集成电路设计基本流程范例6篇

集成电路设计基本流程

集成电路设计基本流程范文1

关键词:集成电路设计;本科;教学改革

中图分类号:G642.0 文献标识码:A 文章编号:1002-4107(2015)10-0031-02

集成电路作为关系国民经济和社会发展全局的基础性和先导性产业,是现代电子信息科技的核心技术,是国家综合实力的重要标志。鉴于我国集成电路市场持续快速的增长,对集成电路设计领域的人员需求也日益增加。集成电路是知识密集型的高技术产业,但人才缺失的问题是影响集成电路产业发展的主要问题之一。据统计,2012年我国对集成电路设计人才的需求是30万人 [1-2]。为加大集成电路专业人才的培养力度,更好地满足集成电路产业的人才需求,2003年教育部实施了“国家集成电路人才培养基地”计划,同时增设了“集成电路设计和集成系统”的本科专业,很多高校都相继开设了相关专业,大力培养集成电路领域高水平的骨干专业技术人才[3]。

黑龙江大学的集成电路设计与集成系统专业自2005年成立以来,从本科教学体系的建立、本科教学内容的制定与实施、师资力量的培养与发展等方面进行不断的探索与完善。本文将结合多年集成电路设计与集成系统专业的本科教学实践经验,以及对相关院校集成电路设计专业本科教学的多方面调研,针对黑龙江大学该专业的本科教学现状进行分析和研究探索,以期提高本科教学水平,切实做好本科专业人才的培养工作。

一、完善课程设置

合理设置课程体系和课程内容,是提高人才培养水平的关键。2009年,黑龙江大学集成电路设计与集成系统专业制定了该专业的课程体系,经过这几年教学工作的开展与施行,发现仍存在一些不足之处,于是在2014年黑龙江大学开展的教学计划及人才培养方案的修订工作中进行了再次的改进和完善。

首先,在课程设置与课时安排上进行适当的调整。对于部分课程调整其所开设的学期及课时安排,不同课程中内容重叠的章节或相关性较大的部分可进行适当删减或融合。如:在原来的课程设置中,“数字集成电路设计”课程与“CMOS模拟集成电路设计”课程分别设置在教学第六学期和第七学期。由于“数字集成电路设计”课程中是以门级电路设计为基础,所以学生在未进行模拟集成电路课程的讲授前,对于各种元器件的基本结构、特性、工作原理、基本参数、工艺和版图等这些基础知识都是一知半解,因此对门级电路的整体设计分析难以理解和掌握,会影响学生的学习热情及教学效果;而若在“数字集成电路设计”课程中添加入相关知识,与“CMOS模拟集成电路设计”课程中本应有的器件、工艺和版图的相关内容又会出现重叠。在调整后的课程设置中,先开设了“CMOS模拟集成电路设计”课程,将器件、工艺和版图的基础知识首先进行讲授,令学生对于各器件在电路中所起的作用及特性能够熟悉了解;在随后“数字集成电路设计”课程的学习中,对于应用各器件进行电路构建时会更加得心应手,达到较好的教学效果,同时也避免了内容重复讲授的问题。此外,这样的课程设置安排,将有利于本科生在“大学生集成电路设计大赛”的参与和竞争,避免因学期课程的设置问题,导致学生还未深入地接触学习相关的理论课程及实验课程,从而出现理论知识储备不足、实践操作不熟练等种种情况,致使影响到参赛过程的发挥。调整课程安排后,本科生通过秋季学期中基础理论知识的学习以及实践操作能力的锻炼,在参与春季大赛时能够确保拥有足够的理论知识和实践经验,具有较充足的参赛准备,通过团队合作较好地完成大赛的各项环节,赢取良好赛果,为学校、学院及个人争得荣誉,收获宝贵的参赛经验。

其次,适当降低理论课难度,将教学重点放在掌握集成电路设计及分析方法上,而不是让复杂烦琐的公式推导削弱了学生的学习兴趣,让学生能够较好地理解和掌握集成电路设计的方法和流程。

第三,在选择优秀国内外教材进行教学的同时,从科研前沿、新兴产品及技术、行业需求等方面提取教学内容,激发学生的学习兴趣,实时了解前沿动态,使学生能够积极主动地学习。

二、变革教学理念与模式

CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突[4]。

在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SAR ADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。

三、加强EDA实践教学

首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009―2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要[5]。

其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。

第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。

四、搭建校企合作平台

近年来,北京电子协会着手主办了“全国大学生集成电路设计大赛”,为各高校的在校大学生提供了一个集成电路设计专业竞赛的良好平台。通过大赛的举办,不仅提高了本科教学工作的积极性和教学质量,更加有利了提高学生的实践能力和创新能力[6]。同时,大赛以集成电路产业为背景,联合各高校与企业参与其中,促进了高校间和校企间的交流与合作,并且通过大赛可以帮助企业发掘有潜力的优秀专业人才,而对于参赛学生而言亦是为其就业拓宽了渠道。2012―2015年期间,黑龙江大学连续参加多届“全国大学生集成电路设计大赛”,本科生及研究生组都分别取得过特等奖和一、二、三等奖的好成绩,并获得了华润上华0.35umCMOS工艺的多次流片机会,这对于本科阶段的学生来说是弥足珍贵的学习和积累经验的机会。

通过参加大赛,学生不仅积累了实践操作经验,完善了知识结构,更对竞技精神有了一种新的认识与体会,增强了创新创业的意识和能力。同时,在竞赛过程中,令学生对自身的优势和劣势有了明确的认识,对于其专业能力和发展潜质也是一次很好的发掘。在今后的赛事中,我们会借鉴以往的大赛经验,对参赛的本科生和研究生进行合理的培训和实践训练,成员以高年级带低年级、老队员带新队员、理论型学生与实践性学生相结合的模式组队,以实现经验传承、知识共享与交流、创新实践、团队合作等优势,有利于专业的发展以及各届学生专业能力和创新能力的提高。

参考文献:

[1]谢海情,唐立军,文勇军.集成电路设计专业创新型人才

培养模式探索[J].中国电力教育,2013,(28).

[2]卫铭斐,王民,杨放等.集成电路设计类EDA技术教学改

革的探讨[J].电脑知识与技术,2012,(19).

[3]段智勇,弓巧侠,罗荣辉.集成电路设计人才培养课程体

系改革[J].电气电子教学学报,2010,(5).

[4]江帆,张春良,王一军等.CDIO开放教学模式研究[J].

教学研究,2012,(2).

[5]彭春雨,蔺智挺,李正平等.集成电路设计平台构建与实

验教学探索[J].电气电子教学学报,2014,(5).

集成电路设计基本流程范文2

关键词:集成电路版图CAD;实践教学;课程实验;课程设计

Research on practice teaching mode of computer aided design of IC layout course

Shi Min, Zhang Zhenjuan, Huang Jing, Zhu Youhua, Zhang Wei

Nantong University, Nantong, 226019, China

Abstract: In this paper, the practice teaching mode of Computer Aided Design of IC layout course is discussed. According to one trunk line and two related course experiments mode, the experiment contents and methods were designed and implemented. Meanwhile, other efforts including emphasis of extracurricular scientific competition and reform of course practicum, were adopted to pay attention to the cultivation of comprehensive ability for students. The practice teaching mode proved that better teaching effect have been obtained.

Key words: Computer Aided Design of IC layout; practice teaching mode; course experiments; practicum

目前,高速发展的集成电路产业使IC设计人才炙手可热,而集成电路版图CAD技术是IC设计人才必须具备的重要技能之一。集成电路版图CAD课程是我校电子科学与技术专业和集成电路设计与集成系统专业重要的专业主干课,开设在大三第二学期,并列入我校第一批重点课程建设项目。本课程的实践教学是教学活动的重要组成部分,它是对理论教学的验证、补充和拓展,具有较强的直观性和操作性,旨在培养学生的实践动手能力、组织管理能力、创新能力和服务社会能力。结合几年来的教学实践,笔者从本课程实验、课程设计、课外科技竞赛等实践环节的设计工具、教学内容设计、教学方法和教学手段、师资队伍建设以及考核管理等方面进行总结。探讨本课程实践教学模式可加强学生应用理论知识解决实际问题的能力,提升就业竞争力,对他们成为IC设计人才具有十分重要的意义。

1 版图设计工具

集成电路CAD技术贯穿于集成电路整个产业链(设计、制造、封装和测试),集成电路版图设计环节同样离不开CAD工具支持。目前业内主流版图设计工具有Cadence公司的Virtuoso,Mentor Graphics公司的IC Flow,Springsoft公司的Laker_L3,Tanner Research公司的L_Edit和北京华大九天公司的Aether等。这些版图设计工具的使用流程大同小异,但在自动化程度、验证规模、验证速度等方面有所差异,在售价方面,国外版图设计工具贵得惊人,不过近年来这些公司相继推出大学销售计划,降低了版图设计工具的价格。高校选择哪种版图设计工具进行教学,则视条件而定。我校电子信息学院有2个省级实验教学示范中心和1个省部共建实验室,利用这些经费,我们购买了部分业内一流的EDA工具进行教学和科研。目前,我校版图设计工具有北京华大九天公司的Aether和Springsoft公司的Laker_L3。

2 两种相辅相成的实验教学模式

我校集成电路版图CAD课程共48学时(理论讲授24学时、实验24学时),实验环节是本课程教学的重要部分,在有限的实验教学时间内既要完成教学内容,又要培养学生创新能力,需要对实验教学模式进行改革和创新。本课程实验教学的目的与要求:与理论教学相衔接,熟练使用版图设计工具,学会基本元器件、基本数字门电路、基本模拟单元的版图设计,为本课程后续的课程设计环节做准备。紧紧围绕“一个规则(版图几何设计规则)、两个流程(版图编辑流程和验证流程)、四个问题”这条主线设计实验内容[1,2]。要解决的4个问题分别是:(1)版图设计前需要做哪些准备工作?(2)如何理解一个元器件(晶体管、电阻、电容、电感)的版图含义[3,4]?(3)如何修改版图中的几何设计规则检查错误?(4)如何修改版图和电路图一致性错误?表1为本课程实验内容、对应学时及对应知识点。笔者设计了两种相辅相成的实验教学模式:系统化实验教学模式和实例化实验教学模式。系统化实验教学从有系统的、完整的角度出发设计了实验教学内容,如设计实验3(数字基本门电路版图阅读)时,安排了5学时,采用3种版图阅读方式:读现有版图库中的单元电路版图、显微镜下读版图和读已解剖的芯片版图照片。针对同一内容,采用不同形式,彼此类比,加深印象,既有实物,又有动手操作,增强了直观性和感性认识。又如设计实验5(模拟单元MOS差分对管版图设计)时,安排了5学时,从器件匹配的重要性入手,给出MOS差分对管的电路图,讲解具体器件的形状、方向、连接对匹配的影响,特别是工艺过程引入器件的失配和误差,对MOS差分对管的3种版图分布形式(管子方向不对称形式、垂直对称水平栅极形式、垂直对称垂直栅极形式)进行逐一分析,指出支路电流大小对金属线的宽度要求,对较大尺寸的对管,采用“同心布局”结构。实例化实验教学先提出目标实例,围绕该实例,设计具体步骤,教师先示范,学生再模仿,如设计实验7(集成无源器件版图设计)时,由于集成电阻、电容和电感种类很多,不能面面俱到,要求只对多晶硅电阻、平板多晶硅电容和金属多匝螺旋形电感等常用元件进行版图分析和设计。课堂实验的内容和课时是有限的,为此我们设置了课外实验项目,感兴趣的学生选取一些实验项目自己完成,指导教师定期检查。学院开放了EDA实验中心(2007年该中心被遴选为省级实验教学示范中心建设点,2009年12月通过省级验收),学生对本课程很感兴趣,课外使用EDA实验室进行自主实验相当踊跃。通过上述的实验教学方法,特别是课外实验项目的训练,学生分析问题、解决问题的能力和科研素养得到了提高。

表1 课程实验内容、对应学时及对应知识点

表1(续)

4 基于0.6μmCMOS工艺的数字门电路版图设计 5 理解上华华润0.6 μm硅栅CMOS几何设计规则;学会CMOS反相器、传输门、与非、或非等基本门电路版图设计;DRC检查。

5 基于0.6 μmCMOS工艺的MOS差分对管版图设计 4 MOS差分对管版图设计,包括匹配原则、同心布局等,DRC检查。

6 版图电路图一致性检查 3 掌握LVS流程、LVS错误修改。

7 集成无源器件版图设计 3 多晶硅电阻、平板多晶硅电容和金属多匝螺旋形电感等常用元件版图设计。

3 改革课程设计环节

课程设计是本课程培养学生工程应用能力的综合性实践教学环节,时间2周,集中指导,提前1个月发给学生任务书和指导书,每个班配备2名指导教师,注重过程控制。笔者在教学内容、考核等方面进行了改革和创新:在教学内容设计上,给出了必做题和选做题,在选做题中要求每位学生完成数字电路版图1题和模拟电路版图1题,具体题目由抽签决定,做到1人1题,避免学生抄袭。考核成绩由课程设计成果(占50%)、小论文(占30%)、答辩(占20%)三方面综合给出。以往的课程设计报告改为撰写科技小论文,包括中英文题目、中英文摘要及关键词、引言、电路原理与分析、版图设计过程、分析与讨论、结束语和参考文献,让学生学习如何撰写科技论文。精选优质小论文放在本课程网上学习资料库里,供学生相互传阅和学习。课程设计答辩具体要求参照毕业设计(论文)答辩要求,包括准备PPT讲稿、讲解5分钟、指导教师点评等过程,每位学生至少需要10分钟时间。学生对课程设计答辩反映相当好,锻炼了语言组织和口头表达能力,而且相互间可以直接交流和学习。我们还挑选课程设计成绩优秀的学生参加校内集成电路版图设计大赛。虽然课程设计的改革和实践需要教师付出很多精力和时间,但我们无怨无悔,学生的认可和进步是我们最大的收获。

4 精心指导学生参加课外科技竞赛

目前我校学生参加的集成电路版图设计竞赛有校级版图设计大赛以及行业协会和企业组织的版图设计竞赛等。由校教务处主办,电子信息学院承办的南通大学版图设计大赛是校级三大电子设计竞赛之一,每年8月底举行,邀请集成电路设计公司一线设计人员和半导体协会专业人士担任评委,增加了竞赛的专业性和公正性,目前已经举办了6届,反响不错。从校级版图设计大赛获奖者中挑选一部分学生参加行业协会和企业组织的版图设计竞赛,如苏州半导体协会主办的集成电路版图设计技能竞赛、北京华大九天公司主办的“华大九天杯”集成电路设计大赛,其中“华大九天杯”集成电路设计大赛将挑选优秀获奖学生参加华润上华的免费流片,学生经历从电路设计、版图设计及验证、流片到测试各个环节,提高了综合训练能力。

5 加强师资队伍建设

要提高课程实践环节的教学质量,关键是指导教师要思想素质好,专业理论知识强,科研水平高,因此我们着力建立一支年龄结构、职称合理的实践教学队伍。目前很多年轻教师是从校园走向校园,毕业后直接上岗指导学习实践,缺少工程实践经历和经验。为了提高教师自身的业务水平,加强对年轻教师的培养,近十年来,我院每年暑假举行集成电路CAD技术实践培训班,由经验丰富的教学、科研一线教师主讲;不定期地邀请一流IC设计公司一线设计人员来院开设讲座;同时挑选年轻骨干教师到一流IC设计公司学习和实践,时间至少半年以上;现已聘请IC设计公司一线设计人员6人为兼职教师,指导课程设计和毕业设计。集成电路CAD技术日新月异,课程实践环节师资队伍建设必须与时俱进。

6 结束语

我校电子科学与技术专业、集成电路设计与集成系统专业2012年被评为省重点建设专业,也是江苏省首批培养卓越工程师的专业。集成电路版图设计是这两个专业卓越工程师培养计划的重要内容之一,总结和探讨集成电路版图CAD课程实践教学意义重大,今后我们要继续推进该课程实践环节的建设与改革,不断探索,为我国集成电路设计人才的培养而努力奋斗。

参考文献

[1] 施敏,孙玲,景为平.浅谈“集成电路版图CAD”课程建设[J].中国集成电路,2007(12):59-62.

[2] 施敏,徐晨.基于九天EDA系统的集成电路版图设计[J].南通工学院学报:自然科学版,2004,3(4):101-103.

集成电路设计基本流程范文3

关键词:特色专业建设;复旦大学;微电子学;创新人才培养

复旦大学“微电子学与固体电子学”学科有半个多世纪的深厚积累。20世纪50年代,谢希德教授领导组建了全国第一个半导体学科,培养了我国首批微电子行业的中坚力量。60年代研制成功我国第一个锗集成电路。1984年,经国务院批准设立微电子与固体电子学学科博士点,1988年、2001年、2006年被评为国家重点学科。所在一级学科于1998年获首批一级博士学位授予权,设有独立设置的博士后流动站和长江特聘教授岗位,建有“专用集成电路与系统”国家重点实验室,1998年和2003年被列入“211”工程建设学科,2000年被定为“复旦三年行动计划”重中之重学科得到学校重点支持,2005年获“985工程”二期支持,建设“微纳电子科技创新平台”。

长期以来复旦大学微电子学教学形成了“基础与专业结合,研究与应用并重,创新人才培养国际化”特色。近年来,在教育部第二批高等学校特色专业建设中,我们根据国家和工业界对集成电路人才的要求,贯彻“国际接轨、应用牵引、注重质量”的教学理念,制定了复旦大学“微电子教学工作三年计划大纲”并加以实施,在高端创新人才培养方面对专业教学的特色开展了深层的挖掘和拓展。

一、课程体系的完善和课程建设

微电子技术的高速发展要求微电子专业课程体系在相对固定的框架下不断加以更新和完善。

我们设计了“复旦大学微电子学专业本科课程设置调查表”,根据对于目前工作在企业、大学和研究机构的专业人士的调查结果,制定了新的微电子学本科培养方案。主要修改包括:

(1)加强物理基础、电路理论和通信系统课程。微电子学科,特别是系统芯片集成技术,是融合物理、数学、电路理论和信息系统的综合性应用学科。因此,在原有课程基础上,增加了有关近代物理、信号与通信系统、数字信号处理等课程,使微电子学生的知识覆盖面更宽。

(2)面向研究、应用和学科交叉的需要,增加专业选修课程。如增加了电子材料薄膜测试表征方法、射频微电子学、铁电材料与器件、Perl语言、计算微电子学、实验设计及数据分析等课程,为本科生将来进一步从事研究和应用开发打下基础。

(3)强调能力和素质训练,高度重视实验教学。开设了集成电路工艺实验、集成电路器件测试实验、集成电路可测性设计分析实验及专用集成电路设计实验等从专业基础到专业的多门实验课。

在课程体系调整完善的同时,还对于微电子专业基础课和专业必修课开展了新一轮的课程建设。包括:

(1)精品课程的建设。几年来,半导体物理、集成电路工艺原理、数字集成电路设计经过建设已经获得复旦大学校级精品课程。其中半导体物理和集成电路工艺原理课程获得学校的重点资助,正在建设上海市精品课程。另有半导体器件原理和模拟集成电路设计正在复旦大学校级精品课程建设之中,有望明年获得称号。

(2)增加全英语教学和双语教学课程。为了满足微电子技术的高速发展和学生尽快吸收、学习最新知识的需求,贯彻落实教育部“为适应经济全球化和科技革命的挑战,本科教育要创造条件使用英语等外语进行公共课和专业课教学”的要求,在本科生专业课的教学中新增全英语教学课程3门,双语教学课程4门。该类专业课程的开设也为微电子专业的国际交流学生提供了选课机会。

(3)教材建设。为了配合课程体系的完善和补充更新专业知识,除了选用一些国际顶级高校的教材之外,还依据我们的课程体系组织编写了一系列专业教材和论著。有已经出版的《深亚微米FPGA结构与CAD设计》、《Modern Thermodynamics》、《现代热力学-基于扩展卡诺定理》,列入出版计划的《半导体器件原理》、《超大规模集成电路工艺技术》和《计算机软件技术基础》。另外根据课程体系的要求对实验用书也进行了更新。

为了传承复旦微电子学的丰富教学经验和保证教学质量,建立了完备的教学辅导制度,如课前试讲、课中听课及聘请经验丰富的退休老教师与青年教师结对子辅导等。每学期听课总量和被听课教师分别均超过所授课程和任课教师人数的50%以上。对所有听课结果进行了数据分析,并反馈给任课教师,为教师改进教学提供了有益的帮助。在保证教学内容的情况下,鼓励教师尝试新的教学手段,实现所有必修课程的电子化,建立主要必修课程的网页,完全公开提供所有课件信息,部分课件获得超过15000次的下载量。青年教师还独创了“移动课堂”的授课新方法,该方法能够完整复制课堂教学,既能高清晰展示教学课件的内容,又能把教师课上讲解的声音、动作及临时板书全部包含在内,能够使用大众化的多媒体终端进行播放,随时随地完美重现课堂讲解全过程。

通过国际合作的研究生项目及教师出国交流,复旦大学微电子学专业教师的教学水平得到进一步提升。在研究生的联合培养项目(如复旦-TU Delft硕士生项目、复旦-KTH硕士生/博士生项目等)中海外高校教师来到复旦全程教授所有课程,复旦配备青年教师跟班听课和担任课程辅导。这使得青年教师的授课理念、授课方式及授课水平都有大幅提高。同时,由于联合培养项目及其他合作项目,复旦的青年教师也被邀请参与海外高校的教学,担任对方课程的主讲,青年教师利用交流的机会,引进海外高校的一些课程用于补充复旦微电子的培养方案。这些都为集成电路专业特色的挖掘和拓展起到重要的作用。

经过几年的努力,微电子专业的教学水平普遍得到提升,在教学评估中得到各个方面的好评。

二、培养方法的改进和创新

培养适应时代要求的微电子专业创新人才也需要在培养方法上加以改进和创新。

针对微电子工程的特点,在坚持扎实的理论的基础上,强调理论联系实际,开展实践能力训练。在学校的支持下,教学实验室环境得到及时更新,几个方面的实验教学在国内形成特色。

(1)本科的集成电路工艺实验可以在学校自己的工艺线上完成芯片的清洗、氧化、扩散、光刻、蒸发、腐蚀等基本工艺制作步骤,为学生完整掌握集成电路制造的基本能力提供了很好的实际训练。

(2)在集成电路测试方面,结合自动化测试机台(安捷伦SoC93000ATE),开设了可测性设计课程,附带实验。

(3)集成电路设计课程都附带课程项目实践,培养了学生实际设计能力和素质,取得很好效果。

通过课程教学训练学生创新思维和分析问题的能力。尝试开设了部分本科生和研究生同时共同选修的研讨型课程。在课程学习的过程中,本科生不仅可以得到研究生的指导,在课堂上就某些课程内容进行探究,还可以在开展课程设计时在小组内和研究生同学共同开展小型项目研究,对于提高本科生进一步学习微电子专业的兴趣和培养他们发现问题解决问题的能力有很大的帮助。

参加科研无疑是培养学生创新能力的一个最为有效的途径。配合复旦大学的要求,微电子学专业在本科阶段,持续设置多种科研计划,给予本科生进实验室开展科研以支持。

(1)大一的“启航”学术体验计划。计划鼓励大一学生在感兴趣的领域进行探究式学习和实践,为学生打造一个培养创新意识,锻炼学术能力的资源平台。“启航”学术体验计划的所有学术实践项目均来自各个微电子专业的导师,学生通过对感兴趣的项目进行申报与自荐的形式申请加入各学术实践小组。引导学生领略学科前沿,体验研究乐趣。

(2)二、三年级曦源项目。项目建立在学生自主学习和创新思想的基础上,鼓励志同道合的同学组成研究团队,独立提出研究方向,寻找合适的指导教师。加入自己感兴趣的研究方向的团队。在开放课题列表中寻找合适的课题方向,并向该课题指导教师进行申请。还有更多的学生在大三甚至更早就进入各个研究小组,参与教授领导的各类部级、省部级项目及来自企业、海外等的合作项目的研究。在完成的计划和项目成果之外,学生们还在收集文献资料、获取信息的能力,发现问题、独立思考的能力,运用理论知识解决实际问题的能力,设计和推导论证、分析与综合的能力,科学实验、发明创造的能力,写作和表说的能力等方面,都有不同的收获。

通过学生参加国际交流活动及外籍教师讲授课程给学生提供国际化的培养,提供层次更高、路径多元的培养方案,培养了学生的国际化眼光,开拓了学生的培养渠道。

几年来,微电子学专业学生的出国交流人数逐年增长,从2008年起,共有20位本科生赴国外多个高校交流学习。交流的项目包括双学位、长学期和暑期项目等,交流时间从3个月到2年不等,交流学校包括美国(耶鲁、UCLA等)、欧洲(伯明翰、赫尔辛基等)、日本(早稻田、庆应等)及我国港台高校。大多数同学在交流期间的学习成绩达到交流学校的优秀等级,同时积极参加交流学校教授小组的科研工作,得到了很好的评价。个别同学由于表现优异在交流结束回国后被对方教授邀请再次前去完成毕业论文;也有同学交流期间)参加国际级大师的科研小组工作,获益匪浅,直研后表现出强于一般研究生的科研能力。可以看到,国际交流不仅为同学们提供了专业知识和研究能力的不同培养模式,也为他们提供了更加广阔的视野和体验多种文化的机会,为他们今后的发展和进步打下了很好的基础。自特色专业建设以来,每学期均新开设“前沿讲座”课程,课程内容不固定,授课人为聘请的海外教师,有的来自海外高校,有的来自海外企业,课程均为全英语课程或双语教学课程。这类课程直接引进了海外高校的课程和教学方式,不仅学生受益,同时也培养了复旦微电子专业的青年教师。企业还提供与课程内容直接相关的软件,在改善教学环境的同时,还为学生参加科研提供了培训。

经过2年多特色专业项目的建设,复旦微电子学专业在巩固已有教学特色基础上,在高端创新人才培养方面进行了深层的挖掘和拓展,取得了一系列的成果。

集成电路设计基本流程范文4

摘 要: 为了充分节约能源,提高路灯控制系统的智能化,介绍了一种基于GSM的太阳能路灯控制系统。系统通过太阳能电池板把光能转换成电能存储在锂电池中,利用STC12C5A16S2单片机内置AD采集锂电池电压数据,并通过GSM模块把锂电池电压不足的信息发送给手机,工作人员可通过手机回复短信,让单片机控制继电器切换路灯工作电源。该方案对于太阳能利用以及远程路灯控制有很大帮助,应用前景广阔。

关键词: GSM; 单片机; 太阳能电池板; 光敏电阻

中图分类号:TP273.5 文献标志码:A 文章编号:1006-8228(2016)07-59-03

Design of the solar street light control system with GSM

Zhang Xiaojuan

(Huizhou Power Supply Bureau of Guangdong Power Grid Co.,Ltd., Huizhou, Guangdong 516003, China)

Abstract: In order to save energy and improve the intelligent control system of street lamp, this paper introduces a kind of control system of solar street lamp based on GSM. The system uses the solar panel to convert light energy into electric energy stored in the lithium battery, uses STC12C5A16S2 MCU built-in AD converter to acquire lithium battery voltage data, and sent the lithium battery low voltage information to the mobile phone through GSM module, the engineer can reply message through the mobile phone, and control relay to switch lamp power supply. The scheme has great help to the utilization of solar energy and the remote control of street lamps, and has broad application prospects.

Key words: GSM; MCU; solar panel; photosensitive resistor

0 引言

太阳能是干净、无污染且随处可得的能源,而且取之不尽、用之不竭。在化石能源日渐短缺的今日,选择太阳能作为替代能源是解决能源危机的有效途径之一[1]。目前国内大部分城市的道路照明管理系统至今仍在沿用简单的光控、钟控等传统控制方式。这些系统普遍存在着难以反馈路灯运行状态信息、难以进行远程控制等局限,基本没有节电效果,并且采用传统的人工巡检,不仅使路灯管理部门的任务繁重,也增加了运行维护的费用[2]。本文运用光能转换成电能这一节能减排、可持续发展理念,设计了一个可远程控制的太阳能路灯系统。

1 系统结构与工作原理

本系统由单片机控制中心、GSM模块、太阳能电池板及充电管理模块和锂电池等模块构成,总体架构如图1所示。

系统采用STC12C5A16S2单片机作为主控芯片,当光敏电阻检测到光线亮度小于设定的值时,打开LED灯,通过单片机内置AD模块采集锂电池电压数据,如果锂电池电压小于2.8v(当锂电池电压小于2.7V,则处于过放状态,会损害电池,减少电池使用寿命),单片机就会控制GSM模块给工作人员发送短信,工作人员可以回复该短信实现远程操控,切换路灯电源供应方式,以提高路灯持续工作能力及节电节能。

2 系统硬件设计

STC12C5A16S2是一款新型的单片机,由中央处理器(CPU)、程序存储器、数据存储器、定时/计数器、UART串口、I/O接口、高速AD接口、SPI接口、看门狗及片内振荡等模块组成[3]。利用单片机的内置AD采集锂电池电压数据,采集到的数据传输到单片机P1.0口,通过单片机内置AD转换计算。如果锂电池电压小于2.8v,单片机则会控制GSM模块给工作人员发送短信,工作人员收到短信后可以回复短信实现远程操控,切换路灯电源供应方式。系统的总电路如图2所示。

2.1 GSM模块设计

系统中的无线通讯GSM模块采用SIM900A,sim900A是一个专门为中国大陆和印度设计的2个频端的GSM模块,它的工作频段是EGSM 900MHz和DCS 1800MHz。GSM模块是一个电子集成器件,它包含各种部件如:GSM射频、基带频率处理芯片、功率放大器件、存储器等,所有不同功能的器件集成在一块电路板上。这个模块自带GSM射频处理、单独的操作系统、基带处理而且内嵌TCP/IP协议等功能模块。模块能够实现打电话、发短信和上网等功能。文献[4]中详细介绍了单片机与SIM900A的通信方法,与单片机采用串口通讯,波特率为9600MHz,定时器1定时寄存器TH1=TL1=0xFD,使用AT指令来完成单片机与GSM模块之间的字符传输。GSM模块采用的是TTL电平,GSM模块的电源端口接5V电压,VCC_MCU端口接5V电压(高电平的基准电压),模块的RXD接单片机的TXD,GSM模块的TXD接单片机的RXD,模块GND接单片机的GND。

2.2 太阳能电池板及充电管理设计

本系统的电源来自于太阳电池板,把照射到太阳能电池板上的太阳光,利用光伏效应直接将光能转换成直流电能输出。由于本系统限定的电流值为1A,充电管理模块的电压为3.5V-35V,而采用的太阳能电池板功率过高,输出电流最大值为2.5A,输出电压最大值为22V。所以要将太阳能电池板遮住两格以减少输出电流,并把太阳能电池板的输出经降压模块降至7V后,再输入到充电管理模块,由充电管理模块对锂电池进行充电管理,防止过冲。最后通过升压模块把锂电池输出的电压提高到直流5V。

2.3 充电管理模块设计

充电管理模块的设计采用TP4056芯片,芯片会根据电池电压自动调节,依照电池电压的大小来选择采用恒定电流还是恒定电压进行充电。TP4056充电芯片内部基于PMOSFET架构和防倒充电路,因此不再设计隔离二极管电路,从而使得充电电路简单可靠。芯片通过对一个调节电阻进行设置来控制充电电流大小,而充电电压最高为4.2V则最高为4.2V。当充电电流在达到最终浮充电压之后降至设定值1/10时,TP4056将自动终止充电循环。当断掉输入电压时,TP4056充电芯片会自动进入低功耗模式,使得锂电池漏电流被降至3μA。TP4056充电芯片还包括欠压闭锁及电池的温度检测等功能[5]。它是针对单节锂电池充电管理的芯片,在硬件设计中,在充电输出端口增加二极管,是防止电池电流倒流。模块充电电压恒定于4.2V,而充电电流通过外部电位器进行设置。

3 软件设计

前文中详细阐述了基于GSM太阳能路灯控制系统硬件电路各个组成模块的功能和工作原理,而接下来就是这个系统的核心部分,即软件控制系统的设计。软件系统是这个控制系统的灵魂,其设计有极大的灵活性,在硬件结构一定的情况下,系统的智能性几乎完全靠软件来实现。对于设计者而言,软件系统的设计重在把设计者的严密思路转换成电路及芯片之间能够流通和交流的信号和“语言”。

在此次设计中,软件结构仿效硬件电路的设计理念,采用模块化设计,各个功能程序分别编写并调试,在各模块调试成功后,再将所有模块连接整合,构成总系统的软件。这样,不仅有利于程序代码的优化,而且便于编程、调试、维护和协作。设计单片机软件主程序流程图如图3所示。

4 结论

本文详细介绍了基于GSM的太阳能路灯控制系统的设计方案与软硬件实现过程。对单片机控制、GSM模块、光敏电阻模块和太阳能电池组件等各个部分的功能、实现过程作了详细介绍。该系统能够可靠地对城市路灯进行有效的数据采集、自动判断、自动报警,能够对锂电池进行有效的充电管理,同时能够便捷地接收远程命令控制继电器切换路灯工作电源,达到节能要求,其具有体积小,工作可靠,控制便捷等优点。该方案对于太阳能利用以及远程路灯控制有很大帮助,应用前景广阔。

参考文献(References):

[1] 吴理博,刘建政,王健等.在太阳能路灯照明系统中的应用电

力电子在太阳能路灯照明系统中的应用[J].电力电子,2003.1(2):15-19

[2] 吕运朋,李宏超,张为民等.基于STC单片机的智能LED路灯

控制器设计[J].电源技术,2010.134(5):496-498,508

[3] 王鑫,崔忠林,刘建.基于STC12C5A16S2的温度采集系统的

设计[J].微型机与应用,2012,31(20):24-26,29

[4] 王明新.基于SIM900A的GSM远程监控系统设计[J].电脑

知识与技术,2014.10(5):3500-3503

集成电路设计基本流程范文5

关键词:轨道车辆装备;控制系统;综合实践

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)12-0122-03

2012年国家基于提高工程技术人才竞争力的需求,提出了《卓越工程师》培养体系,本校轨道车辆专业由于之前的悠久历史、行业领先的业绩有幸首批入选该体系中。

综合实践课程是培养卓越工程师的非常重要的环节与手段,故此轨道车辆专业在教学培养计划上增加了轨道车辆装备综合实践、轨道车辆控制系统综合实践、轨道车辆测试技术综合实践、轨道车辆设计综合实践、轨道车辆制造与修理综合实践等实践性教学环节。轨道车辆技术的发展在近些年突飞猛进,技术更新非常快,以前的实验设备、实验规程均不能很好地满足综合实践的要求,因此_发适用的综合实践课程内容、研发适用的综合实践设备是摆在轨道车辆实验室面前的非常重要而紧迫的任务[1]。2015年学院自行开发的一套完整的、在最大程度上保证实验原理高度一致的基于网络控制技术的现代轨道车辆综合实验平台系统已经投入使用,并已经完成了2012级轨道车辆专业学生《轨道车辆装备综合实践》(16学时)、《轨道车辆控制综合实践》(16学时)的教学任务,通过实践教学,学生的动手能力、编程能力、对元器件及设备的认知都有了很大的提高[2]。

一、轨道车辆装备与控制系统综合实践的目的

在此实践训练中需要综合应用课堂所学基本理论和技术,应用平时实验已掌握的软硬件的基本设计、调试的方法,完成一个综合了多种设计技术、具有一定实用背景的应用系统的设计。通过这一设计过程,使学生熟悉和掌握轨道车辆装备与控制系统应用系统设计的基本方法,加深对课堂所学理论知识的理解,进一步提高学生的实践动手能力。

二、轨道车辆装备与控制系统综合实践的要求

1.基本要求。学生应在实践环节中完成一个轨道车辆装备应用系统的方案设计、软硬件系统设计与制作,系统功能综合调试,提交设计报告并完成系统功能演示。

2.阶段任务与要求。(1)选题。学生自由组合成设计小组,选择本实践环节中给出的基本题目作为小组设计题目。(2)方案设计。学生围绕小组的题目检索收集资料,进行调研,提出系统总体方案设计,选择最优方案。(3)软硬件系统设计与调试。总体方案确定后,设计完成硬件电路原理图,设计并连接好硬件系统。设计完成软件程序流程,并编写出相应的程序。完成软硬件系统的联机调试,实现选题的设计功能。(4)设计报告的编写。学生根据本小组的题目及设计过程撰写综合实践报告,陈述设计思想和系统工作原理,剖析解决问题的方案、方法,画出系统电路原理图、程序流程图;写出调试结果及分析;附参考文献。(5)答辩及演示。答辩内容应包括所设计题目的基本任务要求,系统总体方案设计,软硬件系统综合设计与调试,系统功能演示、总结。

三、备选的工作任务

根据轨道车辆装备与控制系统的基本组成模块,设计了五项任务,并制作综合试验箱,准备了相关的元器件、PC机及开发环境、数据采集卡等,学生可以自行选择任一任务来完成。

1.空调器致冷/致热转换控制实践[3]。(1)实践目的。①掌握半导体致冷器、电磁继电器、固态继电器的工作原理及应用方法。②掌握PLC或通用数据采集器数字I/O输出程序设计原理及半导体致冷器的致冷/致热转换控制实验编程。(2)配备设备。①PC机一台。②实验用到的半导体致冷器、散热片、散热风扇、电磁继电器、固态继电器、接线端子、面包板、导线。③PLC或通用数据采集器一个。(3)综合实践要求。本综合实践的内容为设计、搭建一能够根据用户操作进行空调器致冷/致热功能转换的控制装置。该控制装置要求如下[4]:①打开空调器的同时,必须打开通风机的开关,如通风机未打开,则空调器不能运行。②打开通风机时可以不必使空调器投入运行。③设置一转换开关,可由用户进行操作进行空调器致冷/致热/通风功能转换,根据空调器性能的要求,在从致冷工况向致热工况或致热工况向致冷工况转换时在两个工况之间必须自动加入若干时间的延时,以保护设备。④根据空调致冷/致热转换控制系统要求设计相关的控制电路图。(4)步骤。①仔细阅读实践要求,并依照要求进行电路设计。②按照已经完成的电路图对电路板进行联接。③编写程序,按照实验要求对系统进行调试。(5)实践报告。①写出实践内容及要求;②画出程序流程图;③写出程序清单,并加以注释;④写出程序执行结果及调试过程。(6)系统电路图(参考)。

2.供电网缺相故障检测断电控制实践。(1)实践目的。①掌握三相供电网缺相检测工作原理及对应处理方法;②掌握PLC或通用数据采集器数字I/O输入、输出程序设计原理及缺相检测编程。(2)配备设备。①PC机一台。②PLC或通用数据采集器一个、课程设计实验电路板一块。③三相变压器(无中性线)、整流模块、滤波电容、手动开关等。(3)实践要求。本实践的内容为设计一个能够在三相供电系统中有某一相掉电时辨识缺失的相位信息并同步断电的装置。该装置要求如下:①在三相供电系统中无中性线,任意相掉电,检测装置应能够检测出掉电的相位信息并同步断电。②根据缺相检测控制系统要求设计相关的控制电路图。(4)系统电路图(参考)。

3.设备供电线路接地故障检测实践。(1)实践目的。①掌握设备供电线路接地故障检测工作原理及对应处理方法。②掌握PLC或通用数据采集器数字I/O输入、输出程序设计原理及电路电流平衡检测控制实验编程。(2)配备设备。①PC机一台。②PLC或通用数据采集器。③三相变压器(无中性线)、整流模块、滤波电容、手动开关、直流漏电流传感器。(3)实践要求。①本实践的内容为设计一个能够在三相供电系统中有某一相供电线路故障接地时实时检测信息并同步断电的装置。该装置要求如下:能够在无漏电的情况下,无论电流多大,漏电指示装置无动作,用电设备的供电线路出现大于10mA漏电的情况下,迅速给出漏电信息并切断供电线路的装置。②根据供电线路故障接地检测控制系统要求设计相关的控制电路图。(4)系统电路图(参考)。

4.直流电动机调速控制实践。(1)实践目的。①掌握直流电动机调速控制工作原理。②掌握PLC或通用数据采集器模拟输出程序设计原理与实验编程。(2)配备设备。①PC机一台。②PLC或通用数据采集器。③直流电源与PWM调压电源模块/变频器、直流电机、测速电机、继电器。(3)实践要求。①本实践的内容为设计、搭建一个能够通过控制软件与相关硬件组成的调速控制系统来对直流电动机进行开环调速控制[5]。该装置要求如下:通过软/硬操作面板上的控制开关可对电动机进行起停进行控制,通过软/硬操作面板上的{速旋钮可对电动机的转速进行控制。②根据电机调速控制系统要求设计相关的控制电路图。

5.轨道车辆温度自动测试系统综合实践。(1)实践目的。①掌握温度测试系统工作原理。②掌握PLC或通用数据采集器采集模拟输入程序设计原理与实验编程。(2)配备设备。①PC机一台。②PLC或通用数据采集器。③24V稳压电源、PT-100温度传感器、温度变送器(4―20mA恒流输出)、终端电阻,控制器(PLC或通用数据采集器)、半导体变温系统、标准温度表。(3)实践要求。①本实践的内容为设计、搭建一以PT-100温度传感器为基础的自动温度测试系统。系统要求如下:轴承的温度测量范围设定在0℃―100℃之间,车内温度的测量范围设定在0℃―50℃之间,车外温度测量范围设定在-50℃―50℃之间,在显示界面上显示当前测量温度,测量数据以每5秒钟的间隔存入硬盘,数据格式包括通道号(位置)、测量时间、测量数据(数据格式为电子报表格式,需对原始数据进行修正)。②根据温度测试系统要求设计相关的测试电路图。

2014、2015年完成的综合实践课程已取得了良好的效果,学生对于系统的构建、软硬件知识和应用都有了很大的提高,一部分学生对应用系统的开发产生了浓厚的兴趣,综合实践课程取得了良好的效果。

在总结经验的基础上,2016年对综合实践的硬件准备又进行了系统化的改进,设计开发并制作了更为完善的综合实训设备作为实践课程的基础,学生可根据自己所选任务方向、小组所确定的方案设计自行选择硬件模块和备选元器件,来搭建自己的硬件环境。2016年14级轨道车辆在校生将会使用更为完善的教学设备完成综合实践课程,综合实践会成为培养卓越工程师的有效而有趣的课程。

参考文献:

[1]宋瑞刚,杨检,方宇.城市轨道车辆电力牵引实验台测控系统设计[J].传感器与微系统,2012,31(9):90-95.

[2]刘志明.霍凯轨道车辆控制实验与实践教程[M].北京:科学出版社,2016.

[3]杨琳.列车空调实验台监控系统[J].工业控制计算机,2004,17(4):23-24.

集成电路设计基本流程范文6

关键词:IP技术 模拟集成电路 流程

中图分类号:TP3 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-02

1 模拟集成电路设计的意义

当前以信息技术为代表的高新技术突飞猛进。以信息产业发展水平为主要特征的综合国力竞争日趋激烈,集成电路(IC,Integrated circuit)作为当今信息时代的核心技术产品,其在国民经济建设、国防建设以及人类日常生活的重要性已经不言

而喻。

集成电路技术的发展经历了若干发展阶段。20世纪50年代末发展起来的属小规模集成电路(SSI),集成度仅100个元件;60年展的是中规模集成电路(MSI),集成度为1000个元件;70年代又发展了大规模集成电路,集成度大于1000个元件;70年代末进一步发展了超大规模集成电路(LSI),集成度在105个元件;80年代更进一步发展了特大规模集成电路,集成度比VLSI又提高了一个数量级,达到106个元件以上。这些飞跃主要集中在数字领域。

(1)自然界信号的处理:自然界的产生的信号,至少在宏观上是模拟量。高品质麦克风接收乐队声音时输出电压幅值从几微伏变化到几百微伏。视频照相机中的光电池的电流低达每毫秒几个电子。地震仪传感器产生的输出电压的范围从地球微小振动时的几微伏到强烈地震时的几百毫伏。由于所有这些信号都必须在数字领域进行多方面的处理,所以我们看到,每个这样的系统都要包含一个模一数转换器(AD,C)。

(2)数字通信:由于不同系统产生的二进制数据往往要传输很长的距离。一个高速的二进制数据流在通过一个很长的电缆后,信号会衰减和失真,为了改善通信质量,系统可以输入多电平信号,而不是二进制信号。现代通信系统中广泛采用多电平信号,这样,在发射器中需要数一模转换器(DAC)把组合的二进制数据转换为多电平信号,而在接收器中需要使用模一数转换器(ADC)以确定所传输的电平。

(3)磁盘驱动电子学计算机硬盘中的数据采用磁性原理以二进制形式存储。然而,当数据被磁头读取并转换为电信号时,为了进一步的处理,信号需要被放大、滤波和数字化。

(4)无线接收器:射频接收器的天线接收到的信号,其幅度只有几微伏,而中心频率达到几GHz。此外,信号伴随很大的干扰,因此接收器在放大低电平信号时必须具有极小噪声、工作在高频并能抑制大的有害分量。这些都对模拟设计有很大的挑战性。

(5)传感器:机械的、电的和光学的传感器在我们的生活中起着重要的作用。例如,视频照相机装有一个光敏二极管阵列,以将像点转换为电流;超声系统使用声音传感器产生一个与超声波形幅度成一定比例的电压。放大、滤波和A/D转换在这些应用中都是基本的功能。

(6)微处理器和存储器:大量模拟电路设计专家参与了现代的微处理器和存储器的设计。许多涉及到大规模芯片内部或不同芯片之间的数据和时钟的分布和时序的问题要求将高速信号作为模拟波形处理。而且芯片上信号间和电源间互连中的非理想性以及封装寄生参数要求对模拟电路设计有一个完整的理解。半导体存储器广泛使用的高速/读出放大器0也不可避免地要涉及到许多模拟技术。因此人们经常说高速数字电路设计实际上是模拟电路的

设计。

2 模拟集成电路设计流程概念

在集成电路工艺发展和市场需求的推动下,系统芯片SOC和IP技术越来越成为IC业界广泛关注的焦点。随着集成技术的不断发展和集成度的迅速提高,集成电路芯片的设计工作越来越复杂,因而急需在设计方法和设计工具这两方面有一个大的变革,这就是人们经常谈论的设计革命。各种计算机辅助工具及设计方法学的诞生正是为了适应这样的要求。

一方面,面市时间的压力和新的工艺技术的发展允许更高的集成度,使得设计向更高的抽象层次发展,只有这样才能解决设计复杂度越来越高的问题。数字集成电路的发展证明了这一点:它很快的从基于单元的设计发展到基于模块、IP和IP复用的

设计。

另一方面,工艺尺寸的缩短使得设计向相反的方向发展:由于物理效应对电路的影响越来越大,这就要求在设计中考虑更低层次的细节问题。器件数目的增多、信号完整性、电子迁移和功耗分析等问题的出现使得设计日益复杂。

3 模拟集成电路设计流程

3.1 模拟集成电路设计系统环境

集成电路的设计由于必须通过计算机辅助完成整个过程,所以对软件和硬件配置都有较高的要求。

(1)模拟集成电路设计EDA工具种类及其举例

设计资料库―Cadence Design Framework11

电路编辑软件―Text editor/Schematic editor

电路模拟软件―Spectre,HSPICE,Nanosim

版图编辑软件―Cadence virtuoso,Laker

物理验证软件―Diva,Dracula,Calibre,Hercules

(2)系统环境

工作站环境;Unix-Based作业系统;由于EDA软件的运行和数据的保存需要稳定的计算机环境,所以集成电路的设计通常采用Unix-Based的作业系统,如图1所示的工作站系统。现在的集成电路设计都是团队协作完成的,甚至工程师们在不同的地点进行远程协作设计。EDA软件、工作站系统的资源合理配置和数据库的有效管理将是集成电路设计得以完成的重要保障。

3.2 模拟集成电路设计流程概述

根据处理信号类型的不同,集成电路一般可以分为数字电路、模拟电路和数模混合集成电路,它们的设计方法和设计流程是不同的,在这部分和以后的章节中我们将着重讲述模拟集成电路的设计方法和流程。模拟集成电路设计是一种创造性的过程,它通过电路来实现设计目标,与电路分析刚好相反。电路的分析是一个由电路作为起点去发现其特性的过程。电路的综合或者设计则是从一套期望的性能参数开始去寻找一个令人满意的电路,对于一个设计问题,解决方案可能不是唯一的,这样就给予了设计者去创造的机会。

模拟集成电路设计包括若干个阶段,设计模拟集成电路一般的过程。

(l)系统规格定义;(2)电路设计;(3)电路模拟;(4)版图实现;(5)物理验证;(6)参数提取后仿真;(7)可靠性分析;(8)芯片制造;(9)测试。

除了制造阶段外,设计师应对其余各阶段负责。设计流程从一个设计构思开始,明确设计要求和进行综合设计。为了确认设计的正确性,设计师要应用模拟方法评估电路的性能。

这时可能要根据模拟结果对电路作进一步改进,反复进行综合和模拟。一旦电路性能的模拟结果能满足设计要求就进行另一个主要设计工作―电路的几何描述(版图设计)。版图完成并经过物理验证后需要将布局、布线形成的寄生效应考虑进去再次进行计算机模拟。如果模拟结果也满足设计要求就可以进行制造了。

3.3 模拟集成电路设计流程分述

(1)系统规格定义

这个阶段系统工程师把整个系统和其子系统看成是一个个只有输入输出关系的/黑盒子,不仅要对其中每一个进行功能定义,而且还要提出时序、功耗、面积、信噪比等性能参数的范围要求。

(2)电路设计

根据设计要求,首先要选择合适的工艺制程;然后合理的构架系统,例如并行的还是串行的,差分的还是单端的;依照架构来决定元件的组合,例如,电流镜类型还是补偿类型;根据交、直流参数决定晶体管工作偏置点和晶体管大小;依环境估计负载形态和负载值。由于模拟集成电路的复杂性和变化的多样性,目前还没有EDA厂商能够提供完全解决模拟集成电路设计自动化的工具,此环节基本上通过手工计算来完成的。

(3)电路模拟

设计工程师必须确认设计是正确的,为此要基于晶体管模型,借助EDA工具进行电路性能的评估,分析。在这个阶段要依据电路仿真结果来修改晶体管参数;依制程参数的变异来确定电路工作的区间和限制;验证环境因素的变化对电路性能的影响;最后还要通过仿真结果指导下一步的版图实现,例如,版图对称性要求,电源线的宽度。

(4)版图实现

电路的设计及模拟决定电路的组成及相关参数,但并不能直接送往晶圆代工厂进行制作。设计工程师需提供集成电路的物理几何描述称为版图。这个环节就是要把设计的电路转换为图形描述格式。模拟集成电路通常是以全定制方法进行手工的版图设计。在设计过程中需要考虑设计规则、匹配性、噪声、串扰、寄生效应、防门锁等对电路性能和可制造性的影响。虽然现在出现了许多高级的全定制辅助设计方法,仍然无法保证手工设计对版图布局和各种效应的考虑全面性。

(5)物理验证

版图的设计是否满足晶圆代工厂的制造可靠性需求?从电路转换到版图是否引入了新的错误?物理验证阶段将通过设计规则检查(DRC,Design Rule Cheek)和版图网表与电路原理图的比对(VLS,Layout Versus schematic)解决上述的两类验证问题。几何规则检查用于保证版图在工艺上的可实现性。它以给定的设计规则为标准,对最小线宽、最小图形间距、孔尺寸、栅和源漏区的最小交叠面积等工艺限制进行检查。版图网表与电路原理图的比对用来保证版图的设计与其电路设计的匹配。VLS工具从版图中提取包含电气连接属性和尺寸大小的电路网表,然后与原理图得到的网表进行比较,检查两者是否一致。

参考文献