性。传统的教学模式下,先集中学习理论,后进行综合实践,这就使得理论教学和实践教学无法连接,学生在学习理论知识时,因无法跟生产实际相联系,会感觉学习内容过于抽象,不具体,逐渐失去学习兴趣;而在实践训练时,学生往往只会操作却不知道这样操作的原理,没有理论的支撑就无法做到活学活用。

2.2 解决方案

从以上情况分析,本课程教学改革的探索应从项目化教学出发,以典型电子产品生产为主线,采用模块化教学,将整个课程分为5大模块:元器件检测、电路板装配、焊接、调试、技术文件等,并以项目的形式呈现,真正将理论与实践融为一体。通过具体任务案例,按项目实施的顺序逐步展开,让学生在技能训练过程能够学到相关专业知识,这样就相当于在学校就能完成电子制造企业对员工的培训。

3 项目化教学系统的构建与实施

电子产品制造从通孔插装(THT)方式到表面安装(SMT)方式的工艺技术转换,是一个相当长时间的、不平衡的发展过程,在全世界各国制造的电子产品中,目前已经有多数产品全部采用了SMT元器件,但是仍然有相当一部分是采用的是THT和SMT元器件混装工艺[1],因此,在一学期十六周,每周6课时的情况下,《电子产品制造工艺》课程选择6个具有代表性的电子产品进行项目化教学,其中2个完全采用插件元器件,2个完全采用贴片元器件,2个采用THT和SMT混装元器件。下面以采用THT和SMT混装元器件的收音机的制作,来浅谈项目化教学在电子产品制造工艺课程中的实施过程。

(1)项目描述及目标:由教师来对项目做详细的描述和目标分析。本产品采用电调谐单片FM收音机集成电路,接收频率为87-108MHz,外观小巧,因此大部分元器件采用0805的贴片封装形式,极少部分元器件采用THT封装。通过该产品的制作,使学生将包括元器件检测,电路板装配、焊接、调试及技术文件等五部分内容全部联系起来。

(2)组建项目组:根据产品的复杂程度,按照男女生搭配、动手能力、对理论知识的理解能力等因素,将学生分为3人一组。

(3)项目分析:在项目分析的过程中,由师生共同讨论,并结合多媒体幻灯片引导学生学习贴片元器件的检测原理及方法(因在前面完全采用插装元器件的项目中已经学习了插件元件的检测),SMT印制电路板的特点及装配焊接工艺方案,混合组装电路板工艺流程等相关知识。

(4)项目实施:首先是进行技术文件的编制,包括进行工作原理分析的基础上绘制电路原理图,装配图,元器件清单,装配及焊接工艺流程图等一些技术文件和工艺文件(6学时)。然后,将该产品所有的元器件分发给每个小组,学生对这些元器件进行数量和种类的统计,通过检测理论的学习和查阅资料,用万用表对各种元器件进行测量(4学时)。接下来学生开始讨论自动化生产方式和手工方式下电路板混合组装的生产工艺流程,确定装配焊接的顺序,先贴片后插件(4学时)。最后进行电路板的调试并进行成品组装(2学时)。

(5)小结与评价:在项目结束时,教师要收取每小组学生的综合论文,听取项目答辩,对完成的情况,提出优点和不足,针对出现的共性问题,予以解答。对答辩过程出现的创新点提出表扬和推广。

4 总结

在本课程6个项目中,全部采用THT元器件和全部采用SMT元器件的项目,以及上面举例说明的混合组装收音机的项目,这5个项目,教师和学生全部参与进来,到最后一个混合组装的项目时,就由学生独立完成,教师在整个项目实施过程中,起到了监考官的作用,这个项目每对的成绩就作为期末成绩。

在考核方式上,项目化教学较之传统的教学法更多注重了过程考核,而且每一个项目均考查学生的基础理论知识和实践能力,大多数学生参与项目化教学会更加积极主动,同时也培养了小组间的团队合作意识,这就更加体现了高等职业教育要培养德智体全面发展的,高素质、技能型专门人才的目标。

参考文献

[1]王卫平,陈粟宋,肖文平,主编.电子产品制造工艺[M].北京:高等教育出版社,2011,6.