微波技术的基本原理范例6篇

微波技术的基本原理

微波技术的基本原理范文1

关键词:微波技术;教学改革;措施

随着科学技术的发展,微波技术的应用已渗透到了科学领域的许多方面,如无线通信、全球定位系统、雷达以及电子和计算机工程学科中。因此对于电子与信息工程类专业的学生来说,微波技术课程的开设是必不可少的。

一、微波技术课程特点

《微波技术》作为通信工程、电子工程、电子信息以及微波等专业的重要专业基础课,是在学习了《电路基础》和《电磁场与电磁波》等课程基础上深入研究微波领域的重要科目,其内容丰富、概念抽象、理论性强、对数学方法的依赖性强,教与学都有难度。微波技术课程主要包括传输线理论和圆图的应用;微波网络基本理论、S矩阵及其特性等方面。在讲解波导理论时以简正波理论为线索介绍矩形波导的物理构成及其工作原理,其场结构在三维空间分布,因而要求学生有一定的空间想象能力和抽象思维能力。而课程涉及到的多由理论均以麦克斯韦方程组为理论依据,其中重要的结论推导都离不开高等数学和复变函数的知识。由此可见,微波技术课程教学难点主要表现为课程理论性更强、内容复杂而抽象、分析方法多样、对数学知识要求较高[1-3]。

二、微波技术教学中存在的问题

通过对以往教学过程中出现的情况,结合本专业特点,发现《微波技术》课程的讲授过程中存在以下几个问题:

(一)在现有的教学过程中,往往过于偏重理论教学,而实践教学所占比重较小;仅是按照课本简单设计教学计划,将基本的、重要的概念、原理、方法在有限的课时教学中教授给学生,而缺少介绍微波技术的发展前沿,因而学生课程学习意义不明确。

(二)由于该课程需要大量的先进仪器设备,而有限的学科建设及科研经费造成实验室先进仪器设备相对匮乏,导致学生缺少开放式教学环境。

(三)教学方法相对于其它课程比较传统,网上教学辅导与课堂教学难以有效结合;对学生的考核仅限于分数的高低;在课程建设过程上未能引进国外先进的教学理念、教学方法及教材,未能及时更新配套的实验教材,使学生不能在多层次、开放式的教学环境下学习。

三、微波技术教学改革的实践探索

针对以上教学中存在的问题,认为从以下几个方面对《微波技术》教学改革进行探索:

(一)注重合理利用教材,配套实验教材。以教材更好地适应当前教学的需要为目的,对教材在保留原有经典基础理论的同时,增加新的理论和实用技术;结合当前微波技术的发展,增加的新型微波元器件的原理和使用方法介绍。

(二)不断更新课程内容,提高学生学习兴趣。微波技术课程内容比较抽象,学生在学习中不易建立概念,也会因怀疑课程的实用性从而减少学习的动力。因此,应多注重对于课程内容实际应用背景的介绍,比如介绍未来移动通信技术中的射频技术等,以提高学生的学习兴趣。

(三)将实践性教学与启发式教学相结合。本课程紧密结合实际,教学中应加强实验教学环节。为节省设备经费,采取硬件平台与软件辅助相结合,学生实际动手操作与演示相结合的方法,开发基于仿真实验平台的实验内容,从测量微波的基本参量入手,将“电磁场与电磁波”实验与“微波技术”实验有机结合,使学生加深对书本知识的理解。

(四)积极改革教学内容组织方式。基础理论教学方面,教学内容以讲授基本原理、基本方法为主,使学生了解基本理论知识,掌握重点、难点问题,在讲授该课程时,把重点放在基本概念和基本原理的解释上;实践课程教学方面,结合理论课程教学内容,精心设计典型的实验范例,利用实验室拥有的微波仪器设备,进行微波系统基本参数的测量;实践环节教学方面,主要包括课程设计和毕业设计,让学生利用所学的知识,培养学生的实践技能。

(五)开展互动式教学与研究式教学。开展互动式教学,在授课过程中,鼓励学生提问,每一章结束后都进行分组讨论,培养学生的独立思考、分析问题、解决问题的能力。开放式、研究式的讨论,使学生总结归纳所学内容,用一条龙“串”起来,写出“小论文”形式的学习笔记。这些措施促进了学生的积极性和自信心的提高,帮助学生克服了畏难情绪,增强了对自己将来从事微波科研工作的兴趣和信心。

(六)坚持推进优师建设,加强教学经验与资源的总结、研究与推广,实现科研与教学的融合,不断优化教师队伍结构,全面提高任课教师水平。

(七)积极进行网上教学改革试验。充分利用利用网络教学来补充课堂教育,将网络教育与课堂教育有机地融合起来。

(八)设计教学信息调查表和听课记录表。调查表在课程结束时使用,听课记录表由课程教学负责人教学过程中随机听课时填写。对负责人每学期听课次数定量化,并要求分别对相关教学环节进行评价。根据学生填写的调查表和负责人填写的听课记录,分析教学过程中所存在的问题以及教学改革与创新的效果,为教学研讨和教改指明方向。

微波技术的基本原理范文2

关键词:微波技术 冶金工程 技术发展 浸出 萃取

中图分类号:TF1 文献标识码:A 文章编号:1674-098X(2015)04(a)-0094-02

在科技的支持下,冶金行业得到发展,同时冶金企业也在不断提升技术用以增加产量降低生产成本。微波技术出现后,得到广泛应用。现今微波技术在冶金领域得到广泛应用,尤其在萃取、浸出等工序中有着良好的效果。

1 微波技术的工作原理

微波是一个十分特殊的电磁波段,微波波长在1mm至1m之间,微波相应频率在300GHz至300MHz之间,其中民用的微波频率只有915MHz和2450MHz两个频率,微波虽然存在于无线电波和红外辐射之间,但是在产生方式、传播途径以及应用上都与二者有所不同。微波加热的工作原理如下,在磁场环境中,一些物质的分子会发生极化,分子将会随着微波场方向发生改变,在运动过程中极性分子会试图对自身速率进行调整,进而引起极性分子旋转。原子弹性散射会阻碍极性分子旋转,并导致能量耗散,将电磁能直接转化为热能,实现对物质加热升温的目的[1]。

微波加热有其明显的特点,与传统加热方式有很大不同。传统加热方式是传导式的加热,是一种通过外部热源由表面到内部的加热方式。微波加热是从对象材料内部进行,通过对象内部耗散来对目标进行加热,微波加热方式与传统方式相比也有其明显的优势。微波加热的方法是使受热目标本身成为发热体,这样能够使受热目标在加热的过程中做到受热均匀,避免了传统加热方式中存在的冷中心问题,无论受热物体的形状如何,都可以做到均匀受热。由于受热目标直接成为发热体,所有在微波加热的过程中,不需要经历热传导的过程,而且可以减少能耗提升受热速度。在微波的作用下,物质的原子和分子会发生高速振动,从而为化学反应建立更为有利的环境,进而降低能耗。微波加热可以在较低温度下完成杀菌保鲜的任务,微波加热快,对食物内维生素等物质活性能够做到最大程度的保留,而且微波本身不会产生废渣、废气等有害物质,更利于环境保护。

2 微波技术在冶金中的应用

微波技术在当今的冶金中应用广泛,主要包含微波辅助萃取、微波强化浸出、微波干燥、微波碳热还原和微波烧结等应用。

2.1 微波作为萃取辅助

微波技术在实际工作中应用有很多,微波能够穿过萃取介质,对加热物直接进行加热。因此在萃取的过程中,运用微波技术可以对萃取工作中的传质加热,继而减少萃取工作的时间,可以有效的提高萃取效率[2]。微波技术在对萃取进行辅助时,极性溶剂吸收微波的能力要更强,而且在微波条件下更容易提升溶剂活性,所以在萃取中,使用极性溶剂要优于非极性溶剂,使用极性溶剂能够和被萃取物产生更好的效果。在铂(Ⅱ)和钯(Ⅱ)络阴离子的萃取及分配行为中,可以发现在微波辐射下,分配比和饱和吸附容量得到了增大,萃取率有效提升,使用微波技术辅助萃取能够使萃取速率增大。

2.2 浸出应用微波技术

随着资源的不断开采,一些低质量的冶金原料也被当作冶金原料使用,对于低质量原料的处理工作难度越来越大,使用传统的湿法冶金工艺手段能够有效对这些低质量矿石进行处理,但是浸出率低,处理时间长,影响工作效率[3]。一些学者尝试将微波技术应用于这一工作中,并取得了良好的进展。纳库马尔等人在对低质量且难浸的金矿进行了微波预处理,在对试验结果分析后发现,矿石中的总碳量降低的值接近70%,而矿物中的致密硫化物被氧化成为了结构更为稀松的氧化物。将接受微波处理后的金矿放入氰化物中浸出,金回收率在95%以上,可发现利用微波处理后的浸出效果明显。另外,丁伟安在硫化铜精矿三氯化铁浸出反应的研究中,对微波的运用也进行了探讨。在硫化铜精矿三氯化铁浸出反应实验中,在使用微波加热后,浸出的速率有明显的提高,而且物质间出现反应的时间也在缩短,表面微波技术应用于浸出中的有效性。

2.3 微波应用于干燥处理

干燥处理是微波技术的最基本应用,水在微波的作用下会产生强烈的反应,水是有效吸收微波的物质。与传统通过辐射达到干燥的手段相比,微波干燥具有更多的优势,使用微波技术速度更快,更加有效的对物品起到更好的保护[4]。

库萨卡等学者在硼酸干燥实验中运用了微波技术,微波功率设定在100~700W间。在实验中,实验对象的温度在微波加热下迅速接近100℃,随后温度迅速下降,这说明水分已经快速脱离了实验对象。实验后对实验样品进行观察,发现样品在物理形态上并没有发生变化,而且硼酸中的结晶水没有在微波加热下发生分解,微波干燥用时短应用微波技术进行干燥不但速度快,而且安全性高,能够很好的保护加热对象。

2.4 微波碳热还原

碳在冶金中有着重要的作用,充当着冶金中的还原剂,可以有效的吸收微波,在微波条件下,碳可以快速升温,当碳迅速升温后其还原力得到增强。微波碳热还原技术的目的就是利用碳吸收微波的能力来还原氧化物,还原后将得到用于冶金的金属和化合物。

斯坦迪斯等人在对铁矿石微波碳热还原进行研究的过程中发现,通过微波加热的方法,能够有效解决在传统加热方法中一直存在的“冷中心”技术瓶颈。在微波加热的条件下,碳热还原率迅速提升。加拿大学者也曾经进行过此类实验,通过微波技术来处理含铁废渣,在微波加热废渣的同时,加入磁铁矿和碳,加热速度得到提升的同时,还回收了废渣中的铁矿,实现了资源的再回收[5]。

2.5 微波烧结

微波烧结是利用微波技术对材料进行加热,并提升至烧结温度实现材料的致密化。在进行微波烧结的过程中,升温速度快,但是在材料内部温度始终保持均匀,材料晶粒会受到抑制,材料质量会提升。

罗春峰等人对微波烧结进行研究,以粉末冶金铁基材料的烧结工艺与性能为研究主体,并和传统的真空烧结工艺进行对比。对实验结果进行分析后得出的结果表明,通过微波烧结,使粉末冶金铁基材料在1280℃的温度下保温10min,能够使材料达到95.8%的相对密度,进而增强了材料的硬度和抗拉强度。

3 微波技术在冶金工程中未来的发展

微波技术在冶金工程中的应用领域已经越来越多,使用微波技术能够提升金属的回收率、降低冶金技术的能耗、减少工作时间等,微波技术在冶金行业中有着广阔的发展前景。微波技术在冶金中的应用愈加成熟,但是随着生产需要,微波协调其他外场技术在冶金中的应用必须得到发展。如超声波技术能够通过空化反应将悬浮在溶液上的团聚颗粒进行粉碎,使水溶液吸收微波性能提升。但是类似于这种外场技术的联合工作技术尚不成熟,仍然需要进行完善和增加。外场技术的联用符合冶金行业发展需要,是冶金行业发展的必然趋势,因此,广大冶金行业研究者和工作者,应在实践中刻苦攻关,实现技术的发展。

4 结语

微波技术在冶金工程中得到良好的发展,对冶金技术有着巨大的帮助。但是相关研究者和从业人员也应该认识到,为了适应为了发展需要,必须要加强微波技术与其他外场技术的结合,提升技术联合能力,共同为冶金工程发展做出贡献。

参考文献

[1] 刘书祯,白燕,程艳明,等.微波技术在冶金中的应用[J].湿法冶金,2011(2):91-94.

[2] 郑凯,赵平源.微波技术在冶金中的应用[J].广东化工,2014(8):75-76,72.

[3] 石鑫越.微波碳热还原转炉渣脱磷动力学研究[D].石家庄:河北联合大学,2013.

微波技术的基本原理范文3

关键词:微波技术;实验;ADS

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2014)26-0074-02

为了培养学生的实践能力,提高学生的就业能力,使学生的综合素质和人才市场需要相接轨,普通高校都重视学生实践能力的培养,[1,2]并增加相应实验实践类课程的设置。微波技术是通信工程专业必不可少的专业基础课,也是一门重要的专业基础课。[3]近些年,随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。[4]微波技术广泛的应用也带动了就业市场的需求。由于微波技术领域的特殊性,目前社会上招聘微波工程师和射频工程师的岗位都要求应聘者具有丰富的实践经验,能够熟练使用微波设计与仿真软件进行仿真优化设计,能够熟练使用常规的射频及微波仪器设备等。[5]为了培养微波技术领域的高素质应用型人才和卓越工程师,需要在实践和创新方面加强对学生的培养。

实践教学是微波技术课程的重要组成部分。利用ADS软件构建涵盖传输线理论,Smith圆图和微波网络等内容的仿真实验可以使学生较好地掌握微波技术的基本原理,加深学生对微波器件基本参数的认识和掌握。在微波技术基本实验的基础上可以引导学生进行扩展实验,进一步研究,这样有利于培养学生的实践能力、设计能力和创新能力。

一、传输线理论仿真实验

传输线理论是微波技术的基础。传输线理论即分布参数电路理论是学生接触微波技术的切入点,也是入门点。因此,全面理解掌握传输线理论也是学习后续课程内容的关键。传输线理论重点是要学生把传输线的等效电路理解好,并能正确分析信号在其上面的工作状态。在学生已经有了输入阻抗、反射系数、驻波比的一般概念后,我们给出了广义无耗传输线上的仿真实验。广义无耗传输线更符合实际应用情况,即最普遍的情况是电路的两端均不匹配,因此实验更具有一般性和实际应用的价值。根据广义无耗传输线理论,在传输线两端均匹配,仅源端匹配和仅负载端匹配三种情况下负载端的电压分别为:[6]

其中,Vs为信号源激励电压,Zs为信号源内阻,Z0为特性阻抗,为负载处反射系数。

利用ADS软件可以仿真广义无耗传输线上的电压波形。ADS仿真模型如图1(a)所示,激励源信号的频率为1GHz,电压幅度为1V,激励源内阻为R1,负载阻抗为R2,传输线的特性阻抗为50Ω,当源端匹配而负载阻抗为100Ω时,传输线输入端电压V1和负载处电压V2的仿真结果如图1(b)所示,从图中可以看出V2叠加了反射的电压,与式相吻合,可以继续改变激励源内阻和负载阻抗,得到其他两种情况下传输线输入端电压和负载上电压的对比,从中可以直观地验证广义无耗传输线理论。在此基础上,可以进一步指导学生仿真传输线两端均不匹配情况下的电压波形,使之理解波在传输线上的来回反射。并给学生提出为什么会出现来回反射这一问题,引导学生独立思考,为学生自己设计微波电路做好理论的铺垫。

二、Smith圆图与阻抗匹配实验

Smith圆图是微波技术课程的重要内容,也是学生掌握阻抗匹配的工具。Smith圆图主要用于计算微波网络的阻抗、导纳及网络阻抗匹配设计等,还可用于设计微波元器件等。[7]利用ADS中的Smith圆图工具可以直观地进行阻抗匹配。图2为ADS软件中的Smith圆图工具。为了简单起见,设置传输线特性阻抗为50Ω,负载阻抗为75Ω。图2给出了负载和传输线进行匹配的结果。匹配结果可以从多个角度得到并验证,图3中右下角给出了匹配的网络原理图,即此时可在负载端并联一个电阻;图2中右上角给出了匹配后网络的S参数;在图2左面的Smith圆图中可以看到匹配的最终结果。由于利用Smith圆图进行匹配是一个动态的过程,因此在改变参数的过程中可以随时关注匹配的效果。在Smith圆图上既可以考虑源端匹配也可以考虑负载端匹配,特别是对于同一个匹配问题可以有不同的解决方案。在此基础上可以指导学生应用Smith圆图工具进行单支节匹配和双支节匹配等内容的练习,以加深学生对Smith圆图的认识和掌握,为微波电路及微波器件的设计奠定基础。

三、微波网络S参数仿真实验

散射矩阵即S参数是描述微波网络特性的一种重要矩阵形式,也是微波网络的特色之一,对散射矩阵概念的理解与应用是微波技术课程微波网络部分的一个重点和难点。[8]本部分可以通过一些仿真实例来使学生理解S参数。图3(a)给出了两条平行耦合微带线(四端口网络)的S参数仿真模型。当两条微带线距离很近时,由于电磁场的相互作用会产生耦合,应用平行耦合微带传输线可以构建多种类型的微波滤波器,因此本节实验来仿真两条平行耦合微带线的S参数。构建PCB板上长为4inch,线宽为40mil,线间距为40mil的两条平行微带线,并使其各个端口均匹配。S参数仿真结果如图3(b)所示,图中给出了频率在100M~3GHz范围上的S(2,1)和S(4,1)参数,从图中可以看出微带线的传输特性和耦合特性。由于所仿真的四端口网络具有互易性和对称性,因此查看其他S参数,会发现S(2,1)与S(1,2)一致,S(3,4)与S(4,3)一致,S(3,1)与S(1,3)一致,S(4,1)与S(1,4)一致。

根据这个仿真模型和结果可以引导学生再进行实验和研究。比如,实际上S(3,1)参数为两条平行耦合微带传输线间的近端串扰,S(4,1)参数为两条平行耦合微带传输线间的远端串扰。串扰是噪声,对于高速电路的设计者来说,如何抑制串扰就是一个问题。把抑制串扰这个问题抛给学生,使之思考,就会激发他们的学习兴趣和研究潜能。

四、结论

基于ADS软件的微波技术仿真实验既可以使学生掌握微波仿真软件的使用,也可以增强学生理解相关理论的能力。特别是通过引导学生在基本实验的基础上再进行扩展实验,可以激发学生的学习兴趣和研究潜能,提高他们解决实际问题的综合能力。在北京信息科技大学通信工程专业实施“卓越工程师教育培养计划”中,物联网是三个培养方向中的一个,其中的射频电路设计和射频识别技术等课程就需要学生有较好的微波技术基础,因此微波技术实践教学的地位将更加突出,基于ADS软件的微波技术仿真实验方案将为北京信息科技大学“卓越工程师教育培养计划”的实施奠定基础。

参考文献:

[1]吕淑平,马忠丽,王科俊,等.基于创新型工程科技人才培养的实验教学体系建设与实践[J].实验技术与管理,2012,29(7):133-135.

[2]张发爱,吴志强,刘来君,等.以重点实验室为平台,培养地方性工科大学生的实践和创新能力[J].实验技术与管理,2012,29(7):5-7.

[3]夏祖学,李少甫,胥磊.《天线与微波技术》课程的教学改革研究与实践[J].实验科学与技术,2013,11(6):49-51.

[4]孙凤坤,邢泽炳.微波技术原理及其发展与应用[J].科技创新与应用,2014,(6):3-4.

[5]全绍辉.构建“微波技术”课网上教学和实验实践学堂[J].实验技术与管理,2012,29(12):159-163.

[6]李秀萍.微波技术基础[M].北京:电子工业出版社,2013.

微波技术的基本原理范文4

关键词:逆变技术;SPWM;采样控制理论;微元法;MATLAB

中图分类号:TP312

文献标识码:A 文章编号:1672-7800(2015)005-0062-03

作者简介:范云飞(1993-),男,四川南充人,四川理工学院自动化与电子信息学院学生,研究方向为图像处理、智能控制、工业嵌入式;通讯作者:任小洪(1960-),男,四川南充人,四川理工学院自动化与电子信息学院教授、硕士生导师,研究方向为智能测控技术、无线传感网络技术。

0 引言

逆变技术作为非常重要的一门技术,主要应用于电气火车、变频电源、数控机床、光伏并网、燃料电池静置式发电站等领域。早期逆变主要采用模拟电路实现,精度差,不易进行幅值校正与相位匹配,现在常用微处理器生成SPWM方法。目前行业内成熟的逆变SPWM算法很多,较为常用的有对称规则采样法、不对称规则采样法、等效面积法等,其共性问题是原理复杂、程序繁琐、不易理解,初级学者不易上手。本文基于采样控制理论,提出用微元法生成SPWM的算法,在原理复杂度与程序结构上均有较大改进,更适合中低端单片机进行逆变控制。

1 微元法

1.1 微元法原理

令所要产生的正弦波峰值为1,PWM峰值也为1,将要产生的正弦基波进行有限项切割,见图1。计算每项微元对应的函数值,即对应三角函数值,用与微元项周期相同的PWM波对应一组微元项,见图2,则每项微元所对应的函数值是其对应PWM的占空比。在误差范围内,每项微元对应的占空比产生的一系列PWM波即为所需的SPWM波形。

1.2 原理论证

取直流电压幅值为1,所需的正弦波幅值为1,任取正弦基波时刻t(正半周期内),则表明SPWM每一微元项的占空比为sinωt。令微元频率为F,则微元周期为1F。在周期t至t+1F内,此SPWM所对应的冲量为1F・1・sinωt。由定积分原理可知:

由采样控制理论可知,冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。所以,原题设得证。

为了SPWM输出经过积分电路后获得一个较为精确的正弦波,输出SPWM波形中的PWM周期应该远远小于积分电路的积分常数τ[2]。而PWM周期过小,则所需的计算量大大增加,造成系统性能降低,且不能明显提高精度[3]。

2 实验论证

2.1 不规则采样实验

以Msp430f169为处理器,基波频率为F,半周期内有限微元数量为N,则基波周期为:

T=1F(6)

微元周期(载波周期)为:

dt=T2・N=12・N・F(7)

则SPWM中,每项微元周期dt对应占空比η为:

η=sin(2・π・t2N),t=0,1,2,3…,N-1(8)

用定时器A和比较器产生SPWM波,表1中数据是将基波周期定为25HZ,载波周期定为32KHZ所产生的正弦数值表,在单片机中用等周期中断查表修改生成与PWM有关的寄存器TACCRx,即可产生SPWM波。

2.2 微元法实验

以Msp430f169为处理器,使用微元算法生成正弦表,见式(7)、式(8),将基波周期定为25HZ,PWM周期定为32KHZ,用MATLAB仿真,其MATLAB源代码如下:

MainFreq = 8 ;F = 25 ;N = 320 ; t = 0 :N-1 ;

TACCR0 = round(MainFreq *1000000/( F *N*2))

data=sin(pi/N*t)*( MainFreq *1000000/( F *N*2));

data=round(data)

微元法产生的正弦表同不对称规则采样法产生的表相同。将此微元法生成的正弦表导入Msp420f169进行查表生成SPWM,其生成的双通道SPWM通过示波器显示如图3所示,显示了基波的正半周逆变波形和负半周逆变波形。

将生成的两路SPWM分别通入低通滤波器,即有如图4的波形。

所以,将生成的SPWM驱动相应桥路后通过低通滤波器即可生成所需正弦波,即完成正弦逆变。

2.3 算法对比

上述实验数据表明,在中低端处理器中不能体现算法的精度,原因是中低端单片机自身的系统误差,具体体现在:①中低端处理器系统时钟较低;②自身输出PWM的分辨率跟不上算法精度。同时,精度高的算法较此微分法运行时间长,表明微元法具有一定优势。

因为自然采样法在计算SPWM波的脉宽时要解超越方程,所以在实际控制中不能保证时效性。对称规则采样法、不对称规则采样法均有使用正弦调制波与三角载波相交原理,其中具有复杂的几何运算,且其使用的正弦调制波与三角载波相交原理在初学时不易明白和掌握,同时,其逆变算法不易从特殊推广到一般。本文提出的基于微元法的SPWM算法只需将对应时间的函数值转化为输出PWM的占空比即可产生SPWM,对比之下,此算法具有原理通俗易懂、算法简单、易于推广的优点,适合逆变初学者。

3 算法改进

处理器不易计算三角函数,若此方法用在DSP等高速处理器上,可直接将MATLAB程序转译为DSP代码。若用于单片机等低速处理器,可将三角函数进行傅立叶展开,取前几项,在精度可接受的情况下,也可粗略控制逆变电路。三角函数傅立叶变换等式[5]为:

sin(t)=t-t33!+t55!-t77!+…(9)

当取前3项时,等效变换为:

sin(t)≈t-t33!+t55!(10)

此时,繁琐的三角函数被化为简单的多项式,简化程度可观。

4 结语

本文提出了用微元法生成SPWM,诠释了数字芯片处理模糊量的经典方法,此法用微积分学理念解释了SPWM原理,其原理相比现有成熟的SPWM算法简单通俗,适合初学者参考,也适合研究人员参考。

参考文献:

[1] 熊军华,王亭岭,陈建明,等.三种SPWM形生成算法的分析与实现[J].微计算机信息,2008,24(7):307-309.

[2] 沈建华,杨艳琴,翟骁曙.MSP430系列16位超低功耗单片机原理与应用[M].北京:清华大学出版社,2004.

[3] 胡寿松.自动控制原理[M].第5版.北京:科学出版社,2007.

[4] 姜彬,张浩然,郭启军.基于DSP的SPWM不对称规则采样算法的分析与实现[J].微计算机信息,2009,25(4):210-212.

[5] 孙巧榆,刘永强,鱼瑞文.基于自然采样法的SPWM脉冲计算方法[J].电气传动自动化,2001,24(1):13-15.

微波技术的基本原理范文5

【关键词】微波加热;蚕蛹烘干;微波烘蛹

0 前言

我国桑蚕养殖和茧丝绸加工量均为世界第一,我国每年缫丝厂产出的湿蚕蛹就有几十万吨。在干的蚕蛹中,含有25%-29%的蚕蛹油,以及51%-59%的蛋白质,还含有多种氨基酸和维生素。蚕蛹的综合利用大有可为,可以简单加工成饲料和肥料,深加工成保健品和药品。每个缫丝厂每天都有大批量的鲜湿蛹下脚料产出,这些鲜湿蛹必须要及时烘干打包好,否则就会发臭变质腐烂,不仅失去宝贵的利用价值,随意丢弃还会滋生病菌污染环境,所以发展蚕蛹烘干技术是很有前景和必要的。

那目前我国缫丝厂湿蚕蛹烘干技术怎样呢?很多地方还是采用原始的摊开自然晾晒来晒干蚕蛹,这种方法占地大、干燥时间长、效率极低,虽然省了设备成本,但是人工成本很高。另一种是常见的土砖烘干房,通过然烧柴火或者煤炭产生热量来烘干,这种方法烘干效率不高还要消耗大量的木材或煤炭,由于烘房温度不均匀,烘出的干蛹干燥程度不好控制。比较先进一点的就是采用红外热风烘干设备来烘干蚕蛹,它依靠大功率的红外发光丝发热,配合风机提高蒸发效率,它是能提高烘蛹效率,但大批量烘干蚕蛹速度不够快,耗电能也大。所以我们要寻求更加高效节能的蚕蛹烘干方法,开发可以生产线式大批量快速烘干蚕蛹的设备。

本文介绍一种采用微波加热技术来烘干蚕蛹的方法,可以实现大批量蚕蛹快速烘干,烘干过程要尽量机械自动化,更加节能高效。

1 微波烘蛹的实现方法

1.1 微波原理

微波是一种高频率的频率范围约在300MHZ~300000MHZ电磁波,微波量子的能量为199×10-25j~1.99×10-22j,它具有波动性、高频性、热特性和非热特性四大基本特性。微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。微波能够透射到生物组织内部使偶极分子和蛋白质的极性侧链以极高的频率振荡,引起分子的电磁振荡等作用,增加分子的运动,导致热量的产生。物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱,吸收微波越多物资发热量就越大。

可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。在电真空器件中能产生大功率微波能量的有磁控管、多腔速调管、微波三、四极管、行波管等。在微波加热领域特别是工业应用中使用的主要是磁控管及速调管。如今微波加热技术应用已经很成熟,它的显著特点是加热效率高,设备成本低,最常见的微波加热设备就是我们家家户户用的微波炉。

鲜湿蚕蛹的烘干,就是要烘除其表面和体内的水分。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力;而蛹体本身蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此,利用微波对物体的选择加热特性,可以针对性的对湿蚕蛹进行加热烘干,而且这种微波有目的性的体内加热要比红外热风外部加热快速节能很多。另外微波加热还有很好的灭菌效果,微波杀菌是利用了电磁场的热效应和生物效应的共同作用的结果。微波对细菌的热效应是使蛋白质变化,使细菌失去营养,繁殖和生存的条件而死亡。这样运用微波技术烘干的蚕蛹就等于有了一次彻底的灭菌处理,更加有利于干蚕蛹后期的存储运输不变质。

1.2 微波烘干设备的设计

如上图:微波烘蛹设备示意图,湿蛹由喂料机均匀的铺到传送带上,经由传送带匀速送入烘干箱,经过多级的微波阵列加热和排风阵列除湿,出烘干箱的蚕蛹已经烘干,干蛹由传送带送入出料桶。这样运用微波技术来实现蚕蛹快速烘干,整个烘干过程实现机械自动化。此设备主要由烘干箱、控制主机、喂料机、传送带、出料桶组成,下面具体阐述。

烘干箱:它是整个烘干设备最主要部分,负责蚕蛹的微波加热和排风抽湿,它由多个微波阵列和排风阵列一节一级串联组成;每一级阵列有三组磁控管来发生微波,由三个抽风机来排风对流;每一级阵列的微波发生功率和排风功率可以独立程序调控,每一级阵列都有温湿度检测装置以自动计算蚕蛹温湿度,这个阵列的级数多少根据设备的烘蛹产量及速度要求来配比。

控制主机:它是整个烘干系统控制核心,可编程逻辑控制器、变频器、触摸屏、数据采集模块、继电器组、空开组的等电路模块都安放在这里;所以整个系统的数据采集、数据运算、控制命令解析、人机数据交换等都是在这完成的。它也是烘蛹设备操作人员的控制台,操作员就是在这里配置烘蛹参数、监控烘蛹实时状态、控制烘蛹设备运行的。操作员配置好烘蛹参数后,主机可以根据每一级阵列的温湿度自动控制微波加热量和排风量、传送带的传送速度、喂料机的下料速度等来实现整个蚕蛹烘干过程的自动控制。

传送带:它贯穿烘干箱,负责整个烘干过程的蚕蛹运送,传送带的传送速度是主机实时变频可调的,以实现主机的自动控制及人工实时可调。

喂料机:负责将湿蛹均匀的铺在传送带上,它是由电机来回震荡实现自动喂料,它的喂料速度应是实时可调的,以实现主机的自动控制及人工实时可调。

出料桶:负责接装传送带从烘干箱送出的干蚕蛹,它应设计有利于干蚕蛹的快速打包,以适应烘蛹设备生产线式不间断工作。

2 总结

综上所述,微波加热技术可以在蚕蛹烘干中运用,且这种细胞体内部精准加热比自然晾晒、红外热风加热等外部热辐射方式加热要节能高效,并且有更好的灭菌效果。本文所述的微波烘蛹设备可以实现大批量蚕蛹快速烘干,整个烘干过程实现机械自动控制,生产线式不间断作业;微波烘蛹设备相对于红外热风烘干设备,它的烘干速度更快,更加节约电能,设备自动化程度更高,人员操作更简化,更适合生产线式大批量烘蛹作业。

【参考文献】

[1]董金明,邓辉.微波技术[M].北京:机械工业出版社,2010.

微波技术的基本原理范文6

微波是频率在300 mhz~300 ghz之间,位于电磁波谱的红外辐射和无线电波之间的一种非电离电磁能。微波技术起源于20世纪30年代,最初应用于电视、广播、通讯技术中。1945年,美国人首先发现了微波的又一特性——热效应,并首次将微波作为一种非通讯的能源应用于工业、农业乃至科学研究中。微波工业应用就是指利用微波的能量作用于物体实现需要的目标。微波能应用的特点在于一是以“能量转换”为基础,即微波所产生的热量是被加热物体的分子通过偶极回转、分子极化后转化成的,并非热传导;二是具有很高的传热效率,相当于对流传热的5倍。

微波能的作用原理是当物体被置于超高频电流的交变电场中受到微波作用时,物体中的极性分子处于激烈、快速的震荡和回转中,产生自感应,使物体获得热量,进而发生物理的、化学的或者生物的变化。

目前用于工业应用的微波有两个频率:2450mhz和915mhz,产生微波的核心部件是磁控管,磁控管是组成微波源的主要部件。

微波工业应用主要在替代传统工艺、产品附加值高及适用于微波(吸收微波能力比较强)的领域取得快速发展,主要是茶叶加工、橡胶脱硫、活性炭和竹炭高温烧制、陶瓷材料、能源材料(磁性材料、锂电池材料)的烧结和环保(生物质能、水处理、有机物处理(工业废水、废料除毒))等领域。

1. 微波技术应用于茶叶杀青、干燥

微波杀青、干燥是微波发生器将微波辐射到杀青、干燥的物料并穿透到物料内部时,诱使物料的水等极性分子随之同步旋转,例如采用915mhz微波干燥物料,其体内极性分子每秒钟旋转9.15亿次,如此的高速旋转使物料瞬时产生摩擦热,导致物料表面与内部同时升温,且内部温度高于物料表面温度,使大量的水分子从物料中逸出而被蒸发带走,这样达到杀青、干燥的目的。这种杀青、干燥方法的特点是加热时间短,内外温度一致,其热传递方向从内向外与湿传递方向也一致,不同于常规加热方式需要一定时间才能将热量从外部加热到内部,存在内外温度差和湿、热传递方向相反的问题。

茶叶杀青、干燥的要求是杀青后茶叶的含水率为58%~60%,干燥后的含水率达6%,保持茶叶的原味、原样、原色,保证基本营养成份不失,同时要求安全卫生。但不同季节所产的茶叶,由于生理结构不同、组织细嫩程度不一,如清明前后茶大多是组织较嫩的叶芽,而夏秋季用于制茶的原料大多是组织较老的叶片,其杀青、干燥的工艺要求亦有所不同,这给杀青、干燥带来了难度。制成后的茶叶大多用于泡茶饮用,要求杀青的茶叶一经开水泡开,色泽、形态、味道及营养成分与新鲜茶叶基本一致。而目前茶叶的炒青工艺和热风干燥工艺随意性大,茶叶易产生红梗、红叶、色泽不均、叶边焦黄、带有烟焦味等问题,其品质较难控制。而微波能具有透人茶叶的内部加热,以及无需高温热介质的特点,从根本上改变了依赖高温介质和热传导加热升温的常规加热杀菌抑酶的方法,同时由于微波电磁场在杀青、干燥过程中还具有非热效应,可大大缩短了杀青、杀菌时间,有利于茶叶干燥后的贮藏以及卫生标准。因此,采用微波杀青、干燥茶叶可解决传统杀青、干燥方式中存在的问题。

2. 微波技术应用于橡胶加工

(1)橡胶硫化

橡胶是一种偶极材料,适合于微波加热。当接收微波作用时,橡胶分子处于激烈、快速的震荡和回转之中,从而产生自感应,获得热量。电场的频率越高、胶料的极性大,则升温效果越明显,由于微波加热从内部开始,其过程迅速而稳定,从室温到200°c仅需数十秒。目前橡胶行业使用的微波频率为2450mhz和915mhz两种,其快速升温特别适合短流程硫化生产线,同样也可适合于厚壁制品的预热以及废胶的再生。

在实际生产中,为了达到节能、缩短流程和确保质量等多方面的目的,在微波加热段得后面往往加装热空气或远红外补充加热装置。

橡胶工业所用的微波设备,功率都在12~24 kw。1度电用于微波加热可使22 kg的未硫化半成品从室温加热到硫化温度。曾经做过对比,用微波硫化350 kg挤出胶条耗电50度,而盐浴硫化耗电量达180度。对于导电性差的橡胶材料而言,使用微波不仅节能、降耗、省时,还能减少设备占用的空间。

例如微波硫化用于橡胶挤出制品时,其流水线所占面积仅为蒸汽加热流水线的1/5~1/4。原因在于微波加热所产生的热量几乎全部为橡胶所吸收,而在蒸汽硫化中90%的热量消失于对流过程,被加热装置(硫化罐)或周围介质所吸收。

(2)橡胶脱硫

废旧橡胶再生是指废旧硫化橡胶经过粉碎、加热、机械处理等物理化学过程,使其从弹性状态变成具有塑性和粘性的、能够再硫化的橡胶。再生过程的实质是在热、氧、机械作用和再生剂的化学与物理作用等的综合作用下,使硫化胶s—s键和s—c键网络破坏降解。

微波脱硫是利用在变化频率极高的微波场中,一切极性基团都会随微波场变化而剧烈运动,会在极性基团和分子之间产生巨大能量。硫化橡胶分子间及大分子内都存在s—s键和s—c键,可将其看成是一种硫醚键的偶极矩,因而硫化橡胶都会在微波场中发生偶极极化,并且硫醚键的偶极矩较大,在微波场中该处获得的能量也较大。而且,一般硫化橡胶中都含有炭黑,而炭黑吸收微波的能力很强,因此,在微波能的作用下可使硫化橡胶的s—s键和s—c键断裂,破坏硫化胶的网状结构获得塑性而使之再生。

微波脱硫法是非机械、非化学的一步再生法,相比传统方法,脱硫时间短,生产效率高,质量优良,无须添加再生活化剂,生产过程无污染,对极性和非极性橡胶都有效,并且,通过控制微波场的强度,可获得必需可塑性的再生胶。