神经网络特征范例6篇

神经网络特征

神经网络特征范文1

关键词:神经网络;多重特征;色情图像

中图分类号:TP391.41

随着网络的高速发展,互联网已极大地改变了人们的生活,成为人们生活中不可或缺的一部分。而如今网络上的色情图像越来越多,色情图像会对青少年身心造成了极大的伤害,急需加强对色情图像的管控力度。而基于特征的图像检索技术正是正确识别色情图像的基础,Forsyth[1]小组将人体看做符合一定规则的若干柱状区域组合,通过颜色和纹理特征确定图像中的皮肤区域,再在皮肤区域中寻找柱状投影区,从而识别人体,但该算法的识别率不高且处理速度较慢。eVe是eVision[1]公司开发的图像搜索引擎,用于对不良图像信息进行检测和过滤,它通过肤色过滤、分割图像和特征比较三个阶段,但该引擎在判定相似度为40%至70%时需人工干预,不能完全实现自动化。胡冠宇提出了一种人体特定部位的敏感图像过滤器,该过滤器可以检测到人体的胸前部位和部位,再通过结合脸部特写分类器,可以达到较好的检测效果。

先将色情图像的敏感区域图像块作为训练图像,供BP神经网络学习。再确定出待检测图像中的皮肤区域,根据皮肤区域对图像进行分块操作,提取每个块的多重特征,再通过BP神经网络检测该图像所对应的块中是否包含敏感图像块,若存在敏感图像块,则判定该检测图像为色情图像。

1 色情图像的特征提取

形状、颜色、纹理是色情图像最为突出的三个特征。本算法通过提取这三种特征构成多重特征对色情图像进行检测。

本算法中提取的多种特征中使用Hu矩对图像的形状信息进行描述。Hu矩是Hu提出的基于代数不变的矩不变量。通过对几何矩的非线性组合,利用二阶和三阶中心矩得出7个不变矩,具有较好的旋转不变性。多重特征中还包括图像的纹理特征。本算法采用灰度共生矩阵来描述图像的纹理信息。灰度共生矩阵通过对图像上保持某距离的两像素分别具有的灰度的状况进行统计得到的,本算法通过下面四个灰度共生矩阵的能量、对比度、逆差距和相关度四个属性对图像纹理信息进行描述:

颜色特征也是色情图像重要的特征之一。本算法选取HSV颜色空间,HSV颜色空间较为直观。其中H指色相,即颜色名称;S指的是饱和度,即色彩的纯度,饱和度越高表示色彩越纯,越低则色彩越灰;V指的是色调,即色彩的明度。在本算法中,颜色特征主要用于检测皮肤区域,将原图像转换到HSV空间后,按照阈值的设定,将满足要求的区域作为皮肤区域。

2 检测算法设计

2.1 BP神经网路分类器设计

BP神经网络的学习过程分为正向传播和误差的反向传播,其主要思想是在网络结构搭建之后,通过正向传播获取整个网络的误差,然后通过反向传播根据具体的误差情况调整网络中的各个权值,最终确定网络中输入与输出的映射关系。本算法将神经网络设为两层,一层为隐含层,另一层为输出层。将训练图像块分为4类,分别为胸部图像、肚脐图像、敏感区域图像和皮肤图像。所以输出层设为4个神经元,而隐含层神经元的个数暂设置为20。隐含层的激活函数为对数S型转移函数,而输出层的激活函数则为线性函数。

2.2 BP神经网络检测算法步骤

图1 BP神经网络检测算法流程图

本算法分为训练和测试两个阶段:

训练阶段:

(1)通过人工的手段获取已确认的色情图像中敏感区域,将敏感区域划分为100*100的块,每一个块都要包含较一个明显色情的特征,如女性胸部、肚脐、腋窝等。

(2)分别提取每一个图像块的纹理、形状、颜色特征,其中纹理特征用灰度共生矩阵的能量、相关度、逆差距、对比度四个参数来描述,而形状特征则用Hu矩来描述,颜色特征则通过判断不同颜色占图像块的比例来描述。对每一个图像块形成一个与之对应的14维的特征列向量。

(3)将不同图像块的特征列向量构成特征矩阵,作为训练样本供BP神经网络中进行学习。

测试阶段:

(1)将待检测图像从RGB空间转换至HSV空间,按照对皮肤区域的颜色设定选取图像中皮肤区域。

(2)对图像先进行闭操作,再填充连通区域中的“空洞”区域,使获取的的皮肤区域为个数较少的连通区域。将图像裁剪为只包含连通区域,以n*100为边长的最小块,对边缘区域则以镜像的形式补全。将裁剪后的图像以100为边长分为n*n个小图像块,若小图像块中的皮肤区域面积大于三分之一,则提取该图像块的多种特征信息,生成14维特征列向量。

(3)将该图像所生成的特征列向量构成特征矩阵,用已经训练完成的BP神经网络对该特征矩阵进行测试,判定每个小图像是否为色情图像块,若从该图像中检测出了超过阈值的色情图像块个数,则判定该图像为色情图像。

3 实验结果及分析

本文选取了58个小图像块作为训练样本供BP神经网络学习。这些小图像块分别为女性的肚脐、胸部、皮肤和敏感区域。为了测试本算法的检测效果,本节选取了40幅图像对本算法进行测试,其中色情图像26幅,正常图像16幅,包含人像图像,风景图像,城市建筑等,使正常图像具有一定的普遍性。为了量化检测效果,本文分别使用precision和accurate来表示检测的精确度和准确率,其中:

Ndetect_true为正确检测出的色情图像的张数,Nmiss为没有被检测出的色情图像的张数,Ndetect_false为正常图像被误检为色情图像的张数。precesion表示了色情图像被检测出的概率,而accurate则表示了检测出的图像为色情图像的概率。

表1 不同神经元个数检测对比

神经元个数 5 10 15 20

Precision 0.885 0.885 0.730 0.846

Recall 0.885 0.852 0.826 0.846

表1显示了本算法在不同隐含层神经元个数下的检测效果,观察表1可以发现,随着隐含层神经元个数的不断增多,本算法的检测效果呈略微下降的趋势,但在神经元为15和20时检测效果有起伏。这是由于训练样本和测试图像的数量都不大,如果采用较大的网络结构,则会导致训练的效率不高,出现过拟合的现象,造成网络的性能较低,从这也可以看出神经网络中隐并不是隐含层节点的个数越多越好,只有合适的网络结构才可以使神经网络发挥最大的功效。

通过实验发现,随着训练次数的增多,BP神经网络算法的收敛速度较慢,这是因为BP神经网络算法本质上是梯度下降算法,所以使用它对目标函数进行优化是比较复杂的。这使得本算法的效率并不是特别高。为了解决这个问题,本实验通过设置学习速率来加速神经网络的收敛速度。不难发现,较高的学习速率可以加速BP神经网络的收敛速度,但若学习速率设置的过高,则会导致产生震荡,反而导致算法更不容易收敛。经实验测试,则本算法中,将学习速率设为0.3。图2为用训练图像对BP神经网络进行训练时的训练效果图。从图中可以看出收敛速度较为平稳。

图2 神经网络训练图

4 结束语

本文提出了一种基于BP神经网络和多重特征的色情图像检测算法,不同特征的融合可以更好地使用特征行向量来描述色情图像的色情区域,通过将色情图像块对应的特征行向量组成特征矩阵,将其作为训练样本供BP神经网络学习。经实验,学习后的神经网络对色情图像的检测效果较好,但本算法对侧面等类型的色情图像的鉴别能力不够,经常会造成误检测,造成这样的原因是BP神经网络对训练样本较为依赖,只有增加训练样本的种类和数量,才能更好地对各种类型的色情图像进行检测。

参考文献:

[1]郭沛猛.基于内容的不良图像识别关键技术研究[D].北京:中国人民公安大学,2008.

[2]徐欣欣,袁华,张凌.基于颜色和纹理特征的图像过滤方法[J].华南理工大学学报,2004(12).

[3]陈家伟.基于内容的图像过滤[D].广州:华南理工大学,2010.

[4]蔡政,丁宣浩,陈丽霞.敏感图像识别算法研究[J].企业科技与发展,2012(03).

[5]郭航,霍宏涛.灰度共生矩阵在皮肤纹理检测中的应用研究[J].中国图像图形学报,2010(03).

作者简介:李睿智(1988-),男,网络安全保卫学院硕士研究生,研究方向:图像处理,计算机网络。

神经网络特征范文2

【关键词】图像分类深度 卷积神经网络 加权压缩近邻

1 研究背景

手写数字识别是一个经典的模式识别问题。从0 到9这10 个阿拉伯数字组成。由于其类别数比较小,它在些运算量很大或者比较复杂的算法中比较容易实现。所以,在模式识别中数字识别一直都是热门的实验对象。卷积神经网络 (Convolutional Neural Networks,CNN),在手写体识别中有着良好的性能。卷积神经网络的神经元是局部连接,神经元之间能够共享权值。深度卷积神经网络不但可以解决浅层学习结构无法自动提取图像特征的问题,并且提高了分类的泛化能力和准确度。

2 深度卷积神经网络

深度卷积神经网络是一种具有多层监督的神经网络,隐含层中的卷积层和池采样层是实现深度卷积神经网络提取特征的核心模块,并通过使用梯度下降算法最小化损失函数来进行权重参数逐层反向调节,再经过迭代训练提高分类精确度。

深度卷积神经网络的首层是输入层,之后是若干个卷积层和若干个子采样层和分类器。分类器一般采用Softmax,再由分类器去输出相应的分类结果。正常情况下,一个卷积后面都跟一个子采样层。基于卷积层里权值共享和局部连接的特性,可以简化网络的样本训练参数。运算之后,获得的结果通过激活函数输出得到特征图像,再将输出值作为子采样层的输入数据。为了实现缩放、平移和扭曲保持不变,在子采样层中将之前一层对应的特征图中相邻特征通过池化操作合并成一个特征,减少特征分辨率。这样,输入的数据就可以立即传送到第一个卷积层,反复进行特征学习。将被标记的样本输入到Softmax分类器中。

CNN 能够简化网络的样本训练参数,降低计算难度。这些良好的性能是网络在有监督方式下学会的,网络的结构主要有局部连接和权值共享两个特点:

2.1 局部连接

深度卷积神经网络中,层与层之间的神经元节点是局部连接,不像BP 神经网络中的连接为全连接。深度卷积神经网络利用局部空间的相关性将相邻层的神经元节点连接相邻的上一层神经元节点。

2.2 权重共享

在深度卷积神经网络中,卷积层中每一个卷积滤波器共享相同参数并重复作用,卷积输入的图像,再将卷积的结果变为输入图像的特征图。之后提取出图像的部分特征。

在得到图像的卷积特征之后,需要用最大池采样方法对卷积特征进行降维。用若干个n×n 的不相交区域来划分卷积特征,降维后的卷积特征会被这些区域中最大的或平均特征来表示。降维后的特征更方便进行分类。

3 实验结果

为了验证卷积神经网络的有效性,本实验中使用以最经典的MNIST 和USPS 库这两个识别库作为评测标准。手写数字MNIST数据库有集60000 个训练样本集,和10000 个测试,每个样本向量为28×28=784维表示。手写数字USPS 数据库含有7291 个训练样本和2007 个测试样本,每个样本向量为16×16=256 维。

表1给出了卷积神经网络在MNIST 和USPS 库上的识别结果。从表1中可知,深度卷积神经网络对MNSIT 库识别率能够达到97.89%,与用BP 算法得到的识别率94.26%相比,提高了两个多百分点。对USPS 库识别率能够达到94.34%,与用BP 算法得到的识别率91.28%相比,也提高了三个多百分点。

因此,使用深度卷积神经网络算法训练在图像识别中获得更高识别率。因此,深度卷积神经网络在识别手写体字符时有着较好的分类效果。

4 总结

本文介绍深度卷积神经网络的理论知识、算法技术和算法的结构包括局部连接、权重共享、最大池采样以及分类器Softmax。本文通过深度卷积神经网络对两组手写识别库实验来验证CNN 有着较低的出错率。

参考文献

[1]赵元庆,吴华.多尺度特征和神经网络相融合的手写体数字识别简介[J].计算机科学,2013,40(08):316-318.

[2]王强.基于CNN的字符识别方法研究[D].天津师范大学,2014.

[3]Krizhevsky A,Sutskever I,Hinton G E.ImageNet Classification with Deep Convolutional Neural Networks.Advances in Neural Information Processing Systems,2012,25(02),1097-1105.

[4]郝红卫, 蒋蓉蓉.基于最近邻规则的神经网络训练样本选择方法[J].自动化学报,2007,33(12):1247-1251.

作者简介

关鑫(1982-),男,黑龙江省佳木斯市人。硕士研究生学历。现为中国电子科技集团公司第五十四研究所工程师。研究方向为计算机软件工程。

神经网络特征范文3

关键词:车牌字符;BP人工神经网络;图像识别;模式识别

引言

近年来,神经网络的智能化特征与能力使其应用领域日益扩大,潜力日趋明显。许多用传统信息处理方法无法解决的问题采用神经网络后取得了良好的效果。其中,神经网络在车牌字符识别中的应用效果尤为明显。目前,车牌字符识别主要采用两种方法,即模式匹配法和神经网络法。由于神经网络模式识别方法能够实现基于计算理论层次上的模式识别理论所无法完成的模式信息处理工作,这种方法是选用适当的字符图像特征提取方法,然后使用训练样本训练网络并构建一个识别网络作为分类器。所以,相信未来一段时期内神经网络在车牌字符识别领域中的应用还会是趋于主导地位。

1 人工神经网络简介

人工神经网络来提取特征向量,把字符平均分成8份,统计每一份内黑色像素点的个数作为8个特征, 即分别统计这8个区域中的黑色像素点的数目,可以得到8个特征。然后统计水平方向中间两列和竖直方向中间两列的黑色像素点的个数作为4个特征,最后统计所有黑色像素点的个数作为第13个特征。如下图所示:

                         

 图3 13特征提取法

神经网络特征范文4

关键词:BP神经网络;住宅项目;特征定价

中图分类号:F293.3文献标识码:A

新建住宅项目定价能否被消费者认同,对于项目投资者来说,能够快速准确地了解项目定价的合理区间是非常重要的。目前,在实际操作中运用的市场比较法、收益还原法等基本方法在估算精度、速度乃至应用范围上都具有局限性。随着计算机技术的迅速发展,近些年来兴起的人工神经网络模型的一个明显特征就是具有通过学习最佳逼近非线性映射的能力。因此,项目特征到项目定价的非线性映射关系通过人工神经网络来进行模拟求解是可行的。

一、应用BP神经网络的原理

神经网络在回归分析中较传统方法具有相对优越性,它能从大量的离散实验数据中经过学习训练,建立起反映实际过程内在规律的系统模型,BP神经网络是其中的一种较为简单但应用广泛的方法。

(一)BP人工神经网络模型构造概述。BP神经网络,由输入层、隐含层和输出层构成,各层采用全互连接,同一层中各单元不连接。通过调整各个权值和阈值,直到达到期望的误差即可。

(二)基于LM法的BP算法改进。由于标准BP算法用的梯度下降法随着接近最优值,梯度趋于零,致使误差函数下降缓慢。LM法的优点是迭代次数少,收敛速度快,精确度高,因此在训练样本时采用LM法。

二、住宅项目定价模型构建

(一)住宅项目定价特征的选取。根据Lancaster特征价格理论,模型的一般形式是:P=F(X1,X2,X3…XN),P为住宅项目均价,F为函数形式,X为住宅项目特征变量。住宅项目特征变量通常考虑的因素,可以分为建筑特征、区位特征、邻里特征、需求特征四大类,分别用L、M、N、R表示,如下:

P=F(Z)=F(L,M,N,R)(1)

变量应选取与项目整体相关的特征因素,对于特征的选取,采用专家评审法,邀请一家咨询公司5位工作8年以上的项目策划师,对住宅项目中影响定价的各种因素进行选取打分,最终选取的特征变量如表1所示。(表1)

(二)BP神经网络模型的建立。由于仅含有一个隐含层可以任意逼近连续函数,因此BP神经网络采用3层结构。BP神经网络的输入节点为7(对应特征变量数),输出节点为数为1(对应项目均价),隐层节点数根据以下公式来确定:

s=+0.51(2)

其中,m为输入层节点数;n为输出层节点数;s为隐层节点数。

将m=7,n=1带入上式,通过计算s=5,即建立7*5*1的拓扑结构。

三、应用分析

(一)研究对象。选取2008年北京、天津、沈阳、上海、南京等20个城市的78个普通住宅项目为研究对象。在选取过程中尽量保证市场的同一性,使不同城市之间的商品住宅具有可比性。

(二)变量的量化。由于样本数据较多,这里只选取测试样本数据做说明。参照表1进行量化,量化结果见表2。(表2)

(三)BP网络参数设置及训练。将规格化后的66个样本数据代入神经网络模型中,采用LM改进算法进行训练,隐含层激活函数为tansig,输出层激活函数为logsig,BP神经网络经过所设定的220次训练后,网络目标误差达到精度要求,此时的误差为:res=0.000991452。训练结束后,固定连接值和阈值并输入测试数据,测试数据的BP输出结果见表3。(表3)

(四)结果分析。样本项目的预测输出和实际值的相对误差值在0.6%~7.8%之间,平均误差为0.3828。这说明,BP神经网络在项目定价预测中具有相对的稳定性和优越性。

四、结论

与传统的住宅项目均价定价方法相比,利用BP神经网络确定新建项目均价一方面具有较高的精度;另一方面简化了计算过程,减少资源的投入,是一种快速、便捷、有效的新方法。当然,样本要尽量选取经典的,去掉一些“噪声”比较大的样本和特别复杂的项目。

(作者单位:重庆大学建设管理与房地产学院)

主要参考文献

[1]LANCASTER KJ.A new approach to consumer theory[J].Journal of Political Economy,1966.74.1.

[2]张吉礼.模糊神经网络控制原理与工程应用[M].哈尔滨:哈尔滨工业出版社,2004.

[3]王其文,吕景峰,刘广灵等.人工神经网络与线性回归的比较[J].决策与决策支持,1993.3.3.

[4]张良均,曹晶,蒋世忠.神经网络实用教程[M].北京:机械工业出版社,2008.2.

神经网络特征范文5

(江苏科技大学电子信息学院,江苏镇江212003)

摘要:在实际交通环境中,由于运动模糊、背景干扰、天气条件以及拍摄视角等因素,所采集的交通标志的图像质量往往不高,这就对交通标志自动识别的准确性、鲁棒性和实时性提出了很高的要求。针对这一情况,提出一种基于深层卷积神经网络的交通标志识别方法。该方法采用深层卷积神经网络的有监督学习模型,直接将采集的交通标志图像经二值化后作为输入,通过卷积和池采样的多层处理,来模拟人脑感知视觉信号的层次结构,自动地提取交通标志图像的特征,最后再利用一个全连接的网络实现交通标志的识别。实验结果表明,该方法利用卷积神经网络的深度学习能力,自动地提取交通标志的特征,避免了传统的人工特征提取,有效地提高了交通标志识别的效率,具有良好的泛化能力和适应范围。

关键词 :交通标志;识别;卷积神经网络;深度学习

中图分类号:TN911.73?34;TP391.41 文献标识码:A 文章编号:1004?373X(2015)13?0101?06

收稿日期:2015?01?09

基金项目:国家自然科学基金面上项目(61371114)

0 引言

随着智能汽车的发展,道路交通标志的自动识别[1?3]作为智能汽车的基本技术之一,受到人们的高度关注。道路交通标志识别主要包括两个基本环节:首先是交通标志的检测,包括交通标志的定位、提取及必要的预处理;其次是交通标志的识别,包括交通标志的特征提取和分类。

如今,交通标志的识别方法大多数都采用人工智能技术,主要有下述两类形式[4]。一种是采用“人工特征+机器学习”的识别方法,如基于浅层神经网络、支持向量机的特征识别等。在这种方法中,主要依靠先验知识,人工设计特征,机器学习模型仅负责特征的分类或识别,因此特征设计的好坏直接影响到整个系统性能的性能,而要发现一个好的特征,则依赖于研究人员对待解决的问题的深入理解。另一种形式是近几年发展起来的深度学习模型[5],如基于限制波尔兹曼机和基于自编码器的深度学习模型以及卷积神经网络等。在这种方法中,无需构造任何的人工特征,而是直接将图像的像素作为输入,通过构建含有多个隐层的机器学习模型,模拟人脑认知的多层结构,逐层地进行信息特征抽取,最终形成更具推广性和表达力的特征,从而提升识别的准确性。

卷积神经网络作为深度学习模型之一,是一种多层的监督学习神经网络,它利用一系列的卷积层、池化层以及一个全连接输出层构建一个多层的网络,来模仿人脑感知视觉信号的逐层处理机制,以实现视觉特征信号的自动提取与识别。本文将深层卷积神经网络应用于道路交通标志的识别,通过构建一个由二维卷积和池化处理交替组成的6层网络来逐层地提取交通标志图像的特征,所形成的特征矢量由一个全连接输出层来实现特征的分类和识别。实验中将加入高斯噪声、经过位移、缩放和旋转处理的交通标志图像以及实际道路采集交通标志图像分别构成训练集和测试集,实验结果表明,本文所采用的方法具有良好的识别率和鲁棒性。

1 卷积神经网络的基本结构及原理

1.1 深度学习

神经科学研究表明,哺乳动物大脑皮层对信号的处理没有一个显示的过程[5],而是通过信号在大脑皮层复杂的层次结构中的递进传播,逐层地对信号进行提取和表述,最终达到感知世界的目的。这些研究成果促进了深度学习这一新兴研究领域的迅速发展。

深度学习[4,6?7]的目的就是试图模仿人脑感知视觉信号的机制,通过构建含有多个隐层的多层网络来逐层地对信号特征进行新的提取和空间变换,以自动学习到更加有效的特征表述,最终实现视觉功能。目前深度学习已成功地应用到语音识别、图像识别和语言处理等领域。在不同学习框架下构建的深度学习结构是不同的,如卷积神经网络就是一种深度的监督学习下的机器学习模型。

1.2 卷积神经网络的基本结构及原理

卷积神经网络受视觉系统的结构启发而产生,第一个卷积神经网络计算模型是在Fukushima 的神经认知机中提出的[8],基于神经元之间的局部连接和分层组织图像转换,将有相同参数的神经元应用于前一层神经网络的不同位置,得到一种平移不变神经网络结构形式。后来,LeCun 等人在该思想的基础上,用误差梯度设计并训练卷积神经网络[9?10],在一些模式识别任务上得到优越的性能。

卷积神经网络本质上是一种有监督的深度学习算法,无需事先知道输入与输出之间精确的数学表达式,只要用已知的模式对卷积神经网络加以训练,就可以学习到输入与输出之间的一种多层的非线性关系,这是非深度学习算法不能做到的。卷积神经网络的基本结构是由一系列的卷积和池化层以及一个全连接的输出层组成,可以采用梯度下降法极小化误差函数对网络中的权值和阈值参数逐层反向调节,以得到网络权值和阈值的最优解,并可以通过增加迭代次数来提高网络训练的精度。

1.2.1 前向传播

在卷积神经网络的前向传播中,输入的原始图像经过逐层的卷积和池化处理后,提取出若干特征子图并转换成一维特征矢量,最后由全连接的输出层进行分类识别。

在卷积层中,每个卷积层都可以表示为对前一层输入图像的二维卷积和非线性激励函数,其表达式可用式(1)表示:

式中:Yj 表示输出层中第j 个输出;Y l + 1i 是前一层(l + 1层)

的输出特征(全连接的特征向量);n 是输出特征向量的长度;Wij 表示输出层的权值,连接输入i 和输出j ;bj表示输出层第j 个输出的阈值;f (?) 是输出层的非线性

1.2.2 反向传播

在反向传播过程中,卷积神经网络的训练方法采用类似于BP神经网络的梯度最速下降法,即按极小化误差的方法反向传播调整权值和阈值。网络反向传播回来的误差是每个神经元的基的灵敏度[12],也就是误差对基的变化率,即导数。下面将分别求出输出层、池采样层和卷积层的神经元的灵敏度。

(1)输出层的灵敏度

对于误差函数式(6)来说,输出层神经元的灵敏度可表示为:

在前向传播过程中,得到网络的实际输出,进而求出实际输出与目标输出之间的误差;在反向传播过程中,利用误差反向传播,采用式(17)~式(20)来调整网络的权值和阈值,极小化误差;这样,前向传播和反向传播两个过程反复交替,直到达到收敛的要求为止。

2 深层卷积神经网络的交通标志识别方法

2.1 应用原理

交通标志是一种人为设计的具有特殊颜色(如红、黄、白、蓝、黑等)和特殊形状或图形的公共标志。我国的交通标志主要有警告、禁令、指示和指路等类型,一般采用颜色来区分不同的类型,用形状或图形来标示具体的信息。从交通标志设计的角度来看,属于不同类型(不同颜色)的交通标志在形状或图形上有较大的差异;属于相同类型(相同颜色)的标志中同类的指示信息标志在形状或图形上比较接近,如警告标志中的平面交叉路口标志等。因此,从机器视觉的角度来分析,同类型中同类指示信息的标志之间会比不同类型的标志之间更易引起识别错误。换句话说,相比于颜色,形状或图形是正确识别交通标志的关键因素。

因此,在应用卷积神经网络识别交通标志时,从提高算法效率和降低错误率综合考虑,将交通标志转换为灰度图像并作二值化处理后作为卷积神经网络的输入图像信息。图2给出了应用卷积神经网络识别交通标志的原理图。该网络采用了6层交替的卷积层和池采样层来逐层提取交通标志的特征,形成的特征矢量由一个全连接的输出层进行识别。图中:W1i(i=1,2,…,m1),W1(j j=1,2,…,m2),…,W1k(k=1,2,…,m(n?1))分别表示卷积层L1,L3,…,Ln - 1 的卷积核;Input表示输入的交通标志图像;

Pool表示每个池采样层的采样池;map表示逐层提取的特征子图;Y 是最终的全连接输出。

交通标志识别的判别准则为:对于输入交通标志图像Input,网络的输出矢量Y = [y1,y2 ,…,yC ],有yj = Max{y1,y2 ,…,yC},则Input ∈ j,即判定输入的交通标志图像Input为第j 类交通标志。

2.2 交通标志识别的基本步骤

深层神经网络识别交通标志主要包括交通标志的训练与识别,所以将交通标志识别归纳为以下4个步骤:(1) 图像预处理:利用公式Gray= 0.299R +0.587G + 0.114B 将彩色交通标志图像转换为灰度图像,再利用邻近插值法将交通标志图像规格化,最后利用最大类间方差将交通标志图像二值化。

(2)网络权值和阈值的初始化:利用随机分布函数将权值W 初始化为-1~1之间的随机数;而将阈值b 初始化为0。

(3)网络的训练:利用经过预处理的交通标志图像构成训练集,对卷积神经网络进行训练,通过网络前向传播和反向传播的反复交替处理,直到满足识别收敛条件或达到要求的训练次数为止。

(4)交通标志的识别:将实际采集的交通标志图像经过预处理后,送入训练好的卷积神经网络中进行交通标志特征的提取,然后通过一个全连接的网络进行特征分类与识别,得到识别结果。

3 实验结果与分析

实验主要选取了我国道路交通标志的警告标志、指示标志和禁令标志三类中较常见的50幅图像。考虑到在实际道路中采集到的交通标志图像会含有噪声和出现几何失真以及背景干扰等现象,因此在构造网络训练集时,除了理想的交通标志以外,还增加了加入高斯噪声、经过位移、旋转和缩放处理和实际采集到的交通标志图像,因此最终的训练样本为72个。其中,加入的高斯噪声为均值为0,方差分别为0.1,0.2,0.3,图像的位移、旋转、缩放的参数分别随机的分布在±10,±5°,0.9~1.1的范围内。图3给出了训练集中的交通标志图像的示例。图4是在实际道路中采集的交通标志图像构成的测试集的示例。

在实验中构造了一个输入为48×48个神经元、输出为50 个神经元的9 层网络。网络的输入是像素为48 × 48 的规格化的交通标志图像,输出对应于上述的50种交通标志的判别结果。网络的激活函数采用S型函数,如式(2)所示,其输出范围限制在0~1之间。

图6是交通标志的训练总误差EN 曲线。在训练开始的1 500次,误差能迅速地下降,在迭代2 000次以后是一个平稳的收敛过程,当迭代到10万次时,总误差EN可以达到0.188 2。

在交通标志的测试实验中,为了全面检验卷积神经网络的识别性能,分别针对理想的交通标志,加入高斯噪声、经过位移、旋转和比例缩放以及采集的交通标志图像进行实验,将以上测试样本分别送入到网络中识别,表2给出了测试实验结果。

综合分析上述实验结果,可以得到以下结论:(1)在卷积神经网络的训练学习过程中,整个网络的误差曲线快速平稳的下降,体现出卷积神经网络的训练学习具有良好的收敛性。

(2)经逐层卷积和池采样所提取的特征具有比例缩放和旋转不变性,因此对于旋转和比例缩放后的交通标志能达到100%的识别率。

(3)与传统的BP网络识别方法[11]相比较,卷积神经网络能够达到更深的学习深度,即在交通标志识别时能够得到更高的所属类别概率(更接近于1),识别效果更好。

(4)卷积神经网络对实际采集的交通标志图像的识别率尚不能达到令人满意的结果,主要原因是实际道路中采集的交通标志图像中存在着较严重的背景干扰,解决的办法是增加实际采集的交通标志训练样本数,通过网络的深度学习,提高网络的识别率和鲁棒性。

4 结论

本文将深层卷积神经网络应用于道路交通标志的识别,利用卷积神经网络的深层结构来模仿人脑感知视觉信号的机制,自动地提取交通标志图像的视觉特征并进行分类识别。实验表明,应用深层卷积神经网络识别交通标志取得了良好的识别效果。

在具体实现中,从我国交通标志的设计特点考虑,本文将经过预处理二值化的图像作为网络的输入,主要是利用了交通标志的形状信息,而基本略去了颜色信息,其优点是在保证识别率的基础上,可以简化网络的结构,降低网络的计算量。在实际道路交通标志识别中,将形状信息和颜色信息相结合,以进一步提高识别率和对道路环境的鲁棒性,是值得进一步研究的内容。

此外,本文的研究没有涉及到道路交通标志的动态检测,这也是今后可以进一步研究的内容。

参考文献

[1] 刘平华,李建民,胡晓林,等.动态场景下的交通标识检测与识别研究进展[J].中国图象图形学报,2013,18(5):493?503.

[2] SAHA S K,DULAL C M,BHUIYAN A A. Neural networkbased sign recognition [J]. International Journal of ComputerApplication,2012,50(10):35?41.

[3] STALLKAMP J,SCHLIOSING M,SALMENA J,et al. Man vs.computer:benchmarking machine learning algorithms for traf?fic sign recognition [J]. Neural Network,2012,32(2):323?332.

[4] 中国计算机学会.深度学习:推进人工智能梦想[EB/OL].[2013?06?10].http://ccg.org.cn.

[5] 郑胤,陈权崎,章毓晋.深度学习及其在目标和行为识别中的新进展[J].中国图象图形学报,2014,19(2):175?184.

[6] FUKUSHIMA K. Neocognition:a self ? organizing neural net?work model for a mechanism of pattern recognition unaffectedby shift in position [J]. Biological Cybernetics,1980,36(4):193?202.

[7] LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient ? basedlearning applied to document recognition [J]. IEEE Journal andMagazines,1989,86(11):2278?2324.

[8] LECUN Y,BOTTOU L,BENGIO Y,et al. Backpropagationapplied to handwritten zip code recognition [J]. Neural Compu?tation,1989,1(4):541?551.

[9] CIRESAN D,MEIER U,MAsci J,et al. Multi?column deepneural network for traffic sign classification [J]. Neural Net?works,2012,32(2):333?338.

[10] NAGI J,DUCATELLE F,CARO D,et al. Max?pooling con?volution neural network for vision?based hand gesture recogni?tion [C]// 2011 IEEE International Conference on Signal andImage Processing Application. Kuala Lumpur:IEEE,2011,342?347.

[11] 杨斐,王坤明,马欣,等.应用BP神经网络分类器识别交通标志[J].计算机工程,2003,29(10):120?121.

[12] BUVRIE J. Notes on convolutional neural networks [EB/OL].[2006?11?12]. http://cogprints.org/5869/.

[13] 周开利,康耀红.神经网络模型及其Matlab 仿真设计[M].北京:清华大学出版社,2005.

[14] 孙志军,薛磊,许阳明,等.深度学习研究综述[J].计算机应用研究,2012,29(8):2806?2810.

[15] 刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014(7):1921?1930.

神经网络特征范文6

关键词:模糊控制;人工神经网络;人脸识别

中图分类号:TP18 文献标识码:A文章编号:1009-3044(2011)16-3904-03

随着人工智能技术的飞速发展,机器视觉已经成为当前人工智能研究领域的一大热点,很多国家的研究人员都开展了对机器视觉的研究,其中以机器视觉识别人脸最为困难,这主要是因为人的面部带有表情,不同的人具有不同的脸,而不同的脸具有不同的表情,不同的表情则具有不同的面部特征,如何让计算机通过机器视觉高效率的识别人脸,成为当前机器视觉和智能机器人关键技术领域的技术难题。

随着模糊逻辑控制算法和人工神经网络算法的发展,对于机器视觉识别人脸特征的算法也有了新的发展,目前多数研究算法所采用的人脸识别从实现技术上来说,主要可以分为以下几个类别:

1) 基于人脸几何特征进行的识别算法,该算法运算量较小,原理简单直观,但是识别率较低,适合应用于人群面部的分类,而不适宜于每一个人脸的识别。

2) 基于人脸特征的匹配识别算法,这种算法是预先构建常见的人脸特征以及人脸模板,构成人脸特征库,将被识别的人脸与特征库中的人脸进行逐一比对,从而实现人脸识别,该算法识别效率较高,但是应用有一定局限性,只能够识别预先设立的人脸特征库中的人脸模型,因此人脸特征库就成为该算法实现的技术关键。

3) 基于统计的人脸识别算法,该算法将人脸面部进行特征参数的划分,如两眼距离大小,五官之间距离等,通过构建统计特征参数模型实现对人脸模型的识别,该算法识别率较高,但是算法实现起来运算量比较大,且识别效率较低。

4) 基于模糊逻辑的人脸识别算法,这一类算法主要结合了模糊逻辑和神经网络能够自我训练学习的机制实现对人脸的识别,识别率较高,且算法运算量适中,但是算法的原理较难理解,且模糊逻辑控制规则的建立存在一定技术难度。

本论文主要结合模糊人工神经网络方法,将其应用于计算机人脸识别,以期从中能够找到有效可靠的人脸识别方法及其算法应用,并以此和广大同行分享。

1 模糊逻辑及人工神经网络在图像辨识中的应用可行性分析

1) 人脸识别的技术难点

由于计算机只能够认识0和1,任何数据,包括图像,都必须要转化为0和1才能够被计算机识别,这样就带来一个很复杂很棘手的问题:如何将成千上万的带有不同表情的人脸转变为数字信号并被计算机识别。由于人的面部带有表情,不同的人具有不同的脸,而不同的脸具有不同的表情,不同的表情则具有不同的面部特征,因此这些都成为了计算机识别人脸特征的技术难点,具体来说,人脸实现计算机识别的主要技术难度包括:

① 人脸表情:人有喜怒哀乐等不同表情,不同的表情具有不同的面部特征,因此如何分辨出不同表情下的人脸特征,这是首要的技术难点;

② 光线阴影的变换:由于人脸在不同光线照射下会产生阴影,而阴影敏感程度的不一也会增加计算机识别人脸特征的难度;

③ 其他因素:如人随着年龄的增长面部特征会发生些微变化,人脸部分因为装饰或者帽饰遮挡而增加识别难度,以及人脸侧面不同姿态也会对计算机识别带来技术难度。

2) 模糊人工神经网络在人脸辨识中的应用可行性

如上分析所示,计算机识别人脸,需要考虑的因素太多,并且每一种因素都不是线性化处理那么简单,为此,必须要引入新的处理技术及方法,实现计算机对人脸的高效识别。根据前人的研究表明,模糊人工神经网络算法是非常有效的识别算法。

模糊理论和神经网络技术是近年来人工智能研究较为活跃的两个领域。人工神经网络是模拟人脑结构的思维功能,具有较强的自学习和联想功能,人工干预少,精度较高,对专家知识的利用也较少。但缺点是它不能处理和描述模糊信息,不能很好利用已有的经验知识,特别是学习及问题的求解具有黑箱特性,其工作不具有可解释性,同时它对样本的要求较高;模糊系统相对于神经网络而言,具有推理过程容易理解、专家知识利用较好、对样本的要求较低等优点,但它同时又存在人工干预多、推理速度慢、精度较低等缺点,很难实现自适应学习的功能,而且如何自动生成和调整隶属度函数和模糊规则,也是一个棘手的问题。如果将二者有机地结合起来,可以起到互补的效果。

模糊逻辑控制的基本原理并非传统的是与不是的二维判断逻辑,而是对被控对象进行阈值的设计与划分,根据实际值在阈值领域内的变化相应的产生动态的判断逻辑,并将逻辑判断规则进行神经网络的自我学习,逐渐实现智能判断,最终实现准确的逻辑判断。相较于传统的线性判断规则,基于模糊规则的神经网络是高度复杂的非线性网络,同时由于其广阔的神经元分布并行运算,大大提高了复杂对象(如人脸)识别计算的效率,因此,将模糊神经网络算法应用于人脸的智能识别是完全可行的。

2 基于模糊人工神经网络的人脸识别方法研究

2.1 基于模糊神经网络的人脸识别分类器设计

1) 输入、输出层的设计:针对模糊神经网络层的输入层和输出层的特点,需要对识别分类器的输入、输出层进行设计。由于使用BP神经网络作为识别分类器时,数据源的维数决定输入层节点数量,结合到人脸的计算机识别,人脸识别分类器的输入输出层,应当由人脸特征数据库的类别数决定,如果人脸数据库的类别数为m,那么输入、输出层节点数也为m,由m个神经元进行分布式并行运算,能够极大提高人脸识别的输入和输出速度。

2) 隐藏层结点数的选择:由于一般的BP神经网络都是由3层BP网络构成:输入层,隐藏层和输出层,隐层的数量越多,BP神经网络越复杂,那么最终能够实现的运算精度就越高,识别率也就越高;但是随着隐层数量的增加,随之而来的一个突出的问题就是神经网络变的复杂了,神经网络自我训练和学习的时间变长,使得识别效率相对下降,因此提高精度和提高效率是应用模糊神经网络的一个不可避免的矛盾。在这里面向人脸识别的分类器的设计中,仍然采用传统的3层BP神经网络构建人脸识别分类器,只设计一层隐层,能够在保障识别精度的前提下有效的保障神经网络学习和训练的效率,增加人脸识别的正确率。

3) 初始值的选取:在设计了3层BP神经网络的基础上,需要确定神经网络的输入初始值。由于模糊神经网络是非线性的,不但具有线性网络的全部优点,同时还具有收敛速度快等特点,而初始值的选取在很大程度上影响神经网络的学习训练时间的长短,以及是否最终能够实现收敛输出得到最优值。如果初始值太大,那么对于初始值加权运算后的输出变化率趋向于零,从而使得神经网络自我学习训练趋向于停止,最终无法得到收敛的最优值;相反,我们总是希望初始值在经过每一次加权运算后的输出都接近于零,从而能够保证每一个参与运算的神经元都能够进行调节,最终实现快速的收敛。为此,这里将人脸识别的初始值设定在[0,0.2]之间,初始运算的权值设定在[0,0.1]之间,这样都不太大的输入初始值和权值初始值能够有效的保证神经网络快速的收敛并得到最优值。

如果收敛速度太慢,则需要重新设置权值和阈值。权值和阈值由单独文件保存,再一次进行训练时,直接从文件导出权值和阈值进行训练,不需要进行初始化,训练后的权值和阈值直接导入文件。

2.2 人脸识别的神经网络训练算法步骤

1) 神经网络的逐层设计步骤:神经网络需要按层进行设计,构建信号输入层、模糊层以及输出层,同时还要构建模糊化规则库,以构建神经网络模糊算法的完整输入输出条件。具体构建人脸识别的神经网络层可以按照下述步骤执行:

Step 1,构建信号输入层,以视觉摄像头为坐标原点构建人脸识别坐标系统,这里推荐采用极坐标系统构建识别坐标系,以人脸平面所处的角度与距离作为信号的输入层,按照坐标系的变换得到神经网络信号输入的距离差值和角度差值Δρ,Δθ,作为完整的输入信号。

Step 2,构建模糊化层,将上一层信号输入层传输过来的系统人脸识别信号Δρ与Δθ进行向量传输,将模糊化层中的每一个节点直接与输入信号向量的分量相连接,并进行信号矢量化传输;同时在传输的过程中,根据模糊化规则库的条件制约,对每一个信号向量的传输都使用模糊规则,具体可以采用如下的隶属度函数来进行模糊化处理:

(1)

其中c ij 和σij分别表示隶属函数的中心和宽度。

Step 3,构建信号输出层,将模糊化层经过模糊处理之后的信号进行清晰化运算,并作为最终结果输出。

关于模糊规则库的建立,目前所用的方法都是普遍所采用的匹配模糊规则,即计算每一个传输节点在模糊规则上的适用度,适用就进行模糊化规则匹配并进行模糊化处理,不适用则忽略该模糊规则并依次向下行寻找合适的模糊规则。当所有的,模糊规则构建好之后,需要对每条规则的适用度进行归一化运算,运算方法为:

(2)

2) 人脸的识别算法按如下步骤执行:

Step 1:一个样本向量被提交给网络中的每一个神经元;

Step 2:计算它们与输入样本的相似度di;

Step 3:由竞争函数计算出竞争获胜的神经元,若获胜神经元的相似度小于等于相似度门限值ν,则计算每个神经元的奖惩系数γi,否则添加新的神经元;

Step 4:根据学习算法更新神经元或将新添加的神经元的突触权值置为x;

Step 5:学习结束后,判断是否有错误聚类存在,有则删除。

其中,

(3)

di是第i个神经元的相似度值,β为惩罚度系数,ν为相似度的门限值。γ的计算方法是对一个输入样本x,若竞争获胜神经元k的相似度dk≤ν,则获胜神经元的γk为1,其它神经元的γi=-βdi/ν,i≠k;若dk >ν,则添加新的神经元并将其突触权值置为x。

实际上,网络训练的目的是为了提高本算法的权值实用域,即更加精确的实现对人脸特征的识别,从而提高算法的人脸识别率,当训练结束后,即可输出结果。

2.3 算法仿真测试

为了验证本论文所提出的人脸识别模糊神经网络算法的有效性和可靠性,对该算法进行仿真测试,同时为了凸显该算法的有效性,将该算法与传统的BP神经网络算法进行对比仿真测试。

该测试采集样本500张人脸图片,分辨率均为128×128,测试计算机配置为双核处理器,主频2.1GHz,测试软件平台为Matlab,分别构建BP神经网络分类器与本算法的神经网络分类器,对500幅人脸图片进行算法识别测试。

如表1所示,为传统BP神经网络算法和本论文算法的仿真测试结果对比表格。

从表1所示的算法检测对比结果可以发现:传统的算法也具有人脸特征的识别,但是相较于本论文所提出的改进后的算法,本论文提出的算法具有更高的人脸特征识别率,这表明了本算法具有更好的鲁棒性,神经网络模糊算法的执行上效率更高,因而本算法是具有实用价值的,是值得推广和借鉴的。

3 结束语

传统的图像识别技术,很多是基于大规模计算的基础之上的,在运算量和运算精度之间存在着不可调和的矛盾。因人工神经网络技术其分布式信息存储和大规模自适应并行处理满足了对大数据量目标图像的实时处理要求,其高容错性又允许大量目标图像出现背景模糊和局部残缺。相对于其他方法而言,利用神经网络来解决人脸图像识别问题,神经网络对问题的先验知识要求较少,可以实现对特征空间较为复杂的划分,适用于高速并行处理系统来实现。正是这些优点决定了模糊神经网络被广泛应用于包括人脸在内的图像识别。本论文对模糊神经网络在人脸图像识别中的应用进行了算法优化设计,对于进一步提高模糊神经网络的研究与应用具有一定借鉴意义。

参考文献:

[1] 石幸利.人工神经网络的发展及其应用[J].重庆科技学院学报:自然科学版,2006(2):99-101.

[2] 胡小锋,赵辉.Visral C++/MATLAB图像处理与识别实用案例精选[M].北京:人民邮电出版社,2004.

[3] 战国科.基于人工神经网络的图像识别方法研究[D].北京:中国计量科学研究院,2007.

[4] 王丽华.基于神经网络的图像识别系统的研究[D].北京:中国石油大学,2008.

[5] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[6] 金忠.人脸图像特征抽取与维数研究[D].南京:南京理工大学,1999.