集成电路设计与集成系统范例6篇

集成电路设计与集成系统

集成电路设计与集成系统范文1

【关键词】 中小规模 集成电路 自动测试系统 设计

一、中小规模集成电路自动测试系统的组成

一般来讲,中小规模集成电路自动测试系统由自动测试设备(ATE)软件平台、测试程序集(TPS)、自动测试设备(ATE)这三部分组成。

1.1 自动测试设备(ATE)软件平台

测试程序集在自动测试设备上的运行及开发平台,称为自动测试设备软件平台,即ATE软件平台。在ATE软件平台上可以实现数据管理、测试任务、测试程序开发、故障诊断、DUT测试以及硬件资源管理等功能。根据功能的不同进行划分,可将ATE软件平台分为数据传递环境、测试程序集运行平台以及测试程序集开发平台这三部分。

1.2 测试程序集(TPS)

被测试对象、相关测试要求与测试程序集(TPS)之间的关系是非常密切的。一般而言,需用标准语言来编写测试软件,如C++、国际通用测试语言ATLAS等。测试程序集中的计算机执行测试软件,可以对ATE中的开关组件、电源、测量单元以及电压电流源等进行控制,并且能够在芯片引脚上加入与之相匹配的激励信号,同时在合适的时间对其响应信号进行测量,最后能够对测量结果进行分析处理,并对那些可能引起故障的事件进行确定。

1.3自动测试设备(ATE)

ATE操作系统软件控制硬件设备的运行,使之能够提供被测试对象部件或电路要求的激励,在此基础上对不同连接点、端口或者引脚处的响应进行测量,最后根据测量结果判定被测对象的性能或功能是否满足规范中的要求。

二、中小规模集成电路自动测试系统的设计

2.1自动测试系统软件的设计

作为中小规模集成电路自动测试系统的关键和核心,自动测试系统软件平台能够当作软桥梁将被测试对象与测试资源紧密的联系起来,而且自动测试系统的整体性能也会受到该软件体系结构的直接影响。一般而言,标准化、组件化、层次化是软件体系结构良好的表现特征,此外,该软件的设计还需满足仪器的互换性及测试程序的可移植性要求,而且必须具有一定的开放性,具体而言,即系统是可以重构的、功能模块是可以重复使用的、软件结构是可以裁减和扩充的。

一般来讲,自动测试系统最底层驱动的设计形式表现为类:TTDrv,而且每个功能板的源文件都是相互独立的,只需负责管理自己板块的控制方法和数据,在接收到底层驱动函数通过接口板输送过来的控制字之后,各个功能板利用 FPGA译码进行相应的控制和数据通讯。

2.2自动测试系统测试程序的设计

一般来讲,系统中每个芯片的测试过程和测试电路都存在不同程度的差异,因此,在编写测试程序时,一定要以每个芯片的特性为参照。由于用户不可以随意对底层驱动程序进行修改,因此在底层驱动程序之上再配置一个程序,即测试程序,就能够满足用户所需,方便用户的直接调用。测试程序的设计,避免了用户因直接使用底层驱动而给系统带来的致命危害。任一测试程序都有相应的工程与之对应,工程组可以允许工程的载入,因此,针对不同芯片的测试要求,用户只需在工程组中找到测试所需的工程即可。一般而言,芯片参数的表现形式往往都设计为函数,因此,在测试过程中,用户只需对测试参数进行选择,然后点击测试按钮,就能立即显示出测试结果。在集成电路中,每个芯片都对应着许多测试参数,而每个参数的测试条件和测试电路都存在一定的差别,因此,要改变测试电路,就必须根据需求对继电器的切合状态进行相应的改变,与此同时,按照测试条件,对芯片上激励源输出的方向和大小进行适当的改变。总之,自动测试系统测试程序的设计,为用户避免了很多不必要的操作,该系统能够自动完成良品率计算、数据记录、分箱结果传送、MAP图绘制等一系列操作,有效的节省了测试时间、人力等资源。

2.3测试程序界面与人机交换过程

科学有序的界面能够方便用户对系统功能与信息的操作和了解,因此,根据不同的功能进行模块划分,可将自动测试系统分为可数据显示界面、测试主窗口、数据图表分析、数据统计界面、程序装载及参数设置界面等。通常情况下,进入软件系统首先看到的是开、关机界面,这个界面的设计目的主要是用来控制测试系统的上电与断电,根据Pwc顺序开启电源后,系统图标及指示灯被点亮,表明系统开启功能正常,可以继续进行测试相关操作。测试系统待机时,橘色指示灯变亮;关机时,绿色指示灯关闭;程序运行时遇到非正常中断的情况时,系统电源会自动关闭。

三、总结

总而言之,中小规模集成电路自动测试系统具有很多优势,如测试覆盖面广、测试速度快、测试精度高、成本低等。加强对中小规模集成电路自动测试系统的研究与设计,能够进一步推进我国IC的研制,促进生产企业的快速发展,带来巨大的经济效益和社会效益。

集成电路设计与集成系统范文2

关键词:IP技术 模拟集成电路 流程

中图分类号:TP3 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-02

1 模拟集成电路设计的意义

当前以信息技术为代表的高新技术突飞猛进。以信息产业发展水平为主要特征的综合国力竞争日趋激烈,集成电路(IC,Integrated circuit)作为当今信息时代的核心技术产品,其在国民经济建设、国防建设以及人类日常生活的重要性已经不言

而喻。

集成电路技术的发展经历了若干发展阶段。20世纪50年代末发展起来的属小规模集成电路(SSI),集成度仅100个元件;60年展的是中规模集成电路(MSI),集成度为1000个元件;70年代又发展了大规模集成电路,集成度大于1000个元件;70年代末进一步发展了超大规模集成电路(LSI),集成度在105个元件;80年代更进一步发展了特大规模集成电路,集成度比VLSI又提高了一个数量级,达到106个元件以上。这些飞跃主要集中在数字领域。

(1)自然界信号的处理:自然界的产生的信号,至少在宏观上是模拟量。高品质麦克风接收乐队声音时输出电压幅值从几微伏变化到几百微伏。视频照相机中的光电池的电流低达每毫秒几个电子。地震仪传感器产生的输出电压的范围从地球微小振动时的几微伏到强烈地震时的几百毫伏。由于所有这些信号都必须在数字领域进行多方面的处理,所以我们看到,每个这样的系统都要包含一个模一数转换器(AD,C)。

(2)数字通信:由于不同系统产生的二进制数据往往要传输很长的距离。一个高速的二进制数据流在通过一个很长的电缆后,信号会衰减和失真,为了改善通信质量,系统可以输入多电平信号,而不是二进制信号。现代通信系统中广泛采用多电平信号,这样,在发射器中需要数一模转换器(DAC)把组合的二进制数据转换为多电平信号,而在接收器中需要使用模一数转换器(ADC)以确定所传输的电平。

(3)磁盘驱动电子学计算机硬盘中的数据采用磁性原理以二进制形式存储。然而,当数据被磁头读取并转换为电信号时,为了进一步的处理,信号需要被放大、滤波和数字化。

(4)无线接收器:射频接收器的天线接收到的信号,其幅度只有几微伏,而中心频率达到几GHz。此外,信号伴随很大的干扰,因此接收器在放大低电平信号时必须具有极小噪声、工作在高频并能抑制大的有害分量。这些都对模拟设计有很大的挑战性。

(5)传感器:机械的、电的和光学的传感器在我们的生活中起着重要的作用。例如,视频照相机装有一个光敏二极管阵列,以将像点转换为电流;超声系统使用声音传感器产生一个与超声波形幅度成一定比例的电压。放大、滤波和A/D转换在这些应用中都是基本的功能。

(6)微处理器和存储器:大量模拟电路设计专家参与了现代的微处理器和存储器的设计。许多涉及到大规模芯片内部或不同芯片之间的数据和时钟的分布和时序的问题要求将高速信号作为模拟波形处理。而且芯片上信号间和电源间互连中的非理想性以及封装寄生参数要求对模拟电路设计有一个完整的理解。半导体存储器广泛使用的高速/读出放大器0也不可避免地要涉及到许多模拟技术。因此人们经常说高速数字电路设计实际上是模拟电路的

设计。

2 模拟集成电路设计流程概念

在集成电路工艺发展和市场需求的推动下,系统芯片SOC和IP技术越来越成为IC业界广泛关注的焦点。随着集成技术的不断发展和集成度的迅速提高,集成电路芯片的设计工作越来越复杂,因而急需在设计方法和设计工具这两方面有一个大的变革,这就是人们经常谈论的设计革命。各种计算机辅助工具及设计方法学的诞生正是为了适应这样的要求。

一方面,面市时间的压力和新的工艺技术的发展允许更高的集成度,使得设计向更高的抽象层次发展,只有这样才能解决设计复杂度越来越高的问题。数字集成电路的发展证明了这一点:它很快的从基于单元的设计发展到基于模块、IP和IP复用的

设计。

另一方面,工艺尺寸的缩短使得设计向相反的方向发展:由于物理效应对电路的影响越来越大,这就要求在设计中考虑更低层次的细节问题。器件数目的增多、信号完整性、电子迁移和功耗分析等问题的出现使得设计日益复杂。

3 模拟集成电路设计流程

3.1 模拟集成电路设计系统环境

集成电路的设计由于必须通过计算机辅助完成整个过程,所以对软件和硬件配置都有较高的要求。

(1)模拟集成电路设计EDA工具种类及其举例

设计资料库―Cadence Design Framework11

电路编辑软件―Text editor/Schematic editor

电路模拟软件―Spectre,HSPICE,Nanosim

版图编辑软件―Cadence virtuoso,Laker

物理验证软件―Diva,Dracula,Calibre,Hercules

(2)系统环境

工作站环境;Unix-Based作业系统;由于EDA软件的运行和数据的保存需要稳定的计算机环境,所以集成电路的设计通常采用Unix-Based的作业系统,如图1所示的工作站系统。现在的集成电路设计都是团队协作完成的,甚至工程师们在不同的地点进行远程协作设计。EDA软件、工作站系统的资源合理配置和数据库的有效管理将是集成电路设计得以完成的重要保障。

3.2 模拟集成电路设计流程概述

根据处理信号类型的不同,集成电路一般可以分为数字电路、模拟电路和数模混合集成电路,它们的设计方法和设计流程是不同的,在这部分和以后的章节中我们将着重讲述模拟集成电路的设计方法和流程。模拟集成电路设计是一种创造性的过程,它通过电路来实现设计目标,与电路分析刚好相反。电路的分析是一个由电路作为起点去发现其特性的过程。电路的综合或者设计则是从一套期望的性能参数开始去寻找一个令人满意的电路,对于一个设计问题,解决方案可能不是唯一的,这样就给予了设计者去创造的机会。

模拟集成电路设计包括若干个阶段,设计模拟集成电路一般的过程。

(l)系统规格定义;(2)电路设计;(3)电路模拟;(4)版图实现;(5)物理验证;(6)参数提取后仿真;(7)可靠性分析;(8)芯片制造;(9)测试。

除了制造阶段外,设计师应对其余各阶段负责。设计流程从一个设计构思开始,明确设计要求和进行综合设计。为了确认设计的正确性,设计师要应用模拟方法评估电路的性能。

这时可能要根据模拟结果对电路作进一步改进,反复进行综合和模拟。一旦电路性能的模拟结果能满足设计要求就进行另一个主要设计工作―电路的几何描述(版图设计)。版图完成并经过物理验证后需要将布局、布线形成的寄生效应考虑进去再次进行计算机模拟。如果模拟结果也满足设计要求就可以进行制造了。

3.3 模拟集成电路设计流程分述

(1)系统规格定义

这个阶段系统工程师把整个系统和其子系统看成是一个个只有输入输出关系的/黑盒子,不仅要对其中每一个进行功能定义,而且还要提出时序、功耗、面积、信噪比等性能参数的范围要求。

(2)电路设计

根据设计要求,首先要选择合适的工艺制程;然后合理的构架系统,例如并行的还是串行的,差分的还是单端的;依照架构来决定元件的组合,例如,电流镜类型还是补偿类型;根据交、直流参数决定晶体管工作偏置点和晶体管大小;依环境估计负载形态和负载值。由于模拟集成电路的复杂性和变化的多样性,目前还没有EDA厂商能够提供完全解决模拟集成电路设计自动化的工具,此环节基本上通过手工计算来完成的。

(3)电路模拟

设计工程师必须确认设计是正确的,为此要基于晶体管模型,借助EDA工具进行电路性能的评估,分析。在这个阶段要依据电路仿真结果来修改晶体管参数;依制程参数的变异来确定电路工作的区间和限制;验证环境因素的变化对电路性能的影响;最后还要通过仿真结果指导下一步的版图实现,例如,版图对称性要求,电源线的宽度。

(4)版图实现

电路的设计及模拟决定电路的组成及相关参数,但并不能直接送往晶圆代工厂进行制作。设计工程师需提供集成电路的物理几何描述称为版图。这个环节就是要把设计的电路转换为图形描述格式。模拟集成电路通常是以全定制方法进行手工的版图设计。在设计过程中需要考虑设计规则、匹配性、噪声、串扰、寄生效应、防门锁等对电路性能和可制造性的影响。虽然现在出现了许多高级的全定制辅助设计方法,仍然无法保证手工设计对版图布局和各种效应的考虑全面性。

(5)物理验证

版图的设计是否满足晶圆代工厂的制造可靠性需求?从电路转换到版图是否引入了新的错误?物理验证阶段将通过设计规则检查(DRC,Design Rule Cheek)和版图网表与电路原理图的比对(VLS,Layout Versus schematic)解决上述的两类验证问题。几何规则检查用于保证版图在工艺上的可实现性。它以给定的设计规则为标准,对最小线宽、最小图形间距、孔尺寸、栅和源漏区的最小交叠面积等工艺限制进行检查。版图网表与电路原理图的比对用来保证版图的设计与其电路设计的匹配。VLS工具从版图中提取包含电气连接属性和尺寸大小的电路网表,然后与原理图得到的网表进行比较,检查两者是否一致。

参考文献

集成电路设计与集成系统范文3

关键词:模拟 集成电路 设计 自动化综合流程

中图分类号:TN431 文献标识码:A 文章编号:1672-3791(2013)03(a)-0062-02

随着超大规模集成电路设计技术及微电子技术的迅速发展,集成电路系统的规模越来越大。根据美国半导体工业协会(SIA)的预测,到2005年,微电子工艺将完全有能力生产工作频率为3.S GHz,晶体管数目达1.4亿的系统芯片。到2014年芯片将达到13.5 GHz的工作频率和43亿个晶体管的规模。集成电路在先后经历了小规模、中规模、大规模、甚大规模等历程之后,ASIC已向系统集成的方向发展,这类系统在单一芯片上集成了数字电路和模拟电路,其设计是一项非常复杂、繁重的工作,需要使用计算机辅助设计(CAD)工具以缩短设计时间,降低设计成本。

目前集成电路自动化设计的研究和开发工作主要集中在数字电路领域,产生了一些优秀的数字集成电路高级综合系统,有相当成熟的电子设计自动化(EDA)软件工具来完成高层次综合到低层次版图布局布线,出现了SYNOPSYS、CADENCE、MENTOR等国际上著名的EDA公司。相反,模拟集成电路自动化设计方法的研究远没有数字集成电路自动化设计技术成熟,模拟集成电路CAD发展还处于相当滞后的水平,而且离实用还比较遥远。目前绝大部分的模拟集成电路是由模拟集成电路设计专家手工设计完成,即采用简化的电路模型,使用仿真器对电路进行反复模拟和修正,并手工绘制其物理版图。传统手工设计方式效率极低,无法适应微电子工业的迅速发展。由于受数/模混合集成趋势的推动,模拟集成电路自动化设计方法的研究正逐渐兴起,成为集成电路设计领域的一个重要课题。工业界急需有效的模拟集成电路和数模混合电路设计的CAD工具,落后的模拟集成电路自动化设计方法和模拟CAD工具的缺乏已成为制约未来集成电路工业发展的瓶颈。

1 模拟集成电路的设计特征

为了缩短设计时间,模拟电路的设计有人提出仿效数字集成电路标准单元库的思想,建立一个模拟标准单元库,但是最终是行不通的。模拟集成电路设计比数字集成电路设计要复杂的得多,模拟集成电路设计主要特征如下。

(1)性能及结构的抽象表述困难。数字集成电路只需处理仅有0和1逻辑变量,可以很方便地抽象出不同类型的逻辑单元,并可将这些单元用于不同层次的电路设计。数字集成电路设计可以划分为六个层次:系统级、芯片级(算法级),RTL级、门级、电路级和版图级,电路这种抽象极大地促进了数字集成电路的设计过程,而模拟集成电路很难做出这类抽象。模拟集成电路的性能及结构的抽象表述相对困难是目前模拟电路自动化工具发展相对缓慢,缺乏高层次综合的一个重要原因。

(2)对干扰十分敏感。模拟信号处理过程中要求速度和精度的同时,模拟电路对器件的失配效应、信号的耦合效应、噪声和版图寄生干扰比数字集成电路要敏感得多。设计过程中必须充分考虑偏置条件、温度、工艺涨落及寄生参数对电路特性能影响,否则这些因素的存在将降低模拟电路性能,甚至会改变电路功能。与数字集成电路的版图设计不同,模拟集成电路的版图设计将不仅是关心如何获得最小的芯片面积,还必须精心设计匹配器件的对称性、细心处理连线所产生的各种寄生效应。在系统集成芯片中,公共的电源线、芯片的衬底、数字部分的开关切换将会使电源信号出现毛刺并影响模拟电路的工作,同时通过衬底祸合作用波及到模拟部分,从而降低模拟电路性能指标。

(3)性能指标繁杂。描述模拟集成电路行为的性能指标非常多,以运算放大器为例,其性能指标包括功耗、低频增益、摆率、带宽、单位增益频率、相位余度、输入输出阻抗、输入输出范围、共模信号输入范围、建立时间、电源电压抑制比、失调电压、噪声、谐波失真等数十项,而且很难给出其完整的性能指标。在给定的一组性能指标的条件下,通常可能有多个模拟电路符合性能要求,但对其每一项符合指标的电路而言,它们仅仅是在一定的范围内对个别的指标而言是最佳的,没有任何电路对所有指标在所有范围内是最佳的。

(4)建模和仿真困难。尽管模拟集成电路设计已经有了巨大的发展,但是模拟集成电路的建模和仿真仍然存在难题,这迫使设计者利用经验和直觉来分析仿真结果。模拟集成电路的设计必须充分考虑工艺水平,需要非常精确的器件模型。器件的建模和仿真过程是一个复杂的工作,只有电路知识广博和实践经验丰富的专家才能胜任这一工作。目前的模拟系统验证的主要工具是SPICE及基于SPICE的模拟器,缺乏具有高层次抽象能力的设计工具。模拟和数模混合信号电路与系统的建模和仿真是急需解决的问题,也是EDA研究的重点。VHDL-AMS已被IEEE定为标准语言,其去除了现有许多工具内建模型的限制,为模拟集成电路开拓了新的建模和仿真领域。

(5)拓扑结构层出不穷。逻辑门单元可以组成任何的数字电路,这些单元的功能单一,结构规范。模拟电路的则不是这样,没有规范的模拟单元可以重复使用。

2 模拟IC的自动化综合流程

模拟集成电路自动综合是指根据电路的性能指标,利用计算机实现从系统行为级描述到生成物理版图的设计过程。在模拟集成电路自动综合领域,从理论上讲,从行为级、结构级、功能级直至完成版图级的层次的设计思想是模拟集成电路的设计中展现出最好的前景。将由模拟集成电路自动化综合过程分为两个过程。

模拟集成电路的高层综合、物理综合。在高层综合中又可分为结构综合和电路级综合。由系统的数学或算法行为描述到生成抽象电路拓扑结构过程称为结构级综合,将确定电路具体的拓扑结构和确定器件尺寸的参数优化过程称为电路级综合。而把器件尺寸优化后的电路图映射成与工艺相关和设计规则正确的版图过程称为物理综合。模拟集成电路自动化设计流程如图1所示。

2.1 模拟集成电路高层综合

与传统手工设计模拟电路采用自下而上(Bottom-up)设计方法不同,模拟集成电路CAD平台努力面向从行为级、结构级、功能级、电路级、器件级和版图级的(Top-down)的设计方法。在模拟电路的高层综合中,首先将用户要求的电路功能、性能指标、工艺条件和版图约束条件等用数学或算法行为级的语言描述。目前应用的SPICE、MAST、SpectreHDL或者不支持行为级建模,或者是专利语言,所建模型与模拟环境紧密结合,通用性差,没有被广泛接受。IEEE于1999年3月正式公布了工业标准的数/模硬件描述语言VHDL-AMS。VHDL-1076.1标准的出现为模拟电路和混合信号设计的高层综合提供了基础和可能。VHDL一AMS是VHDL语言的扩展,重点在模拟电路和混合信号的行为级描述,最终实现模拟信号和数模混合信号的结构级描述、仿真和综合125,28]。为实现高层次的混合信号模拟,采用的办法是对现有数字HDL的扩展或创立新的语言,除VHDL.AMS以外,其它几种模拟及数/模混合信号硬件描述语言的标准还有MHDL和Verilog-AMS。

2.2 物理版图综合

高层综合之后进入物理版图综合阶段。物理综合的任务是从具有器件尺寸的电路原理图得到与工艺条件有关和设计规则正确的物理版图。由于模拟电路的功能和性能指标强烈地依赖于电路中每一个元件参数,版图寄生参数的存在将使元件参数偏离其设计值,从而影响电路的性能。需要考虑电路的二次效应对电路性能的影响,对版图进行评估以保证寄生参数、器件失配效应和信号间的祸合效应对电路特性能影响在允许的范围内。基于优化的物理版图综合在系统实现时采用代价函数表示设计知识和各种约束条件,对制造成本和合格率进行评估,使用模拟退火法来获取最佳的物理版图。基于规则的物理版图综合系统将模拟电路设计专家的设计经验抽象为一组规则,并用这些规则来指导版图的布线布局。在集成电路物理综合过程中,在保证电路性能的前提下,尽量降低芯片面积和功耗是必要的。同时应当在电路级综合进行拓扑选择和优化器件尺寸阶段对电路中各器件之间的匹配关系应用明确的要求,以此在一定的拓扑约束条件下来指导模拟集成电路的版图综合。

模拟电路设计被认为是一项知识面广,需多阶段和重复多次设计,常常要求较长时间,而且设计要运用很多的技术。在模拟电路自动综合设计中,从行为描述到最终的版图过程中,还需要用专门的CAD工具从电路版图的几何描述中提取电路信息过程。除电路的固有器件外,提取还包括由版图和芯片上互相连接所造成的寄生参数和电阻。附加的寄生成分将导致电路特性恶化,通常会带来不期望的状态转变,导致工作频率范围的缩减和速度性能的降低。因此投片制造前必须经过电路性能验证,即后模拟阶段,以保证电路的设计符合用户的性能要求。正式投片前还要进行测试和SPICE模拟,确定最终的设计是否满足用户期望的性能要求。高层综合和物理综合从不同角度阐述了模拟集成电路综合的设计任务。电路的拓扑选择和几何尺寸可以看成电路的产生方面,物理版图综合得到模拟集成电路的电路版图,可以认为电路的几何设计方面。

参考文献

集成电路设计与集成系统范文4

2001年我国新增“集成电路设计与集成系统”本科专业,2003年至2009年,我国在清华大学、北京大学、复旦大学等高校分三批设立了20个大学集成电路人才培养基地,加上原有的“微电子科学与工程”专业,目前,国内已有近百所高校开设了微电子相关专业和实训基地,由此可见,国家对集成电路行业人才培养的高度重视。在新形势下,集成电路相关专业的“重理论轻实践”、“重教授轻自学轻互动”的传统人才培养模式已不再适用。因此,探索新的人才培养方式,改革集成电路设计类课程体系显得尤为重要。传统人才培养模式的“重理论、轻实践”方面,可从课程教学学时安排上略见一斑。例如:某高校“模拟集成电路设计”课程,总学时为80,其中理论为64学时,实验为16学时,理论与实验学时比高达4∶1。由于受学时限制,实验内容很难全面覆盖模拟集成电路的典型结构,且实验所涉及的电路结构、器件尺寸和参数只能由授课教师直接给出,学生在有限的实验学时内仅完成电路的仿真验证工作。由于缺失了根据所学理论动手设计电路结构,计算器件尺寸,以及通过仿真迭代优化设计等环节,使得众多应届毕业生走出校园后普遍不具备直接参与集成电路设计的能力。“重教授、轻自学、轻互动”的传统教学方式也备受诟病。课堂上,授课教师过多地关注知识的传授,忽略了发挥学生主动学习的主观能动性,导致教师教得很累,学生学得无趣。

2集成电路设计类课程体系改革探索和教学模式的改进

2014年“数字集成电路设计”课程被列入我校卓越课程的建设项目,以此为契机,卓越课程建设小组对集成电路设计类课程进行了探索性的“多维一体”的教学改革,运用多元化的教学组织形式,通过合作学习、小组讨论、项目学习、课外实训等方式,营造开放、协作、自主的学习氛围和批判性的学习环境。

2.1新型集成电路设计课程体系探索

由于统一的人才培养方案,造成了学生“学而不精”局面,培养出来的学生很难快速适应企业的需求,往往企业还需追加6~12个月的实训,学生才能逐渐掌握专业技能,适应工作岗位。因此,本卓越课程建设小组试图根据差异化的人才培养目标,探索新型集成电路设计类课程体系,重新规划课程体系,突出课程的差异化设置。集成电路设计类课程的差异化,即根据不同的人才培养目标,开设不同的专业课程。比如,一些班级侧重培养集成电路前端设计的高端人才,其开设的集成电路设计类课程包括数字集成电路设计、集成电路系统与芯片设计、模拟集成电路设计、射频电路基础、硬件描述语言与FPGA设计、集成电路EDA技术、集成电路工艺原理等;另外的几个班级,则侧重于集成电路后端设计的高端人才培养,其开设的集成电路设计类课程包括数字集成电路设计、CMOS模拟集成电路设计、版图设计技术、集成电路工艺原理、集成电路CAD、集成电路封装与集成电路测试等。在多元化的培养模式中,加入实训环节,为期一年,设置在第七、八学期。学生可自由选择,或留在学校参与教师团队的项目进行实训,或进入企业实习,以此来提高学生的专业技能与综合素质。

2.2理论课课堂教学方式的改进

传统的课堂理论教学方式主要“以教为主”,缺少了“以学为主”的互动环节和自主学习环节。通过增加以学生为主导的学习环节,提高学生学习的兴趣和学习效果。改进措施如下:

(1)适当降低精讲学时。精讲学时从以往的占课程总学时的75%~80%,降低为30%~40%,课程的重点和难点由主讲教师精讲,精讲环节重在使学生掌握扎实的理论基础。

(2)增加课堂互动和自学学时。其学时由原来的占理论学时不到5%增至40%~50%。

(3)采用多样化课堂教学手段,包括团队合作学习、课堂小组讨论和自主学习等,激发学生自主学习的兴趣。比如,教师结合当前本专业国内外发展趋势、研究热点和实践应用等,将课程内容凝练成几个专题供学生进行小组讨论,每小组人数控制在3~4人,课堂讨论时间安排不低于课程总学时的30%[3]。专题内容由学生通过自主学习的方式完成,小组成员在查阅大量的文献资料后,撰写报告,在课堂上与师生进行交流。课堂理论教学方式的改进,充分调动了学生的学习热情和积极性,使学生从被动接受变为主动学习,既活跃了课堂气氛,也营造了自主、平等、开放的学习氛围。

2.3课程实验环节的改进

为使学生尽快掌握集成电路设计经验,提高动手实践能力,探索一种内容合适、难度适中的集成电路设计实验教学方法势在必行。本课程建设小组将从以下几个方面对课程实验环节进行改进:

(1)适当提高教学实验课时占课程总学时的比例,使理论和实验学时的比例不高于2∶1。

(2)增加课外实验任务。除实验学时内必须完成的实验外,教师可增设多个备选实验供学生选择。学生可在开放实验室完成相关实验内容,为学生提供更多的自主思考和探索空间。

(3)提升集成电路设计实验室的软、硬件环境。本专业通过申请实验室改造经费,已完成多个相关实验室的软、硬件升级换代。目前,实验室配套完善的EDA辅助电路设计软件,该系列软件均为业界认可且使用率较高的软件。

(4)统筹安排集成电路设计类课程群的教学实验环节,力争使课程群的实验内容覆盖设计全流程。由于集成电路设计类课程多、覆盖面大,且由不同教师进行授课,因此课程实验分散,难以统一。本课程建设小组为了提高学生的动手能力和就业竞争力,全面规划、统筹安排课程群内的所有实验,使学生对集成电路设计的全流程都有所了解。

3工程案例教学法的应用

为提升学生的工程实践经验,我们将工程案例教学法贯穿于整个课程群的理论、实验和作业环节。下面以模拟集成电路中的典型模块多级放大器的设计为例,对该教学方法在课程中的应用进行详细介绍。

3.1精讲环节

运算放大器是模拟系统和混合信号系统中一个完整而又重要的部分,从直流偏置的产生到高速放大或滤波,都离不开不同复杂程度的运算放大器。因此,掌握运算放大器知识是学生毕业后从事模拟集成电路设计的基础。虽然多级运算放大器的电路规模不是很大,但是在设计过程中,需根据性能指标,谨慎挑选运放结构,合理设计器件尺寸。运算放大器的性能指标指导着设计的各个环节和几个比较重要的设计参数,如开环增益、小信号带宽、最大功率、输出电压(流)摆幅、相位裕度、共模抑制比、电源抑制比、转换速率等。由于运算放大器的设计指标多,设计过程相对复杂,因此其工作原理、电路结构和器件尺寸的计算方法等,这部分内容需要由主讲教师精讲,其教学内容可以放在“模拟集成电路设计”课程的理论学时里。

3.2作业环节

课后作业不仅仅是课堂教学的巩固,还应是课程实验的准备环节。为了弥补缺失的学生自主设计环节,我们将电路结构的设计和器件尺寸、相关参数的手工计算过程放在作业环节中完成。这样做既不占用宝贵的实验学时,又提高了学生的分析问题和解决问题的能力。比如两级运算放大器的设计和仿真实验,运放的设计指标为:直流增益>80dB;单位增益带宽>50MHz;负载电容为2pF;相位裕度>60°;共模电平为0.9V(VDD=1.8V);差分输出摆幅>±0.9V;差分压摆率>100V/μs。在上机实验之前,主讲教师先将该运放的设计指标布置在作业中,学生根据教师指定的设计参数完成两级运放结构选型及器件尺寸、参数的手工计算工作,仿真验证和电路优化工作在实验学时或课外实训环节中完成。

3.3实验环节

在课程实验中,学生使用EDA软件平台将作业中设计好的电路输入并搭建相关仿真环境,进行仿真验证工作。学生根据仿真结果不断优化电路结构和器件尺寸,直至所设计的运算放大器满足所有预设指标。其教学内容可放在“模拟集成电路设计”或“集成电路EDA技术”课程里[4]。

3.4版图设计环节

版图是电路系统和集成电路工艺之间的桥梁,是集成电路设计不可或缺的重要环节。通过集成电路的版图设计,可将立体的电路系统变为一个二维的平面图形,再经过工艺加工还原为基于硅材料的立体结构。两级运算放大器属于模拟集成电路,其版图设计不仅要满足工艺厂商提供的设计规则,还应考虑到模拟集成电路版图设计的准则,如匹配性、抗干扰性以及冗余设计等。其教学内容可放在课程群中“版图设计技术”的实验环节完成。通过理论环节、作业环节以及实验的迭代仿真和版图设计环节,使学生掌握模拟集成电路的前端设计到后端设计流程,以及相关EDA软件的使用,具备了直接参与模拟集成电路设计的能力。

4结语

集成电路设计与集成系统范文5

关键词:微电子科学技术;集成电路;小型化电路模式;方案设计

从目前微电子科学技术和集成电路产业发展基础条件来说,我国成为世界上经济发展和进步最快的国家之一,加上现阶段我国集成电路产业的核心发展水平得到了不断提升和优化,能够进一步为我国微电子科学技术和集成电路产业的发展提供了良好环境。

一、微电子与集成电路技术特点

(一)集成电路特点

集成电路技术又被稱为微电路系统、微芯片系统以及芯片系统等,并且在电子技术应用过程中,主要将电路结构,比如:半导体装置等小型设备化装置,所以该电子元件一般应用和制造在半导体元件的表面结构上。电路集成板在生产和制造过程中,其半导体芯片表面结构上的电路模式又被称为薄膜集成电路。而另外结构板的厚膜将混合成为集成电路结构,进而由相对独立的半导体结构设备以及被动生产元件共同构成,最终集合成小型化电路模式。其中集成电路设备和系统自身具备体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等相关优势,除此之外,由于集成电路自身经济支出成本相对较低,有利于大面积生产,所以其设备不仅在工业生产、民用电子设备等,比如:收录机、电视机、计算机等相关设备的到了广泛的应用和技术操作。

(二)微电子技术特点

与传统电子生产技术相比较,微电子技术自身具有显著特点,其主要特点表现为以下几个方面。

第一,现代化微电子技术主要利用自身设备固态结构体内部的微电子设备运作,进而实现信息处理和系统加工。其中信号在实际传输过程中,能够在绩效尺寸内开展一系列设备生产[1]。第二,微电子技术在实际应用过程中,能够将子系统以及电子零部件集成为统一芯片内部结构中,所以其设备普遍具备较高的集成性和功能性特点。

二、微电子与集成电路发展现状

现阶段我国微电子科学技术和集成电路产业发展起步相对较晚,并且经过长时间的技术研究和发展,我国电子科学技术行业已经从初级自主创业环节转变为系统化、规模化的环境建设。同时随着科学技术的不断发展和优化,我国在集成电路生产行业中始终保持优质的的发展趋势和方向,同时从销售经济角度来看,自动进入90年代后,集成化电路生产产业的始终保证在经济前端,其中集成电路生产产业的基础集中程度同样的到了有效提升,但是由于我国经济得到了不断提升,企业在集成电路生产过程中,同样无法有效满足市场的基础要求,逐渐出现了产业与经济无法平衡现状。

根据现阶段我国经营实际情况进行综合分析,无论是国家发展还是社会进步,始终重视集成电路以及微电子经营发展,因此在国家的大力发展和支持条件下,我国在集成电路研究和探索领域中开始培养和引进高精尖技术人才,许多高校同样开设相关的课程内容和技术培训,进而为我国微电子以及集成电力培养大量人才。然而与发达国家相比较,我国微电子和集成电路产业上仍然存在着较大的技术和经济差距。

第一,我国微电子以及集成电路行业起步相对较晚,最终导致市场技术拓展能力较差,致使整体行业出现了记性问题[2]。除此之外,我国在集成电路产业以及微电子科学技术方面上,极少能够进入世界范围内的平台中,因此大多数电子产品属于自产自销,严重缺少国际方面的竞争能力,第二,现阶段我国大多数集成电路在研究过程中普遍属于初级阶段,但是由于集成电路以及微电子产品生产过程中明显缺少基础技术,最终造成集成电路产业明显缺少核心竞争能力,致使研究技术人员以及技术水平明显落后,一定程度上限制和约束了我国集成电路产业的创新和进步,最终无法构成一定良性循环。

三、微电子与集成电路优化途径

(一)优化产品方案设计

在微电子科学技术和集成电路产业发展过程中,应该不断优化和完善产品方案设计,进而将高经济收益、高生产效率作为产品发展和生产的主要方向目标。而在产品方案设计过程中,需要以芯片设计方案作为重点内容,进而有效符合经济生产的核心需求。加上现阶段集成化产品芯片在方案设计上,还需要具备较大得技术创新空间,并且在其他产品的投入上,由于产品芯片自身属于高收入、低投入的产品,所以从产品生产市场的总体需求量方面来看,集成芯片在行业应用过程中的基础需求不断增加,进而成为我国集成电路发展的主要优势和机遇。所以在产品方案设计上,还需要不断进行产业优化,进而成为微电子与集成电路的核心技术优势。近几年,我国产品在方案设计方面上,其发展力度和趋势已经远远超出了产品生产方案的预期水平,甚至部分公司已经具有较高的发展实力。但是及时我国集成电路技术发展不断提升,我国在行业内部工作核心效率以及质量水平仍然达到标准要求,致使我国的集成电路产业面临的巨大的压力。

(二)完善集成产业发展重点

在微电子科学技术和集成电路产业在实际发展和运转过程中,其外部环境因素同样成为重要环境因素之一,因此只有构建出优质的发展环境和条件,才能有利于我国集成电力产业的核心发展和技术进步[3]。

1.优惠政策

在我国集成产业以及微电子科学技术应用过程中,为了进一步推动集成电路行业的全面进步,我国相继出台了集成电路行业以及微电流技术发展文件,进而保证集成电路生产行业水平,其中政府在行业政策的优惠和支持对于整体产业发展来说,起到了激励作用和现实意义,从根本上强化了集成生产和制造企业技术水平,尤其是在生产以及应用方向,能够得到最大限度的优惠。比如:政府在行业发展政策中,对于税收方向的规定中,企业实际产生的税收一旦超过百分之六,就可以有效实现了即征即退发展目标,但是在实际操作过程中,对于芯片生产和制造厂家来说,企业实际产生的增值税最高已经达到60%左右,远远高于国际上其他国家的增值税收,因此实际操作过程中,其效果无法达到标准要求。

2.审批流程

近几年,由于我国大型集成电力再生产过程中,审批和操作手续相对比较复杂,致使无论是外部独资,还是中外合资的企业,在审批和操作过程中过于繁琐和复杂,难以快速通过正常的系统审批。为了进一步有效解决政府审批问题,政府应该在审批流程上,最大限度减少流程限制,从根本上推动我国集成电路产业的全面发展。

集成电路设计与集成系统范文6

【关键词】竞赛;集成电路;教学改革

Inspiration of 2011’Beijing Student Competition on Integrated Circuit

GENG Shu-qin HOU Li-gang WANG Jin-hui PENG Xiao-hong

VLSI & System laboratory Beijing University of Technology Beijing,China 100124

Abstract:Teaching 21stIntegrated circuit student is history task for teachers.Inspiration of 2011’Beijing Student Competition on Integrated Circuit is presented such as correct idea,right organize procedure,a steady preparation,corporation between university and company,teaching methods.The result of practice is that competition on Integrated circuit can push the procedure of cultivating of student,can push Quality Education,can advance the ability of theory and practice,can improve the ability of resolve problem,can cultivate the spirit of creativity,can enhance the ability of Team Corporation.It leads the point of teaching methods reformation.The student ability of plot and circuit design is increased.

Keywords:competition;Integrated circuit;teaching reformation

集成电路在社会发展中扮演着非同寻常的角色,几乎渗透到了各行各业。随着全球经济一体化的发展,集成电路的制造与开发中心正逐步向我国转移。我们肩负重大的历史使命,是要把我国建设成为集成电路的生产大国进而成为集成电路强国[1]。因此培养二十一世纪集成电路设计人才是我们教师面临的历史任务。北京华大九天软件有限公司致力于开发自主产权的EDA软件,提供高端的SoC解决方案和一站式设计生产服务,为培养集成电路设计人才提供了很好的软件平台。北京市2011首届“华大九天杯”大学生集成电路大赛以充分调动各方面的参与积极性。对学生来说,竞赛为他们提供了一个开阔眼界、互相学习和交流的好机会,这是任何课堂教学都无法替代的;对指导老师来说,竞赛可以促进他们转变陈旧的教学理念,改进落后的课程体系,积极寻求新的教学模式,真正做到教学目标、教学内容和教学方法与时俱进,切实达到面向应用、面向市场、面向社会并最终为社会提供优秀专业人才的最高教学目标[2]。实践表明,开展大学生集成电路设计竞赛,对于推进我国集成电路人才培养、推进素质教育、理论实践结合能力、解决问题的能力、培养学生创新精神、团队协作能力和培养学生的集体荣誉感等方面具有重要意义,同时也对高校的集成电路设计课程和实践教学改革起了一定的引导作用,极大的强化了学生绘制版图和电路设计能力。本人有幸带领学生参加了此次比赛,获得了一些启示。

1.立足现实,拓宽应用

本次大赛的活动宗旨是丰富微电子学专业学生的专业知识,培养学生理论联系实际、独立思考和操作能力,巩固和加深所学专业知识基础,推动京津地区高校微电子学专业的交流和发展,并对国产正版EDA软件的普及和应用起到积极推动作用。

2011年北京大学生集成电路设计大赛分成大学本科和研究生两个级别(本科生组33个组;研究生33个组),每组3人,进行笔试和上机操作。比赛相关规则:笔试阶段,采用闭卷形式,由各参赛队员独立完成,最终成绩计入小组总分;上机操作,以小组形式参加。

2.正确的指导思想

电子学会组织的此次大学生集成电路大赛立足高,紧密结合教学实际,着重基础、注重培养实践能力的原则为大赛成功举行树立了正确的指导思想。

“华大九天杯”集成电路大赛凝聚了各级领导、专家、学者和我校学科部领导、老师及每个参赛队员的心血与汗水。在比赛的前后,我们的指导思想是:参赛获奖不是最终目的,深人持久地开展教育教学改革,充分调动学生学习积极性,吸引更多的学生参加各类竞赛和科技活动,培养更多的优秀专业人才,才是我们的努力方向。集成电路大赛引来了众多企业,他们对参赛学生的青睐,对于与学校合作的重视,也正是我们学校所渴求的。在参赛中与同行各企业充分交流,学校与企业的紧密结合,才能更清楚市场对优秀毕业生的要求,进而能明确培养目标,并在平时的课程教学中加以渗透,在教学中不断改进;在参赛中与其他兄弟院校充分分享经验,不断学习别人的长处,分析参赛中暴露的共性问题,在教育教学中不断改进;在参赛中提高教师的指导水平和改进教育教学方法;在参赛中提高学生的综合素质,培养大批适应现代化建设需要的基础扎实、知识面宽、能力强、素质高、具有创新精神和实践能力的高级应用型人才,才是我们参加北京大学生集成电路设计竞赛的最终目的。

3.准备认真,重在过程

承办方北方工业大学周密的准备工作和热情的服务为大赛成功举行创造了良好的外部环境。北方工业大学和华大九天公司组织的集训为成功参赛奠定了扎实的基础。

在学科部领导和各位老师的努力下,在实验室老师的大力协助下,在华大九天公司培训人员的大力支持下,我们组织了两个阶段的集中培训,并在培训的基础上进行了有针对性的辅导练习,并在参赛前举行了预赛。这些环节对学生和老师起到了很好的引导和督促作用,保证了良好的训练环境,营造了积极向上的参赛氛围。

在电子竞赛的准备过程中,适逢暑假,假期长,学生们可以充分利用暑假时间认真复习电子器件、数字电子电路、集成电路分析与设计等课程的理论知识。同时,学生们还学习华大EDA软件,进行实际电路和版图绘制上机练习,培养了理论联系实践的学风。通过竞赛准备,学生需要综合运用所学知识,解决竞赛中遇到的各种问题,提高了运用理论知识解决实际问题的能力。通过竞赛准备,磨合了小组间的默契配合和分工,增进了师生情谊,提高了团队作战能力。通过竞赛准备,找出了自己在知识上的不足,明确了社会的需要、工作岗位的需要和工作性质,树立了新的奋斗目标,产生了学习新的动力。

4.参赛对嵌入式系统和集成电路设计教学改革的启示

北京大学生集成电路设计竞赛对于培养学生参加实践的积极性、理论联系实际的学风和团队意识有着重要作用,竞赛给学生提供了一个施展才华、发挥创新能力的机会和平台。并对高校集成电路设计课程的教学内容和电子科学与技术的课程体系改革和学生今后工作起到一定的引导作用。

4.1 知识整合的系统教学思想

自从1958年基尔比发明集成电路以后,集成电路一直按照摩尔定律的预测飞速发展。面对集成电路如此迅猛的发展形势,教学工作也要与时俱进,不断改革创新。我承担《嵌入式系统》和《集成电路分析与设计》课程,深深体会到微电子专业的学生学习嵌入式系统与其他专业有所区别,因为芯片的设计方向日益朝着片上系统SOC、片上可编程系统SOPC的方向发展[3]。学生不仅需要有系统的概念[4],同时需要对典型处理器体系结构有清晰的理解,在设计SOC芯片时才会有系统的设计思想[5],又会对处理器内部体系架构有清晰的概念。因此,在对微电子专业的学生讲授嵌入式系统时,要紧密结合集成电路设计的要求,结合集成电路分析与设计、数字电子、模拟电子、电子器件等课程的内容,使学生不仅对处理器结构体系清楚,更熟悉各模块电路,如ALU单元电路、筒形移位器、乘法器、寄存器、SRAM、DRAM单元等等。在处理器的,培养学生系统的概念,掌握外部单元电路,如存储器单元电路、系统总线单元、SPI、IIC、UART等等接口电路,从使用者的期望角度出发,来进行芯片的设计,既是使用者,又是设计者。学生在学习集成电路设计的课程时,紧密结合嵌入式系统中的系统体系结构、结合处理器内部的体系结构,具有整体的大的系统性设计概念,整合学生对各个课程的分离的知识内容,培养综合运用所学知识解决系统问题。通过增加实验和上机课时,提高学生将理论与实践紧密结合,培养学生运用所学理论知识解决实际问题的能力。

4.2 改革传统的教学模式

我国的大学课堂教学模式长期以来被德国教育家赫尔巴特的“四段论”与前苏联教育家凯洛夫的“五环节”所主宰,在新的教育环境和教育目标下,他们所倡导的课堂教学结构和施教程序越来越明显地暴露出它的弊端,最突出的是“以教代学”的陈腐教学思想和“注入式”、“满堂灌”的落后教学方法.这种“以教师为中心,以教材为中心”的课堂教学,决定了学生在整个教学过程中所处的被动地位,很大程度地禁锢了学生的创造性思维,对学生自学能力、实践能力和创新能力的培养构成了严重的障碍[2]。

现代教育理论指出:指导学生从实践和探索中通过思考获取知识,又在解决问题的探索活动中,运用已获得的知识和技能是培养智能的最好途径。

本次竞赛上午闭卷完成理论知识的考试。本科生的上机操作内容是根据提供的状态图设计一个计数器电路,然后进行原理图的绘制,再次进行版图绘制,进而进行DRC、LVS等环节验证,并撰写设计报告。学生需要利用数字电路中所学的状态表,构造出逻辑关系式,运用卡诺图化简得到最简电路,最后再绘制单元电路,设计出具体的CMOS电路和版图,并进行验证。同时还需要构造出计数器所需的时钟电路。在上机的开始一个半小时中,指导老师可以参与指导,这样增加了比赛中老师对学生的限时指导内容,更有利于学生的竞赛,符合培养人才的现论要求。

学生基本上完成了从需求分析、电路设计、绘制电路、(仿真)、版图绘制、验证到撰写报告等环节。通过竞赛,使学生能亲自感受一个简单的集成电路设计流程,培养了学生的系统设计概念。学生从早晨9点一直进行到下午六点,在短短的一天内要完成笔试和7个小时的上机电路绘制和验证等工作,小组成员只有密切配合,充分发挥各自的优势,保持坚韧不拔的精神,才能取得最终的胜利。这种方式非常有利于培养学生的合作精神和团队精神,锻炼了学生的毅力和体力。

施教之功,贵在引导。可以看出,竞赛在很大程度上符合现代教育理论的要求,符合学生的认知规律。以学生为主体、教师为主导的教学模式正是以传授知识为前提,以形成技能为基点,以培养智能为重心,以全面发展人才为归宿。在《嵌入式系统》和《集成电路分析与设计》课程教学中,增大课程的实验内容,学生带着问题,进行学习,进行思考、小组讨论,经老师点拨,实现了运用所学理论解决实际问题的过程,既培养了学生的综合能力,又完成了教学任务,符合现代教育论的要求。

施教之旨,在于培养学习方法和思维方式,培养获取新知及再创造之本领。将学生分成小组,布置某一命题,发挥学生的主动性,引导他们查阅资料,分析归纳总结,并在课堂中进行报告或实验演示。学生反映效果很好,获取了知识,又培养了学生自学能力和主动获取知识的方法。

5.引导学生参与科研,撰写学术论文

通过大赛引导大学生形成一股扎扎实实的学习和研究的风气。激发学生在专业领域的学习兴趣,参与到老师平时的科研中,增加动手实践的机会。并在科研中进一步培养学生的研究兴趣,形成良性循环。对于取得的研究成果,可以引导学生撰写论文,并能在广大同学中起到表率作用。

6.结束语

培养二十一世纪集成电路设计人才是我们教师面临的历史任务。北京市2011首届“华大九天杯”大学生集成电路大赛以充分调动各方面的参与积极性。正确的指导思想、科学的组织程序、踏实认真的准备工作以及大赛对校企合作、对教学改革将产生重要的影响。实践表明,开展大学生集成电路设计竞赛,对于推进我国集成电路人才培养、推进素质教育、理论实践结合能力、解决问题的能力、培养学生创新精神、团队协作能力和培养学生的集体荣誉感等方面具有重要意义,同时也对高校的集成电路设计课程和实践教学改革起一定的引导作用,极大的强化了学生绘制版图、电路设计能力和集成电路设计思想。

参考文献

[1]甘学温,赵宝瑛等.集成电路原理与设计[M].北京:北京大学出版社,2007.

[2]陈建英,李涛,撒晓英.抓住竞赛契机 深化计算机专业教学改革[J].西南民族大学学报·自然科学版,2010,36(9):75-77.

[3]Ahmet Bindal,Sandeep Mann,Billal N.Ahmed.An Undergraduate System-on-Chip

(SoC)Course for Computer Engineering Students[J].IEEE TRANSACTIONS ON EDUCATION,2005,48(2):P279-289.

[4]Lei Jing,Zixue Cheng,Junbo Wang.A Spiral Step-by-Step Educational Method for Cultivating Competent Embedded System Engineers to Meet Industry Demands[J].IEEE TRANSACTIONS ON EDUCATION,1-10.

[5]Xiumin Shi,Ji Zhang,Yanbing Ju.Research and Practice in Undergraduate Embedded System Course[C].The 9th International Conference for Young Computer Scientists,

2569-2663.

致谢:竞赛工作是由国家自然基金赞助(No.60976028);北京工业大学博士基金赞助(No.X0002014201101,No.X0002012200802 and No.X00020

上一篇睡眠

下一篇教师节短诗