微波在有机合成中的应用范例6篇

微波在有机合成中的应用

微波在有机合成中的应用范文1

微波辐射下的有机反应具有反应速度快、副反应少、产率高、环境友好等优点,因此,发展非常迅速。微波在有机合成中的应用包括如下几个方面:1. 利用微波技术对传统的热反应进行改进,合成一些有意义的化合物,以缩短反应时间、提高产率、降低消耗、减少环境污染;2. 利用微波技术合成一些在常规加热条件下很难得到的化合物。

我们的目标是利用微波技术合成具有生物活性部位的杂环化合物,并对其进行结构修饰,以找到新的活性物质,为人类增添高效、低毒的药物,扩大微波在有机合成中的应用范围,丰富有机化学的内容。

2.国内外研究状况

自从1986年加拿大化学教授Gedye等人将微波应用于有机反应以来,微波在有机合成中的应用受到了人们的广泛关注。先期的反应是在密闭的容器中进行的,体系的不安全性制约了它的发展,后来人们不断地对反应装置进行改进,微波合成在常压下得以实现,大大推动了微波合成化学的发展,许多种类型的有机反应都可以在微波辐射的条件下进行,发展非常迅速,利用微波技术所合成的化合物是各种各样的,我们的着眼点是利用微波技术合成杂环化合物,因此,下面仅就微波在合成含有三个杂原子的五元杂环化合物的应用研究状况加以概述。

3.三杂原子的五元环

1.3.1三氮唑衍生物

叠氮甲基膦酸二乙酯与炔烃进行1,3环加成生成1,2,3-三氮唑衍生物[1]。小取代基和膦酸基靠近的产物占优势,产率78-99%。对于叠氮甲基膦酸二乙酯与烯烃1,3环加成反应,微波促进下反应时间缩短了近400倍,但收率没有明显提高。

Rostamizadeh S.等用酰肼、S-甲基异硫胺碘化氢盐,醋酸胺三组分缩合,以硅胶作载体微波合成了3,5-双取代的1,2,4-三氮唑[2]。

1.3.2 噁二唑衍生物

Loupy B.[3]等报道了1,2-二苯甲酰肼在聚合物载体上经微波辐射2 min,得到产率为96%的1,3,4-噁二唑。

Oussaid B.等报道了[4]1,2-二酰基肼与二氯亚砜反应再关环生成1,3,4-噁二唑衍生物,反应时间为5-10 min。

Mogilaiah K.[5]等用芳基酰肼和2-(4-羧基苯胺)-3-苯基-1,8-二氮杂萘在三氯氧磷存在下微波合成了1,3,4-噁二唑衍生物,反应时间3-5 min,而传统热反应需3-4.5 h。

1.3.3噻二唑衍生物

Li Zheng [6]等用苯并-2-糠酸或5-(2-氯苯)并-2-糠酸和氨基硫脲在三氯氧膦催化下微波反应合成了2-氨基-5-呋喃-1,3,4-噻二唑,并把它加入苯磺酰氯与芳氧基乙酸钾形成的混合酐中,微波辐射3 min,合成了2-呋喃-5-芳氧基乙酰胺基-1,3,4-噻二唑。

4.小结

由于微波独特的加热方式使得微波反应具有反应时间短,副反应少,产率高,操作方便,环境友好等优点,人们不仅利用微波加速一些有机常规热反应,而且,在微波条件下实现了某些在常规加热条件下很难实现的反应,人们已经预测到微波技术将对有机化学的发展带来又一次飞跃。

参考文献:

[1]Louerat F, Bougrin K, Loupy A, Ochoa A M, Retana D, Pagalday J. Cycloaddition Reactions of Azidomethyl Phosphonate with Acetylenes and Enamines Synthesis of Triazoles[J].Heterocycles 1998, 48(1): 161~170.

[2]Rostamizadeh S, Tajik H, Yazdanfarahi S. Solid phase synthesis of 1,2,4-triazoles under microwave irradiation[J]mun., 2003, 33(1): 113~117.

[3]Brain C T, Paul J M, Loong Y. Novel procedure for the synthesis of 1,3,4-oxadiazoles from 1,2-diacylhydrazines using polymer-supported Burgess reagent under microwave conditions[J].Tetrahedron Lett., 1999, 40(16): 3275~3278.

[4]Oussaid B, Moeini L, Martin B, Villemin D, Garrigues B. Improved synthesis of oxadiazoles under microwave irradiation[J].Synth. Commun., 1995, 25(10): 1451~1459.

微波在有机合成中的应用范文2

关键词:数字微波技术;广播电视;信号传输;应用

中图分类号:G2文献标识码:A文章编号:1674-6708(2016)154-0114-01

数字微波技术在通信领域一直起着举足轻重的作用,它是以微波作为载体传输数字信息的通信技术。在卫星数字通信和光纤数字通信不断发展的背景下,数字微波通信已经从长距离通信转入中短距离的接入传输,在电视节目中出现的微波摄像设备因其频带宽干扰小,组网灵活便捷,移动迅速的特点,已经被广播电视台多点变换的直播、录播节目广泛应用。

1数字微波技术简析

微波在空气之中的传播特性与光波在空气中的传播特性基本一致,其传播都是按照直线形式进行的,遇到障碍物之后会被阻断,并伴随反射现象的发生,正是由于这一原因,数字微波通信的主要方式为视距通信。由于受到地球曲面的影响,微波要想获得长距离的传播,必须经过多次接力传播,也就是信号要在经过多次的中继转发,这种数字通信方式也被称作微波中继传输方式。在实际的传播过程之中,需要依靠终端站和中继站进行传播,每隔50km需要设置一个中继站,只有这样才能保证信号的质量。正是由于这一特征,促使数字微波技术传输的信号质量较高,具有较为明显的特征。

1.1传输能力强

我们在利用数字微波技术进行信号传递的过程之中,其传输过程需要依靠微波频率进行,微波本身就是指一定波长的波类,在实际的传播环境之中,微波具有较高的频率以及较宽的频段,这就促使微波在传输信号之中可以调节抛物面天线,改变天线口的面积来实现波长的调整,这种方式对于信号传输能力的增强具有十分明显的效果。并且,微波信号在传输的过程之中经过中继站的多次调整,其信号不会减弱,可以提高其传输能力,保证信号质量。

1.2传输容量大

数字微波传输方式采用的多路传输,正是由于这种多路传输的特点,决定了在传输的过程之中可以设置多个频点,从而提升了信息的容量。

1.3传输可靠性强

前文已述,数字微波的传输过程之中需要依靠多个中继站,通过接力的方式进行信号的传输,这种信号传输方式可以保证信号传输的质量,进一步提升信号的准确性与可靠性,提高传输能力。

2数字微波传输在广播电视中的具体应用

广播电视制作正向高清发展,很多电视台正逐步在进行高清改造,无线微波高清摄像机已经为电视台所广泛应用,大型活动拍摄,现场跟踪报道等场合越来越地使用了高清制作,将高清无线微波摄像机系统加入到节目制作中,极大地提升了现场直播节目及场地变换多,移动范围大的节目录制质量。无线微波摄像机因其机位设置的灵活,移动方便等特点越来越受到电视台的欢迎。我台就配备了一套依托新闻直播车,三台无线微波摄像机一台车顶固定机位组成的四讯道直播系统,通过车顶微波进行台内信号传送,目前应用效果很好。为保证无线微波摄像机在一些复杂地形条件有效的传输,在后续应用过程中需要对数字微波传输形式进行有效的分析,并确定数字微波形式的应用形式。

2.1摄像机微波发射形式分析

在后续设计和干预过程中,必须重视发射形式的应用系统供应商(LinkReaearch)的编码方案一直是以高质量、低延时作为产品的特点在后续干预过程中,为了达到(OFDM微波传偷规范中提供更佳的编码效果,需要利用20MHz宽通道的方式提高传偷的有效码率此外在信息后续控制阶段,现有的调制形式对广播电视的应用有一定的指导性意义,必须及时对技术形式进行分析,确定合理有效的应用方案LMS-T是在充分吸收DVB-T的影响下形成的一种技术形式,最大的特点是载体比较大,能在最短的时间内接受载波在后续控制和应用过程中,要优化接收端的形式,实现合理化控制和应用由于现有设计形式对信息形式有一定的要求,为了满足连续性设计的要求,必须不断提升信号传输效果。现常用的Link微波发射端1500的调制方式主要为QPSK和16-QAM,在日常使用情况下,长距离传偷一般采用QPSk的调制方式,短距离高质量传偷采用16-QAM的调制方式。在无遮档无干扰,发射功率同为100mW的情况下,理论上QPSK传偷距离为lkm(如加功率放大器,发射功率达1000mw时传偷可达3km),但传偷质量欠佳,画面细节损耗大;16-QAM传偷距离为400m,传偷质量高。

2.2数字微波传输网络系统

1)通常情况下,我们在使用数字微波进行信号传输时,使用的传输电路一般为SDH电路,其传输干线需要设置一定波长的保护波道,积极采用环路的方式对传输电路进行科学的布置,在布置的过程之中科学的设置节点进行网络连通,从而形成相应的传输网,这种传输网具有相互备份的功能。

2)要科学的设计电路波道,一定要保证设备的波道符合规定。

3)科学设置微波传输的备份系统,一般应该采用无损切换开关,与此同时,注重利用ATPC技术,以此来提升传输网的整体性能。

4)传输系统的管理中心应该设置干线传输电路,并做好传输网管系统的安全备份,以防万一,科学设置各个网管的信息,并要结合实际传输情况进行主业务倒换。

5)可以在微波总站建立应急指挥系统,在对所有电路进行连接时可以借助公用通信网络来完成,并配备相应的通信设各。而且在每一个微波站内都需要配置一路外线电话。

2.3信号系统配置

结合微波站的工作状态进行信号源配置,上节目的微波站需要科学的配置信号源,而针对下节目的微波站则应该设置相应的传输信号,这两种信号站都应该设置相应的备份设备,以防万一。

2.4自动监控系统

上下节目的微波站需要在关键的环节配备故障自动报警系统,对微波信息进行适时的监控,通过这种监控保证微波信号的正常传输。配备的自动监控系统要结合实际的工作要求进行科学的设置,并对相关参数进行适时的监控,一旦发现问题必须进行快速处理。

3结论

综上所述,数字微波传输技术因其自身具有显著的优势,既保证了广播电视信号的良好传输,又保证了广播电视的安全播出。随着科技水平的不断提高,相应数字微波技术和设备的不断更新、提高,数字微波传输技术必会有更好地推动广播电视行业发展。

参考文献

[1]罗廷堂.数字微波传输在广播电视中的应用[J].科技创新与应用,2015,5:192.

[2]王雪梅.数字微波技术在广播电视信号传输中的应用[J].通讯世界,2015,7:15-16.

微波在有机合成中的应用范文3

【关键词】复合材料微波工程金红石陶瓷一玻璃

伴随着科学技术的蓬勃发展,地球上原有的材料已经不能满足人类的需求,正是在这种情况下,复合材料应运而生。复合材料通过将两种以及两种以上的物质进行融合而产生出一种新型的可以被人类运用的材料。伴随着复合材料性能的不断改善以及功能的不断变化,一部分复合材料已经可以被运用到微波工程领域之中,并对微波工程起到巨大的作用。

一、微波及微波的特性

微波是电磁波的一种。微波的波长在1毫米到1米之间,微波的频率为300MHz―300GHz。微波的基本性质通常呈现为穿透、反射、吸收三个特性。相较于其它波段的电磁波,微波具有以下几个显著的特征:(一)微波的穿透性。区别于其它辐射加热的电磁波,如红外线、远红外线等,微波的波长更长,具有更强的穿透性。微波透入物体时,能与物体分子相互作用使分子产生震动,当微波频率为2450兆赫兹时,可使物体的分子每秒产生24亿次以上的震动。动能转化为热能,从而使物体的温度达到整体上的同时升温,避免了物体在进行热传导时的热量损耗。同时,由于物体在加热过程中不会出现热传导现象,从而大大缩短了物体的加热时间。(二)微波对不同的物体体现出不同的加热效果。由于微波穿越不同物质时,微波对于不同物质的震动会产生不同的影响,这就使得了微波在加热过程中具备了加热选择性的特征。当微波穿越玻璃、塑料和瓷器等物体时,微波几乎是穿越而不被吸收;当微波穿越水和食物等物体时,这些物体会受到微波的影响而自身产生热量;当微波穿越金属类物体时,微波则会被完整的反射回来。家中常用的微波炉加热物体正是利用了这种原理。微波炉的外壳采用金属类物体,避免了微波炉加热时,微波穿透微波炉外壁对周围的物体产生影响;加热的物体大多含有丰富的水分子,保证了物体整体的热量;盛放物体的容器大都为塑料和瓷器类物体,当微波穿越这些物体是,几乎不会被吸收。可见,微波对不同的物体体现出不同的加热效果。(三)微波的信息性。相比较于低频无线电波,由于微波具有非常高的频率,这就使得在狭小的相对带宽下,微波可用的频带非常广,可以达到数百甚至上千兆赫兹。这就意味着在同样的条件下,微波可以携带的信息容量要远远大于低频无线电波。因此,目前国际上所使用的现代多路通信系统,包括卫星通信系统,几乎无例外都是工作在微波波段。同时,微波信号还可以提供相位信息、极化信息以及多普勒频率信息,这些信息可以帮助人类更好的对目标进行检测和对遥感目标的特征进行分析。

二、复合材料的定义

复合材料(Composite materials),是指由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。

三、复合材料在微波工程中的应用

(一)金红石陶瓷一玻璃复合介质

金红石陶瓷结构作为应用的最广泛的微波介质正被广泛的应用于各种微波工程之中。金红石陶瓷结构本身所具有的相对介电常数大、微波插人损耗小以及温度稳定性好等特性也是微波工程选用此类结构的主要因素。但是单组分金红石陶瓷结构本身较为疏松,其机械强度较差,基本上不能对其进行机械加工,因此以前该结构的运用受到了很大的限制。

随着复合材料技术的不断进步,一种新型的可以提高金红石陶瓷结构致密度,同时可以改善其机械强度,使其能进行机械加工的复合材料被研发出来。其基本指导思想如下:由于微波具有穿透性的特点,当微波遇到玻璃、塑料和瓷器的物体时,微波几乎是穿越而不被吸收,如果能将金红石陶瓷与玻璃进行复合,则可以在不降低金红石陶瓷结构本身正常工作的情况下,提高金红石陶瓷结构致密度并改善其机械强度,其达到能进行机械加工的目的。

首先,将CaO, B2O3和SiO2按一定比例进行配料、球磨后,在1320℃的高温下烧结后制成玻璃粉;然后把制成的玻璃粉与由ZnO和SiO2在1320℃的高温下生成的硅酸锌粉按一定比例混合并进行球磨、过筛,生成玻璃相;最后将玻璃相与TiO2、ZnO、CaF2、BaCO3以及ZrO2等按配方配制,经过严格的工艺流程、球磨、成型以及在940℃的温度下烧结,生成金红石陶瓷一玻璃复合介质。这种复合介质既保留了金红石陶瓷的特征,又有好的机械强度和硬度。这种材料的相对介电常数约为100,当部分填充工作在米波波段的高功率微波终端时,能使高功率微波终端沿传输方向300mm的几何长度就能获得约2.5m的电长度,有效地缩小了体积,满足了微波工程的实际应用需要。

(二)铁氧体-陶瓷复合材料。雷达作为现代最重要的通信工具诞生于20世纪40年代。其工作原理是:雷达发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的信息。

为确保雷达在某一时点向某一方向发射电磁波时,不会同时向其它方向发射电磁波,这就需要在发射电磁波方向的反方向具有很强的吸收微波作用的物质。在雷达运用的早期,通常选用锰锌软磁铁氧体和镍锌软磁铁氧体作为吸波材料。两种材料在雷达工作时具有高磁导率、高电阻率、低损耗等特点,且成本低廉。

然而,由于锰锌和镍锌都属于金属类产品,对微波具有反射作用,而影响到微波吸收率,从而干扰到雷达电波的准确程度。

随着复合材料的发展,人们逐渐意识到:如果能够使用几乎对微波不会产生任何影响的陶瓷取代传统的铁氧体材料,这种局面也许能打破,一种新型的铁氧体-陶瓷复合材料应运而生。这种复合材料的微波阻抗在很宽的频带范围内几乎不发生变化,使用这种新型材料设计制造的天线和微波类传输线等器材在实际应用中都产生了非常好的使用效果。

(三)选择性透波复合材料

随着我国经济的发展,我国的综合国力得到了显著的增强。我国的航空航天事业及军工事业也得到了非常快速的发展。在此基础上,我国对于透波材料的需求,尤其是选择性透波复合材料的需求也不断上升。透波材料在航空航天领域中具有重要的地位,是航空航天器材所不可缺少的重要外部材料。当航空飞行器在遇到恶劣飞行气候或是在通信环境非常恶劣的条件时,透波材料可以保证航空飞行器的通讯、遥测等系统的正常运转。同时在运载火箭、宇宙飞船等领域也有重要的作用。伴随着技术的进步,新型的选择性透波复合材料正成为业界所关注的重点。选择性透波复合材料是对频率选择表面技术同复合材料相结合,从而产生的一种新型的材料工艺。选择性透波复合材料对行器的隐形技术有着重大的贡献,它可以在保证飞行器自身通讯正常工作的情况下,屏蔽其他外来电磁波对飞行器的侦查和干扰等。结论:随着复合材料技术的不断进步,各种穿透性好、透波性能好的复合材料相继问世。由于纳米材料的研制成功及其应用技术的发展,新型功能剂不断出现,,透波、吸波性能越来越高。这些都极大地提高了复合材料在微波工程中的使用范围,增强了微波工程的使用效果。相信在不就的将来,复合材料在微波工程中的应用将越来越广泛,复合材料所起到的效果也将越来越重要。

参考文献

[1]张昌天,李晶晶,江大志,肖加余.二维点阵复合材料圆筒结构软模辅助缠绕成型及轴向压缩性能研究.复合材料:创新与可持续发展(下册). 2010

[2]刘时风,王勇,陶雪荣,陈显锋. AU2000声-超声复合材料检测系统研制.复合材料的现状与发展―――第十一届全国复合材料学术会议论文集. 2000

[3]孟凡颢,陈绍杰,童小燕.缝合/RTM复合材料及其计算分析的工程方法.复合材料的现状与发展―――第十一届全国复合材料学术会议论文集. 2000

微波在有机合成中的应用范文4

【关键词】微波技术;国防军事;国民;生活;发展情况

1、微波的起源与发展

微波的理论研究起步于1900年。经过科学家几十年的不断的研究,二战时期成为微波技术蓬勃发展的时期, 在那个时候国防军事领域,雷达,也就是无线电检测的概念和理论逐步发展,因为电磁波在波导中传输中表现出的优良特性, 使得微波电真空振荡器、微波管、微波无线电的发展十分迅速。在二战之后,微波技术的研究与应用逐渐从国防军事为主转变向民用工业领域过渡,其实最具有代表性的便是家用微波炉以及工业微波炉等一系列产品的推出。人们快速的接受了这种产品,因为微波炉是一种快捷的、能量能够转化均匀的加热工具。在设计微波炉时,通常使炉腔的边长为1/2微波导波波长的倍数,并且在金属板上涂覆非磁性材料,形成谐振腔。微波经波导管输入炉腔内时,在腔壁内来回反射,每次传播都穿过和经过食物使食物加热,同时采取一定的措施使微波电场能量分布均匀。微波加热的特点就是内加热,所需时间短,不依靠热传导,均匀受热,操作简单,安全无害,节约能源。如今微波炉已经成为全世界各地广泛使用的食品加工器具。

2、微波的特点

2.1 波长短

微波是一种波长范围在1mm-1m的电磁波。可细分为米波、分米波、厘米波、毫米波。它的波长和频率如表格所示:

微波具有似光性,如表格所知,波长很短,具有直线传播的性质。根据似光性,制作出的天线系统具有良好的方向性,可以接收不同的波段。这样,几十空间或地面发出的微弱回声也不担心接收不到,因此可以通过微波来确定该物体的方向和距离。因此微波技术在雷达、导航和通信,广播中得到了广泛的应用。

2.2 频率高

由2.1的表格可以看出微波的微波的频率很高,周期和频率乘积恒为一,因此振荡周期很短。它的频率由产生微波的电子线路参数决定的。根据实验得知,我们需要将微波固体器件、微波电子管替代一般的电子管,用作放大器,衰减器,隔离器。因为频率越高,损耗也随之提高,携带的信息也越来越丰富。微波传输的波长跟线度很像,容易被阻断,所以我们更加需要使用不同的元器件来替换分立的电容器、电感器以及电阻器等。

2.3 穿透能力强

一定频带的微波可以穿入到介质内部,而微波的能量可以通过地球上的空电离层不断被吸收,对于水来说也是会被吸收产生热能。所以利用微波技术可以实现宇宙导航并且为医疗电疗的研究和开发提供了便利。

2.4 非电离性

微波的量子能量很低,非向前散离可以忽略,这样的能量不足以提供改变分子之间的内部结构的能力,因此可以说明物体和微波之间的电离的程度很低。

2.5 量子特性

很多原子和分子能级间所要吸收跃迁辐射出来的波长刚好处在微波频段的中,人们利用这种量子特性研究原子和分子的结构,发展一系列学科以及边缘学科,比如量子无线电物理,量子光学,量子通信,微波光谱等等。

3、微波技术的现代运用

3.1微波加热原理与微波炉

微波炉由很多的器件组成,其中最为主要的就是微波发生器,又称作磁控管,包括微波管和电源。微波产生的交变磁场可让食物极化,电源提供稳定的连续波微波功率,在高频交流的电磁效应下,极性分子在磁场中交替排列,每秒的微波振动可达数亿次。这种振荡让分子不停的运动,分子之间产生摩擦,使分子获得高能,在食品释放大量的热,从而使得实物均匀受热。所以使用微波必须注意的是食物需要有水分,否则将无法加热。微波只在炉腔内传播,金属外壳可以隔绝电磁波而避免辐射。

3.2 微波通信

微波通信是1950年左右的产物,[1]当时由于其通信频带宽、一次性投入大但后期低、施工方便、建设速度快等一系列优点而取得了快速的发展。此外,微波通信抗灾能力强,它不会太受风、水的灾害带来的影响。即使有天灾人祸,微波通信一般不会受到干扰。因为微波的频率高波长短,遇到阻挡就会被反射或被阻断,所以微波在空中传送的过程中会受到干扰。因此不能在同一方向上使用频率相同的微波,微波电路的建设须在管理部门的严格管理下进行。因为离散度与频率选择性衰落的影响,又没有好的方法去解决问题,因此数字微波技术就此中断。因此在1980年左右,数字微波传输技术发生了突破性的变化。而到九十年代,由于自适应编码调制解调技术的发展,在各地建立的中继站,再加上微弱信号检测的迅速发展,所以今天的移动通信传输才可以得到广泛的运用。在1980年至1990年间,自适应编码调制和解调技术与信号处理和信号检测技术快速发展,今天,带宽越来越大,从有线到无线的发展,甚至高品质记录的多领域的信号设计与处理等的应用,发挥了重要的作用数字微波技术在目前来说有着广阔的发展空间及应用前景, 需要因地制宜的安排不同传输手段,在某些领域,微波技术还占据着不可忽略的重要地位。

3.3 工业微波技术

微波技术目前也在材料的合成、微波解冻、冶金矿物、杀菌、垃圾处理、微波萃取、样品分析等领域发挥着主要的作用。微波技术在无机合成材料的研究,已取得良好的进展,主要是在硬质合金、导体材料,锂电池正极材料、高温材料,合成金刚石、沸石分子筛、陶瓷材料等方面。并且具有低能源消耗、速度快、合成温度低等一些了性能特点。[2] 微波技术在矿石预处理、金属氧化物矿的碳热还原的应用,具有能耗低、速度快、浸出率高、产品性能优良和环境效益好等特点。可以想象,在矿产冶金能源消耗大的领域中,微波技术带来的影响将是难以估计的,在这个领域中,这样的发展前景将带来的是巨大的经济效益。微波技术还可以用于处理工业污泥,对医疗垃圾进行灭菌。处理电子垃圾,建筑垃圾,生活垃圾等等。常规使用处理垃圾的方法比如说焚烧,填埋等,这些方法都有可能产生二次污染。而人们经过长期努力发明了微波处理污染的技术,既解决了常规处理带来的一系列问题,保护了环境,操作时间短,又节省了处理的费用,可谓是一举数得。微波技术与传统技术相比较,具有操作简单,该效率,保证了国家绿色经济和可持续发展的政策。不易造成二次污染,减少能源的损耗和治疗的费用,解决了常规治疗,如堆肥,焚烧,填埋,投资,占地面积大的而带来的问题。综上所述,微波处理废物快速,高效,工艺流程简单,能耗低,成本低,资源回收利用率高和环境效益好,有很好的应用前景。越来越多的人开始关注微波技术,目前,微波技术已经开始在国内开始广泛推广。此外,微波技术也被用于在食品安全的鉴定、石油原油的开采、环境、化妆品、调味品和合成的材料的处理等等方法。

3.4 军用微波技术

微波和无线电道理一样,密闭金属可屏蔽,微波也被称为无线电频率武器。战争中的微波强度很大,基本上没有武器可以阻止它,在现代的战争中运用也越来越频繁,微波武器通常通过长距离的对光电设备的干扰,使仪器出现问题,最后引爆仪器,达到直接摧毁仪器的目标,在战争中,微波的作用更加不容忽视。微波武器与激光武器相比,激光采用的是高强度激光产生的热能去摧毁一切事物,分子间的相互摩擦越来越快,使得电磁的能量转化成为热能,微波的波束宽,波长短,频率高,不受灾害天气的影响。其杀伤机理可分为“非热效应”和“热效应”两种。所有的内侧和外侧在同一时间产生热量,以突然产生高温,火力易于控制,从而使敌方对抗措施更加困难和复杂化。微波武器的工作机制是根据微波和照射对象,选择不同的频率,其实是用频率低的较低轻型微波武器,主要作为战争中的武器来用。与此之外,还有一种频率较高的高能微波武器,这种武器杀伤力较大,毁灭性强,所以一般不经常出现在战争中,更多的是作为一种研究。

作为微波武器,还有一点至关重要,就是使用什么去发射不同频率的微波,在战争中,通常使用的是飞机,航母舰艇,甚至是卫星。这样的话,可以从天上,陆地,海面各方为发动攻击。让敌方的飞机,计算机等设备统统被摧毁,特别是指挥和通信的部位,作战网络的联系信息以及其他重要信息战的关键部位。一旦目标遭受物理损伤就会丧失战斗力,且其受损伤的部位不能被修复。作为世界前列的军事强国,中国一直高度关注微波武器、大型激光武器,在几代科学家一直在努力研发各种武器,近几十年的辛苦打造,中国的微波武器和激光武器已经开始投入使用。

4、微波技术的展望

虽然在各个领域,微波技术已经有了广阔的前景,但是目前,微波技术的运用仍停留在实验的积累,而且需要验证准确的检测方法,我们需要在巩固加强理论研究的同时,进行各系列的实验,完善各种理论,从而可以造出更多适合国防军事或者用民用的微波仪器设备。微波技术已经在多方面展现出它的魅力,我们需要将它完全融入生活,我们通过多方面的研究成果可以得知,微波技术可以在未来的几十年之内成为常规的工业生产以及其他很多领域的技术。但是就我们所知的是,由于微波的特殊性,目前还没有一个科学家找到一个合理的理论来解释,所以微波技术在某些领域仍然存在盲点。微波技术的应用目前仍处于一个巨大的转折点中,发展的可塑性很强,世界范围军事变革需求强力牵引,各国开始研发微波武器,成为新一代军事国家。而民用发面,微波处理材料、大型工业微波炉等一系列令人兴奋的实验室研究成果已经出炉。走向产业化的迫切需要,一系列的研究成果会逐步实现现代化、工业化,对中国的经济建设作出了巨大的影响。深度的微波技术的应用和发展是非常重要的,因为只要通过正确的理论指导,与实践才可以出成果。在我国,微波技术应该引起关注,预计理论研究带来的突破性进展会指引真正意义上微波技术应用时代的到来。

【参考文献】

微波在有机合成中的应用范文5

(一)避免挥发损失,提高分析的准确度和精密度,回收率高。传统的消化方法,容易引起易挥发元素的损失,微波消解采用密闭的消解罐,避免了样品在消解过程中形成的挥发性组分的损失,保证了检测结果的准确性,也避免了样品之间的相互污染,适用于痕量及超纯分析和易挥发元素(如砷、汞)的检测。而且微波消解系统能实时显示反应过程中密闭罐内内的压力、温度和时间等参数,并能准确控制,提高了反应的准确度和精密度。

(二)微波消解使用试剂少,减少样品的空白值和背景。微波消解一个样品用酸量一般只需15mL左右,是传统方法的几分之一。因为密闭消解时,酸不会挥发损失,不必为保持酸的体积而加大用酸的量,节省了试剂。同时减少试剂中杂质元素的干扰,也大大降低了分析空白值。

(三)节能效果显著、有利于环保。微波密闭消解不仅节省试剂,还节省电能。例如,消解1g奶粉,用1.5千瓦的电热板加热需3个小时,而800瓦微波加热只需8分钟,不仅缩短了时间,也节省了耗电量。同时,传统的电热板加热,尽管在通风橱内进行消解,仍然在周围会有酸雾,危害分析人员的健康,影响环境。微波消解在整个消解过程中是在密闭条件下进行,酸试剂不会污染环境,有利于保护环境和分析人员的身体健康。

二、微波消解预处理技术的方法

建立微波消解预处理技术用于食品消解的一般实验方法,应从三个方面着手考虑与选择:

(一)样品的称样量。首先应根据密闭消解罐的容积确定称样量,罐的容积大,称样量可多些;同时还要考虑安全的因素,因样品量越多,消化时产生的气体多,密闭罐内压力就大,若反应激烈使压力瞬间增大,易引起爆炸,所以要尽量减少称样量;另外还要考虑各种测定方法灵敏度和检测线不同,消解定容后的浓度要高于检测线几倍至几十倍,所以称样量也不能太小。一般无机样品称样量为0.2~2g,有机样品为0.1~1g。

(二)分解试样所用酸的种类及用量。微波消解使用的酸通常有硝酸、盐酸、高氯酸、氢氟酸、双氧水等,这些都是良好的微波吸收体。但高氯酸与有机物易爆炸,硫酸在高压下易损坏消解罐,盐酸的氧化性较弱,通常微波消解使用两种或两种以上的混合酸,消解效果更好,常使用的混合酸有:盐酸+硝酸(3+1);硝酸+硫酸(1+1);硝酸+氢氟酸(5+1)等。酸的用量以反应完全所需的量即可,消解所用酸太少,样品消解不完全,用量太多,残余的酸会产生严重干扰,空白值也会偏高,所以应选择适当的固液比,样品加试剂的总体积不要超过20毫升。

(三)微波加热的功率与时间。食品样品中大部分为有机成分,在消解过程中有大量的CO2产生,另外还有硝酸的还原产物NO2,因此当消解反应开始后,反应体系内压强会迅速增加,所以在消解时需控制微波辐射的功率,防止发生危险。压力越大,时间越长,消解越完全。但压力过大,时间过长会超出消解罐的缓冲能力,易发生危险;如果压力过小,所需时间长,消解不易完全;因此要多次试验,找出最佳的压力和时间。在微波溶样时,可采用预消解把样品组成中一些低分子的有机物、还原性强的有机物、具挥发性的物质在常压下先与酸反应或采用阶梯式升高加热功率的方法。避免因反应过于剧烈或分解产生大量的气体(如硝酸被分解成NO2等)而使压力骤升。实际使用时,先用低档功率、低档压力、低档温度,用短的加热时间,观察压力上升的快慢。经几次实验,当了解了消解试样的特性,方可一次设置高压、高温和长的加热时间。只要根据上述所介绍的方法,选择合适的消解条件,各种试样都能在短的时间内消解好。

三、微波消解技术在食品分析中的应用

微波消解技术因其具有节能、省时、污染少和分解完全等特点,现已成为样品消解不可缺少的手段之一。主要针对食品中微量金属元素如Pb、As、Hg、Se、Gr、Fe、Mn、Ca、Mg等,适用检测方法主要是AAS、AFS、ICP-AES或ICP-MS等光谱分析方法。随着微波技术的发展,应用领域越来越广泛。

李攻科等用微波消解GC法测定鱼肉中有机氯农药,又用微波辅助衍生化GC-MS法测定食用油中的脂肪酸;刘传斌等报道了微波消解HPLC分析酵母中海藻糖样品制备的研究;熊国华等介绍用微波萃取法提取熟肉中的氯霉素,肉食品中的药物残留量,用HPLC或GC检测;李海等用微波消解分光光度法测定猪肉、鲤鱼、大米、水果、冰糖等样品中砷和锰;何健全等用微波消化-示波极谱法测定绞股蓝菜中锗;徐文国等利用微波加热技术代替传统的灼烧方法进行重量分析的新方法。到目前止,已有铅、镉、汞、铬、锑、锗等食品中微量元素的微波消解技术被列为国家标准检验方法中。

微波在有机合成中的应用范文6

发展历史

加拿大是发展微波动力飞机最早的国家。1978年10月,加拿大科学家就设计了一种高空无人驾驶飞机。它的机翼展长为4.57米,双翼呈V字形往上翘。机体后面装了一个大圆盘。在大圆盘和机翼上,装着一层薄薄的半导体硅整流二极管,类似太阳能飞机上的光电管。这是最早的微波飞机,其用途是准备作为微波通讯的中继站。

1987年9月,另一架无人驾驶的微波飞机在加拿大渥太华郊外的机场成功升空,它在蔚蓝的高空持续飞行了20分钟。这架飞机的能量来自于安装在飞机下面的圆盘天线,地面上的发射机将电能转化为微波输送到天空,飞机接收之后,再将其转化为电能,驱动螺旋桨进行飞行。

此后不久,美国也成功研制出一种无人驾驶的空中微波监察飞行器。它以地面微波发射站发射的2兆瓦微波作为电源。当飞机上的接收器将接收到的微波转换成电能后,就可以供给电动机使用。飞机的飞行高度可以达到2万米,能够在空中停留90分钟。

20世纪80年代末,美国人又设计出了一款名为“阿波罗”号的喷气式轻型微波飞机。这种飞机以微波作动力,不过它上面装的是喷气式发动机。微波能转化为热能后,驱动发动机工作。这是一架有人驾驶飞机,可以爬高到1.2万米的高空。

1991年,美国和加拿大科学家联手建立了一座技术先进的地面微波站。这里有世界上功率最大的微波发射天线,可以将微波发射到几万米高的空间。飞机在飞行中利用该站点微波供给的能量,可以在距离地面2万米的高空中连续飞行3个月。

2000年6月,美国科学家再次利用微波将一小型飞行器成功送入太空,这标志着人类利用微波能量取得突破性进展。

和美国、加拿大相比,日本的微波飞机发展较晚。但经过20多年的努力,目前,日本在微波飞机研发方面已和美国、加拿大形成鼎足之势。日本科学家不仅已经研制出了性能极为先进的微波动力飞机,而且他们通过最新的半导体和相控阵天线自动定向技术,能够使微波传送得更远、定向精度更高。同时,他们还设计出了控制起来非常灵活的发射天线装置,该装置能巧妙地减少机械移动,特别适合飞机移动中的微波传送。

更为难得的是,近来,日本科学家还发明了

“微波火箭”。该火箭的发动机利用微波快速加热空气,产生爆炸效应,进而推动火箭升空,它的推力极为强劲。当然,这种发动机的推进原理也有望移植机上。

驱动原理

微波是一种波长较短的无线电波,它有以下三大特点:第一,它可以聚集成一个很窄的波束,定向向外界发射,这就为远距离使用无线电波的能量提供了可能。第二,微波辐射可以在短时间内对许多物质进行加热,甚至可以使一些有机物之间的化学反应速度提高上千倍。第三,根据相对论原理,微波照射在物体表面会形成微弱的辐射压力。

基于上述三种特性,目前的微波飞机相应形成了三种设计方案。第一种方案是针对螺旋桨飞机的。这种飞机上装有半导体整流设备,它可以把地面射来的微波能转变为直流电,直流电带动电动机,最终由电动机带动螺旋桨旋转。这种方案的可行性已经在实践中多次得到验证,并在当前的微波飞机设计中占主流。该方案的巨大成功很大程度上归功于现有的微波能量传输技术。这里,所谓的“微波能量传输”,指的是通过硅整流二极管天线接收远处微波束的辐射,并将微波转换成电能的无线能量传输方式。这种远程的能量传输效率很高,可以达到95%以上。目前的绝大多数微波飞机都属于此类。

第二种方案是喷气飞机。其基本思路为:飞机利用微波直接加热喷气发动机中的压缩空气或其他工作介质,经过加热的工作介质从尾喷管高速喷出,从而使飞机得到相应的推力。这种微波喷气式飞机的研制主要集中于美国,已初步取得成功。显然,该类飞机利用了微波的第二种特性。

除了上述两种方案外,利用微波辐射压力作为动力的飞机也正被引入概念设计阶段。微波辐射压力飞机的设计思路来源于英国科学家肖耶的“无活动部件引擎”。在肖耶的工作室里,他曾向大家展示他所设计的一种新型引擎模型。该模型由微波产生器、密闭的金属圆筒、装有冷却’剂的导管以及电源线组成,没有活动部件,也不需要燃料。微波产生器发出的微波被导进圆筒后,在传播过程中会对圆筒内壁产生微弱的辐射压。根据微波的波长制造容积合适的圆筒,形成共鸣腔,这时的圆筒就变成了一个巨大的“能量箱”。由于圆筒被制作成“一端大一端小”的形状,圆筒两端就会产生微波辐射的压力差,这种压力差就是飞机推力的来源。由于种种技术问题,基于肖耶“无活动部件引擎”的微波辐射动力飞机目前还仅仅处于概念设计和试制阶段,尽管此种飞机已经表现出了极好的发展前景。

微波飞机的优点及面临的问题

人们研究在飞机中使用微波技术的主要目的之一是为了结束飞机载油的历史。由于无需携带燃料,飞机的有效载荷将会因此得到大幅提升。

微波飞机还可以克服目前燃油飞机停飞加油时间过长的缺点,航时有望显著延长。在微波飞机的飞行过程中,人们只要在地面上每隔几百千米设立一个微波发送站,就可以使微波飞机不用着陆、不用加油,持续不断地飞行。

基于以上优点,微波飞机被认为可以用作微波通讯的中继站,代替通信卫星;它还可以进行高空侦察、环境监控,用来拍摄地面交通状况,监控农作物、森林情况,或是用来采集大气中二氧化碳的浓度等。

尽管有着诸多优点,但微波飞机要想取代燃油飞机,仍要面临很多重大的技术难题。

首先,这种飞机的造价很高,地面微波发射设备需要很大的功率;为了使飞机能得到足够的动力和较大的飞行范围,必须设置一系列的微波发射站;通过定向天线,发射站发出的微波被集中于一处;对准飞机发射;随着飞机的飞行,地面定向发射天线也要跟着飞机一起运动,以便微波能可以持续不断地集中到移动的飞机上。为了解决发射天线的同步运动这一难题,有人曾提出利用空间太阳能发电站来持续为微波飞机提供能量的设想。这个设想的基本思路是:在大气层外通过卫星收集太阳能发电,然后将电能转化为微波能量,并无线传输给微波飞机。这是一个非常有意义的设想。然而,以目前的科技水平,建立空间太阳能发电站仍需要漫长的时间。