化学工程与工艺的前景范例6篇

前言:中文期刊网精心挑选了化学工程与工艺的前景范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

化学工程与工艺的前景范文1

传统化学工程使用处理工艺对有毒污染物的处理滞后性较强,通常是在污染物产生之后再另外做针对性处理,不仅增加了处理成本,且治标不治本。比如传统工艺烟气除尘,虽然净化了气体,但是污染物直接转化为废渣废水,还需要另一道工序做清洁处理,无疑工序和成本的增加都使得效果不那么理想。绿色化学工艺的介入,可以直接在生产或排放阶段就完成清洁使命,通过化学反应达到预防、控制和消毒污染的目的。

化学原料是化学工程的源头,原料决定了生产流程和工艺的选择,绿色工艺的介入可以从源头上改变原料生产带来的各类化学污染,同时绿色工艺与化学工程的结合还可高效利用各类自然资源,实现深度开发利用,兼顾无污染、节能、环保的生产方式必然会掀起一轮新的工业革命。绿色原料的典型开发应用比如甘蔗渣、稻草、麦秆以及木屑、树枝、芦苇等可加工成为酮类、酸类与醇类化学品。

在化学反应中使用选择性高的试剂也是绿色工艺应用的一个途径。以石油化工为例,生产过程中烃类选择性氧化反应较为普遍,作为一种强方热性反应,具有生成物不稳定、易进一步氧化等特征,所以,催化反应中此反应并非最佳选择,生成物的不稳定也不利于提取最终产物,所以,为改善这种情况,使用选择性高的试剂是最佳途径。如此一来,不仅可以降低成本,节约资源,还能够降低分离产品的难度提升纯度,无疑实现了提升效益和减少污染的双赢,所以,绿色化学工程在这方面的研究实践也非常热门。随着越来越多的化学反应被应用到工业生产中,催化剂对提升反应速率效果显著,所以目前化学工艺领域积极研究无毒无害的高效催化剂成为主流发展方向不一,不仅有利于工业的发展,对于推动化学分子深入研究也有助益,分子筛催化剂和烷基化固相催化剂就是其中较为典型的代表。

2.绿色化学工程工艺应用

分析绿色化学工艺是实现节能减排的重要途径,对绿色工艺的重视与开发也彰显了当前世界范围内节能减排的重要性。长达两百余年的工业化路程,使得人类活动对自然资源环境的危害越来越大,尤其中国作为当前世界最大的工业国,“三废”问题十分突出,PM2.5问题也成为了悬在人们头上的一把利剑,将资源枯竭、环境污染、生态失衡、人口问题等推到了台前更加显著的位置。大型化工企业作为与人们生存发展息息相关的企业,石油化工与煤炭除去提供能源之外,还提供多种衍生化工产品为人们衣食住行服务,生产过程中产生的废水废渣废气、消耗的大量原材料都警示着当前必须积极发展绿色化工工艺,以达到节能减排、实现可持续发展的目的。就目前而言,节能减排的实现途径主要以下几种:研发新科技、新工艺全过程控制污染;利用先进清洁工艺从源头控制污染;利用技术和工艺创新打造可循环绿色生态产业链;发展循环经济等。绿色化学工程与工艺作为节能减排目标得以实现的重要保障,广泛应用于多个领域,就目前来说,主要以三种表现为主,分别是清洁生产技术、生物技术的应用及生产环境友好型产品。

绿色化学工程与工艺使用生物技术服务可再生能源的合成,像有机化合物原料的应用经历了从动植物到石油煤炭的发展过程,现如今已经开始广泛应用各类再合成的有机化合物。在绿色化工中,所使用的催化剂多以工业酶和自然界中存在的酶,酶与其他化学催化剂相比,具有反应条件温和、生成物优良、污染少等优势,对于当前化工领域而言,生物酶的利用和研发就成为了绿色化工的重要发展方向。像丙烯酰胺的制备,最早使用丙烯晴,在环城生物酶催化后,不仅能耗与成本大幅度减低,且反应完全无副产物,对工业生产而言有多重积极意义。

除此之外,绿色化工工艺还广泛应用于生产环境友好型产品领域,生活中有众多具体应用实例。比如空调制冷多使用氟利昂,会造成臭氧层空洞、紫外线增多、温度升高,目前正积极寻求替代品且朝着低能耗方向发展,无磷洗衣粉减少对河流水域污染和人体健康的危害,可降解塑造制品对土地、水源危害都将进一步减轻,清洁汽油的使用可对大气污染降低,以上种种尝试都说明了在生产环境友好型产品领域,绿色化工工艺所发挥的积极作用。尤其是近年来无污染汽油的研发与应用,像低硫柴油、乙醇、二甲醚等,不仅经济环保,发展前景好,且制备生产对自然资源的消耗、对环境的危害都不断降低,证实了绿色工程化工应用的优越性。

3.总结

化学工程与工艺的前景范文2

    我们对我校化学工程与工艺专业近五年来的招生率和就业率进行了统计和分析。近5年来的第一志愿的平均报考率约为26%,就业率约为95%。低的报考率说明学生对该专业的认识不足或缺乏兴趣和自信,而高的就业率说明化工行业对该专业的需求量较大。从生源的招生率来看,重庆的约占65%,外地约占35%。从就业的人员从事行业的统计数据来分析,从事化工行业的约占70%,其他行业的约占30%。从就业率的地域分布来看,在重庆工作的约占75%,在其他省份工作的约占25%。从上述分析数据可看出:一方面是大部分学生为调剂生,存在对专业兴趣不足或缺乏专业自信,因此,必须在第一个实践性教学环节-认识实习中激发学生的专业兴趣和培养学生对化工行业的热情及专业自信心;另一方面,我校培养的化工人才绝大部分服务于本地,因此,我校化学工程与工艺专业担负着为重庆化工行业输送工程性技术人才的重任。

    2全国同类高校的化学工程与工艺专业认识实习的现状

    目前,全国高校的认识实习时间几乎都安排在学习专业课之前,安排为期一周的认识实习,旨在使学生初步了解专业内容,增强学生对各种化工企业的感性认识,激发学生学习后续专业课程动力和兴趣,以增强学生对后续要学习的化工原理、分离工程、化工工艺学和化工设计等专业课程有初步的认识。但普遍存在认识实习的时间短,经费有限等问题,认识实习仅体现于单纯的现场参观实习。我校在大一结束的夏季学期安排了为期1周的认识实习,由指导老师带队参观西南地区的大中型化工企业和研发机构,同样由于实习经费和时间有限,学生只能看、问、听不能动手操作。对于尚未接触专业课的大学生来说,这种走马观花的认识实习显得生疏且抽象,学生只能看到表面的企业生产情况、工艺流程与设备,无法深入理解化工是我市的支柱产业之一,更不能激发他们对化工行业的热情和兴趣,进而导致我校化工专业大部分调剂学生对专业的积极性降低等实际问题。对2006、2007和2008届化工专业的学生在认识实习后进行座谈会交流,50%以上的学生认为这种认识实习效果一般,甚至有近5%的学生认为实习效果甚微。因此,面临招生就业的新形势,如何提高认识实习效果与实习效率是急需解决的课题。

    3我校化学工程与工艺专业认识实习的改革与探索

    3.1强化校企产学研合作实习基地

    基于重庆长寿天然气化工产业园区,涪陵化肥化工产业园区和万州盐化工产业园区三大化工基地的地域特色优势和发展,地方高校培养的化工应用型人才大部分会服务于重庆的地方支柱产业,因此,我们选择了具有地方特色的产学研合作基地,既让学生深入了解重庆化工产业的发展,同时也解决了实习经费有限和工厂不愿接收大规模学生实习等问题。选择的特色产学研合作基地如下:一是与我校开展合作共建工程技术研究中心的江津德感工业园区的“重庆三峡油漆股份有限公司”和万州盐化工园区“重庆大全新能源有限公司”等,二是我校科技特派员下乡入园进企的涪陵李渡工业园区的“中化重庆涪陵化工有限公司”和“巫山天地农业开发有限责任公司”等,三是与我校专家开展科技攻关合作的北碚产业科技园区的“重庆仪表材料研究所”、长寿化工园区的“重庆紫光化工股份有限公司”和“重庆博赛矿业(集团)股份有限公司”等,四是与我校开展广泛科研合作的科研院所“重庆化工研究院”和“重庆化工设计研究院”等。这不但使我们与各单位确定了稳定的合作关系,实习过程不会敷衍应付。企业指导老师也会因为校企合作认识到自己是实习工作的负责人员,会更加积极主动地参与实习,并愿意与学生交流,热心回答学生所提出的问题,取得较好的实习效果。

    3.2打造专业的认识实习的师资队伍

    学校选派教师深入实习基地或相关企业和从企业中选聘具有较高理论水平和素质的技术人员作为实习指导教师,提高教师的实践能力,为实习教学提供重要的保证条件。如为了让学生更好地了解无机化工工艺学“合成氨”的生产工艺流程,我们邀请了建峰化工有限公司的技术总工为我们讲解空分、气化、净化、合成等四个工序,充分理解原料气如何制备和净化,合成氨反应塔的结构及能量综合运用与节能减排。在学习有机化工工艺学时,我们派送了教师去紫光化工有限公司挂职学习蛋氨酸等有机产品的生产工艺,再进行认识实习的指导。通过打造专业的师资队伍,认识实习的效果明显增强。

    3.3开展三大化工园区的专家大讲堂

    围绕重庆的化工产业发展,为更好地让学生了解重庆化工产业链布局,邀请三大化工园区的管委会领导和实习工厂总工程师及车间技术高工来校讲学,使学生更好地了解实际工业生产,减少现场实习的盲目性。为了让学生更好地理解“天然气化工”的产业发展和高附加值精细化学品和高分子化学品产业,邀请长寿化工园区管委会主任来我校讲学,让学生理解石油化工、天然气化工、氯碱化工、生物质化工、精细化工和新材料产业的布局及相互关系,深入理解“产业项目一体化、环境保护一体化、公用工程一体化、物流配送一体化、管理服务一体化”等可持续发展观和循环经济理论,构建学生工程思维。为让学生理解“磷化工”产业在我市经济发展中的作用和地位,邀请了中化重庆涪陵化工有限公司的总工程师给学生介绍磷化工产业的概况、发展历程、市场动态,并详细讲解各车间的工业原理、工艺流程、生产设备及本专业领域最先进的新技术、新工艺、新材料、新设备、研究热点以及市场前景。这些大讲堂激发了学生的求知欲,增强对其所学专业的使命感和责任感,从而增加了他们学习专业知识的动力。

    3.4引入现代CAE技术

    在学生看、问、听的实习过程中,学生无法了解各种反应器、换热器、精馏塔和泵等设备的内部结构的,这对学生学习后续的专业课程,如化工原理、化学反应工程、分离工程和化工工艺学,是非常不利的。基于这方面的考虑,我们做了两方面的准备。一是准备了专门的实习课件,课件中包含了大量的实物照片(原料,反应工艺和产品分离和输送)、实景录像(具体流体输送、搅拌、精馏、吸收和干燥等单元操作)等,课件真实、形象、生动地展示出离心泵、搅拌反应器、精馏塔和换热器等设备的内部结构,并让学生对尚未学到的化工单元操作原理、典型设备结构和操作有所了解。二是我们建立了计算机仿真实习系统,将认识实习工厂的具体产品的生产工艺(如合成氨制气、净化、合成工艺),所涉及的单元操作(吸收、干燥和精馏等),典型设备(离心泵、反应器、精馏塔和换热器等)作为主要内容,对生产工艺进行模拟,让学生在计算机上模拟工业过程,对制气、净化、合成等工艺的管件、阀件和控制仪表进行操作,对工艺参数进行控制和调节,进行开、停车及事故处理等各种仿真操作。这些计算机辅助教学技术可激发学生的学习兴趣,增强学生思考问题、解决问题的能力,培养学生的创新能力。

    3.5强化认识实习教学管理与指导

    加强实习教学管理与考核有利于提升学生的认识实习效果,让学生意识到化工工业生产过程不仅仅是需要先进的化工技术,更重要是的是理解化工生产过程是严谨而有序的,监管是严格科学的。我们要求学生在实习过程中需严格按照工艺操作规程和工艺要求,认真做好实习记录,不得有丝毫松散与马虎。每一个工段实习结束,开展了现场技术人员与学生、教师的研讨会,引导学生在认识实习过程中大胆怀疑,提出问题、分析问题和解决问题。实习结束,我们开展了认识实习的交流会,启发学生思维,培养在生产实践中的创新观念和创新能力。实习结束时需要提交实习报告(包括实习时间、地点、工厂概况、实习车间的主要设备与工艺流程图、产品的生产原理和工艺流程草图、三废处理和环境保护、实习心得体会和合理化建议)。

化学工程与工艺的前景范文3

【关键词】化工工艺;石油冶炼;作用

一、化学反应过程和作用

凡是通过化学方法使得物质的组成或者结构以及合成新的物质的,属于化工工艺。得到的产品就是化学产品或者是化工产品。通过化学工艺创造出来了很多自然界没有的物质,为人类提供了更好的服务。(1)化学反应过程。所谓的化学反应过程,是指物质发生化学变化的反应过程。化学的反应过程是很复杂的,主要表现在其过程本身的复杂性、物系的复杂性以及物系流动时边界的复杂性。它们之间不但有化学联系,还有物理联系,有时候还会同时发生,而且相互应影响着。物系的复杂性表现在有时候是气体和液体,有时候是固体,有时候还会共同存在。液体性质可以有大幅度的变化。有时在进行的过程中,物性明显产生改变。物系流动的边界性的复杂性主要表现在,由于设备的几何形状不同,填充物的外形也各不相同,进而使得流动边界复杂而且确定和描述起来也比较困难。物理过程是指物质不经过化学反应,而是在组成、性质、能量以及状态发生变化的过程。如原油经过蒸馏的分离而得到汽油、柴油、煤油等产品。在生活中,通常化学过程和物理过程会同时发生。(2)化学反应的作用。化学反应有着相当重要的作用。它提高了人类的生活质量,更好的保护了人类的自然环境,一定程度上增强了化学工业的竞争力。化学的科研成果和化学知识的不断应用,使得大量的新产品进入了我们的家庭生活当中,为我们的物质生活条件提供了更好的服务。在我们日常生活中,各行各业都使用着不同的化工产品,而且化学药物也给人们预防及治疗疾病起了相当重要的作用,提高了人们的生活质量。总之,化学工业的作用是非常重要的,农业发展的支柱,是工业发展的助手,是战胜疾病和改善生活的重要方法。

二、我国石油冶炼的发展

石油是一种很重要的能源,而且是一种不可再生的一次能源。化工染料是世界上消耗量非常大的世界能源。一次能源是指从自然界直接获得并且可以直接应用的能源,像煤、石油、天然气等以及水能、核能等。二次能源是指通过对一次能源进行各种化工加工过程得到的具有更高使用价值燃料。像石油经过冶炼获得汽油、柴油等燃料。以石油作为基础,形成了现代化的石油化学工业,生产出了很多的石油化工产品。在化工生产过程中,有些物料既是燃料,同时还是原料,二者合二为一。因此化工生产是二次能源部门。对原油进行炼制加工,使之成为各种不同的石油产品是石油工业的重要组成部分。这些主要包括:石油炼厂、石油炼制设计机构以及石油炼制的研究等。石油炼厂的主要生产设备有:原油蒸馏、催化裂化、石油焦化、催化重整以及石油产品的精制等,其主要生产汽油、煤油、燃料油、柴油级油等各种石油化工原料。石油炼制工业和国民经济的发展有着十分密切的关系。农业、工业、国防建设以及交通运输等都离不开石油产品。而且石油燃料具有使用起来方便、洁净、利用率高等优点。各种高速度、大功率的交通工具和军用机动设备都是石油炼制工业提供的。近年来,石油炼制工业和石油产品的结果都发生了很大的变化,喷气燃料以及柴油等的需求量不断增加,而燃料油的需求量大幅度减小,原油的深度加工受到了高度的重视,一些生产轻质油品的装置逐渐增多。同时,还开发出了很多的新工艺,有关节能环保的技术也得到了很大的发展。在采用先进的加工工艺上,为了增加轻质油品的产量和提高油品的工艺,很多国家广泛采用了催化重整、异构化、烷基化工艺。加氢处理和精制工业越来越受到各行业的重视。原油的综合利用,增加石油化工原料的产量,石油炼制工业和石油化工以及三大合成材料之间的关系也越来越密切,已经是发展石油化学工业的基础。

三、结语

人类的生活和化工工业之间有着相当密切的关系,化工工业为人类的生存提供了很多基本的物质基础,在一定程度上提高的人们的生活质量,因此,人类的发展是离不开化工工业的。世界的石油冶炼业经过了一百多年的发展,已经不断走向了成熟阶段,冶炼的技术也得到了进一步的发展,为人类提供了更好的服务。

参 考 文 献

[l]姜信真,李宝璋,任文坛.化学工程发展及学科内容[J].化学工程.2009(3)

[2]袁渭康,陈敏恒.化工前景[J].化工进展.2009(3)

化学工程与工艺的前景范文4

关键词:化工热力学;CDIO;大工程教育;教学改革;方案

中图分类号:G712文献标识码:A文章编号:1672-5727(2012)06-0159-02

化工热力学作为化学工程的基础性学科,在研究化学工程以及解决化工生产实际问题中都起着非常重要的作用。同时,它也是化学工程与工艺专业本科生及研究生必修的重点专业课程之一。然而,由于课程中的概念抽象难懂,公式数量多且推导复杂,历届本科学生都感到难以理解和掌握。虽然尝试过各种改革,探索过新的教学方法,但收效甚微,学生掌握到的理论常常疲于应付考试,没有真正解决实际问题的能力,更不用说会作“工程”了。为了迎合“大工程教育”的背景,在2009年,我校开始尝试将CDIO的教育理念应用于化工热力学课程教学中,取得了一定的成效。

CDIO教育理念是近年来国际工程教育改革的最新成果,这种全新的教育模式将构思(Conceiving)、设计(Designing)、实现(Implementing)与运作(Operating)结合在一起,形成一个连贯而完整的流程。学生从参加产品研发到产品运行的生命周期当中,可以亲身体验到“以产品为导向”CDIO教学模式所带来的不同于传统教学模式的参与感。这种以学生为主体,实现了“做中学”的全新教育理念,对于提高学生能力,激发学习兴趣,促进化工热力学课程建设等各个方面都具有非常重要的意义。

化工热力学教学现状分析

教学内容与实际脱节随着近年来工业体系的不断进步和化工行业的快速发展,化工热力学作为一门体系较为完善的课程,其教学内容与实际的化工技术相比已显得比较滞后。这种滞后不但使教学与工程脱节,并且由于课程模式长期固定,在某种意义上限制了教师的思维方式,进而对学生的创新及发散思维也造成影响。同时,也造成了大学与社会之间的脱离。这也是为什么学生掌握了知识,却不能在毕业以后派上用场的原因。

忽略了学生作为主体的角色在从事化工热力学教学的十余年中,如何解决教与学之间存在的矛盾,也是一直困扰着笔者的一个问题。为何在经历了数次改革之后,我们的教学却并没有发生实质的改变?其原因在于忽略了“在教育过程中,学生才是主体”的这一事实。一直以来,无论运用何种创新式的教学方法,总是离不开以教师作为主体的讲授,总是去研究如何将知识更快速准确的灌输给作为客体的学生,如何将枯燥的理论讲授变得生动有趣,让学生在愉快的氛围中掌握知识,在一次一次的教学改革中,教师历练成了“优秀的演员”,而学生充其量也就是一个“文明的观众”并没有成为一名“优秀的演员”。在这种教育方式下,培养出来的学生,实际上是被剥夺了自主学习的机会,其思维模式也会变得僵化,重理论,轻实践。在具体问题的处理上往往拘泥于唯一的“正确方案”,按照教师或书本上所讲述的步骤给出解答,这就达到了我们所说的“掌握”的基本要求。学生并不会从一个实际的工程问题中,发现相关的热力学问题和定义热力学问题。比如,在讲授流体的 “PVT”关系时,我们会定义好两个变量(温度T,压力P)让学生去求体积(V),学生都可以很好的根据热力学方程解出体积,但如果让学生去求解某工艺流程中输送流体的管径时(生产能力即流体的质量流量已知),学生就常常束手无措。他们不会根据输送流体的工艺条件(即温度、压力)用学过的热力学知识来求出流体的摩尔体积,将其换算成流体的密度后,再根据流体的质量流量解出体积流量结合管路中的允许的流体流速去求管径。可是如果将这种求管径的问题放在化工原理的课程中,学生又可以很好的解决。因为,在化工原理的课程中,流体的密度常常都是作为已知量出现在例题中的,而在实际的工程设计和计算中,这些问题都是需要靠学生自己去发现、定义并解决的。学生这种今后最需要能力,在我们多年的教学中却被忽略了。

总之,无论是在教学内容上,还是在教学模式上,现有的化工热力学教学当中都存在着很多问题,已经逐渐无法满足社会对高等人才培养的需要。而CDIO的教学理念则为我们解决这一问题提供了一项新的可能性。通过将热力学课程与CDIO教学理念相结合,让学生在“做中学”的过程中更好地掌握知识,提高能力,通过一个个真实的工程案例,去研究问题、发现问题。这样,学生才能具有获取相关知识去解决问题的动力。在此过程中,重要的不是解决了一个具体的问题并由此掌握了相关的知识,而是在于学会如何发现问题、定义问题、分析问题并获取相应的知识解决问题,总结新知识,同时,加强与人沟通的能力以及团队合作的能力。那么,究竟如何进行化工热力学课程的改革呢?

基于CDIO理念下热力学教学改革方案

针对化工热力学教学上的种种问题,我们确定了以“产品为导向”的教学模式改革。就是让学生通过“产品工艺的工程设计”真正学到工程设计中的热力学知识。热力学是从工程中来,最终还要回到工程中去,为工程服务。因此,确定了以产品制造为目标,将学生感兴趣的产品“工业化”,学生扮演一个“工程师”主持一个“产品与过程”的工程设计工作。在工程项目的设计中,学生必然会碰到相关的热力学问题。如工艺条件下流体密度(流体的PVT关系)、换热器和功设备的负荷计算(流体的热力学性质:焓、熵与PVT的关系)、分离塔的计算(流体的相平衡)等等,在设计过程中,学生遇到问题时,教师加以适当的指导并结合课堂所讲授的热力学内容解决实际工程中的问题,最终完成一个工程设计报告。学生只凭上课听讲是不可能将项目设计好的。必须通过自己看书、查阅大量的文献与资料,与同组同学研究讨论,才可能将项目完成。在这个过程中,强化了化工热力学在工程中的应用,让学生真正体会到热力学不是虚无飘渺的理论,而是实实在在的技能。为此,我们制定的具体改革方案如下:

将学生按班级分组。原则上每班两大组,也可根据个人兴趣自成一组。选择一个学生感兴趣的化工产品,围绕如何实现该产品的工业化完成以下内容:(1)市场调研报告。包括:产品的国内外发展现状、市场前景、简单的经济分析及相关的工艺流程的了解(开课后第1~4周完成)。(2)对产品多套工艺流程方案进行可行性及经济分析,确定小组详细的工艺流程路线及详细的工艺条件,完成简单的工艺流程图(开课后第5~8周完成)。(3)根据学生选定的工艺过程,完成简单的工艺流程图,教师指定与工艺流程相关的热力学计算,通过计算体会热力学在工程中的应用(开课后第9~12周完成)。(4)将以上三部分合成一个完整的报告期末上交,报告成绩占期末总成绩的30%。每一小步的工作要求完成的功课都要按时上交,并按教师的批改意见修改完善自己的报告内容(开课后第13~16周完成)。(5)最后,选择优秀的项目报告作讲演(第17周完成)。

由于选题是学生根据自己的兴趣确定的工业产品,因此,项目类型与涉及的学科面应该是很复杂的。教师不可能事先知道结果,这就要求教师需要具有相对扎实的工程实际和理论的背景知识,指导学生在课题初期尽快进入课题角色,随着课题的进展,学生要自己获取更多的相关知识,并进行深入的研究,应用知识去解决问题。在此过程中,教师要做好“导演”,侧重对学生的方法和能力方面进行指导。学生在整个过程中一定会投入大量的时间和精力,因为是以小组为单位,所以,最后的项目一定是集中了整个团队的才智,一定会有所收获。

通过两年的实践,使用以上方法取得了较好的教学效果,在加强学生学习热力学课程积极性的同时,使学生在学习期间就能受到未来职场环境的熏陶,只有叫他们了解自己将来的用武之地,造就他们成为合格的化工专业人才,满足产业和社会的需要。

然而,在改革中还存在一些问题,如学生的合作还存在欠缺,各组同学中都有“坐车”的现象,如何对这部分不积极参与的学生进行评价,使所有学生都能积极动起来,将是我们未来改革中亟待解决的问题。

结语

化工热力学课程从2009年开始进行了CDIO工程教育培养模式的理论与实践探索,并取得初步成效,我们将不断努力探索,使这一教育模式趋于科学、有效。积极推进CDIO人才培养的培养方案改革和教学方法创新,开展适应于学生研究性学习的教学方法创新,在传统的案例式、启发式、交流式教学方法改革中推进体验式、研究式、讨论式教学方法,利用具体工程项目的实施,引导学生“做中学”,通过营造工程环境,实现师生间、学生间对话式学习和合作式学习,形成教学相长的生动学习局面。在教学过程中融入最新的化工工程技术成果和工艺方案,启迪学生的工程意识和利用科技成果的创业意识,开拓学生的创新思维和创业精神,构筑“创新创业”应用型人才培养的知识新体系和课程新体系。

参考文献:

[1]杨泽慧,邵丹凤,洪晓波.应用化工热力学教学改革与实践[J].宁波工程学院学报,(19):2,75-78.

[2]王晋黄,李忠铭,林俊杰.化工热力学课程教学改革与实践[J].化工高等教育,2005,(4):19-22.

[3]常贺英,马沛生.论化工热力学在化工类课程体系中的核心作用[J].化工高等教育,2005,(4):28-30.

[4]蒋丽红,李沪萍.化工热力学教学改革研究与实践[J].化工高等教育,2005,(3):33-36.

[5]冯新,陆小华,吉远辉.化工热力学中从生活中来到生产中去的实例[J].化工高等教育,2009,(1):42-46.

[6]查建中,何永汕.中国工程教育改革三大战略[M].北京:北京理工大学出版社,2009.

作者简介:

徐新(1967—),硕士,北京石油化工学院副教授,研究方向为化工。

化学工程与工艺的前景范文5

关键词:中低温煤焦油 加氢改质 煤焦油

一、煤焦油加氢的目的及原理

煤炭在进行干馏、气化或热解过程中会获得多种液体产品,而煤焦油就是其中之一,其中含有大量的烯烃、多环芳烃等不饱和烃以及硫、氮化合物,煤焦油通常具有酸度高、胶质含量高、产品安定性差等特点,因此无法作为优质燃油出厂使用。而对于煤焦油可以通过加氢改质工艺,在一定温度、压力以及催化剂的共同作用下,完成脱硫、饱和烃饱和、脱氮反应、芳烃饱和等作用,以实现改善煤焦油安定性、降低硫含量记忆芳烃含量的目的,最终获得优质燃料油,达到汽油、柴油调和油的质量要求。煤焦油在进行加氢处理过程中发生的反应主要有加氢脱硫、加氢脱氮、加氢脱氧、加氢脱金属及不饱和烃如烯烃和芳烃的加氢饱和反应。而煤焦油子啊经过加氢处理后,其原本所含有的硫、氮以及氧杂原子将风别转化为硫化氢、氨和水;此外,其中所包含的有机金属化合物将转化为相应的金属硫化物而得到脱除;不饱和烯烃和芳烃在经过加氢饱和后将会生成相应的烃类、煤焦油在经过加氢处理后,加氢产物经过分离以及后续工艺的处理后,可以得到硫、氮、芳烃含量较低的汽油、柴油等环境友好型清洁燃料。

二、煤焦油加氢工艺简介

1.加氢精制工艺

对煤焦油进行加氢精致工艺是煤焦油加氢工艺使用较为广泛的一种,主要是要以煤焦油的轻馏分油或全馏分油作为基本原料,并通过加氢精致或加氢处理等过程,来实现脱除原煤焦油中的硫、氮、氧、金属等杂质以及饱和烯烃和芳烃等,进而生产出石脑油、柴油、低硫低氮重质燃料油或碳材料的原料等产品。这种煤焦油加氢工艺的有点在于其工艺流程相对简单,但是也存在原料利用率较低的缺点,这种加氢工艺所出产产品的十六烷值通常较低。此外,经过预处理后的煤焦油在用泵打出并与煤焦油轻质馏分等充分混合进入加氢原料缓冲罐中,后再将原料经泵打出与氢气进行混合并加热后进行加氢反应,加氢后的生成物在进入换热器中冷却,再进入分离器进行气液分离处理,通过分离得到的液相分入分馏塔内,塔顶的轻质油极为石脑油,而踏地柴油经过过滤处理后就成为产品柴油。

2.加氢精制-加氢裂化工艺

煤焦油加氢精制-加氢裂化工艺主要是以全馏分煤焦油作为基本原料,后通过加氢精制-加氢裂化过程将煤焦油中的重油或沥青转化为轻馏分油,最大限度的提高了轻油收率。这种技术与煤焦油加氢将至技术相比,增加爱了加氢裂化的过程,这样工艺操作流程也就相对复杂,过程操作的稳定性也弱与加氢精制工艺;其欧典在于轻油收率较高,极大的提高了煤焦油资源的利用效率。

3.非均相悬浮床加氢工艺

我国煤炭科学研究总院煤化工研究分院进行自行研发了一种非均相催化剂的煤焦油悬浮床加氢工艺方法-BRICC煤焦油加工技术。这种加氢工艺的加氢过程主要是:首先将拖出了催化剂的循环油以及以下部分温度小于370摄氏度的重馏分油的煤焦油与加氢催化剂以及硫化剂进行充分的均匀混合,以此得到催化剂油浆;后经催化剂油浆与剩下的大部分370摄氏度的重馏分油的煤焦油经过原料泵进行升压、升温处理,处理后进入悬浮窗加氢反应器再进行加氢裂化反应,而反应器在反应过程中流出的化合物经过高温、低温分离器后将得到液固相高低分油混合物和富氢气体两部分。这种BRICC加工技术可以实现将全部重沥青回炼裂化为小分子产品,同时也能够实现催化剂的脱除,能够实现煤焦油催化剂循环利用的目的,极大的提高了原料和催化剂的使用效率。

4.液相裂解加氢工艺

除了以上三种低温煤焦油加氢处理工艺外,中国科学院石油研究所等单位也对低温煤焦油的性质做了更全面的饿分析,并在对低温煤焦油加氢催化剂斤西瓜深入研究后,又开发了煤焦油的中高压液相加氢工艺。这种液相裂解加氢工艺主要以低温煤焦油重馏分作为主要原料,并在一定的温度、压力以及催化剂的工藤哟作用下,对煤焦油继续拧裂解加氢,并制的汽油、柴油等产品。

三、煤焦油加氢工艺技术应用前景

煤焦油加氢工艺各种技术均有着各自的优点及缺点,在实际的生产应用过程中,均能够通过突出其技术优越性来实现生产目的。而由于煤焦油在不同受热解炉或气化炉的加工过程中均会受到不同程度的波动影响,这样其性质和组成结果也就会相差极大,此外,由于原料油的不同对产品性能的影响也相对较大。上述各种因素均制约了现有中低温煤焦油加氢改质工艺在煤焦油加工领域中的普遍推广和应用。在通过对中低温煤焦油加氢改质工艺的将论述基层上,本人认为未来煤焦油加氢改质工艺的发展可以重点注意以下几方面的问题:

1.要重点加大对煤焦油深加工产品以及相关的精细化工产品的技术开发和资金投入,引导相关科研机构积极的对煤焦油新型清洁利用加氢技术进行研究,并大力的开发使之能够真正的应用于生产。

2.在现有的加氢精制-加氢裂化工艺技术基础上,还必须要参考已有的成熟工艺和技术,并在加工过程中要根据原料油的性质和组成的不同,积极的研制煤焦油专用加氢精制、裂化和改质催化剂,并不断的开发出能够适合多种煤焦油加氢的高效催化剂,以此来拓宽中低温煤焦油加氢改质工艺进行生产轻质燃料油的原料渠道。

3.必须要重视对影响催化剂活性和选择性的因素的分析和探讨,要重点分析加氢反应的条件,不断的通过实验来优化各种加氢工艺的具体参数,保证加氢催化剂能够实现高效和持续稳定地使用,最大限度的提高燃料油收率,实现煤焦油加氢效益最大化的经济目的。

参考文献

[1]付晓东.煤气化副产品焦油的加氢转化[J].化学工程师,2005,115(14):53-54.

化学工程与工艺的前景范文6

摘 要:清洁高效利用非水溶性钾资源是解决我国水溶性钾资源短缺的有效途径之一。该文从工艺过程的反应原理、资源消耗、环境相容性和热力学原理等方面,简要陈述了利用钾长石制备钾盐/钾肥的方法。通过比较分析发现离子交换法分解钾长石因反应分解彻底、资源利用率高、综合能耗显著降低且环境相容性好,因而具有良好的工业化应用前景。

关键词:钾长石 钾盐 开发利用

中图分类号:TQ11 文献标识码:A 文章编号:1674-098X(2017)04(b)-0122-03

非水溶性矿资源开发的关键是将富钾矿物分解,使难溶性的K2O转变为水溶性钾化合物。我国很早就开始了这类研究,已报道的方法有30多种[1]。笔者对钾长石释钾工艺进行归纳,可将其归纳为高温反应体系、无机酸分解反应体系、微生物分解体系以及离子交换反应体系等。

1 高温反应体系

1.1 钾长石―石膏―助剂三元法

Bakr MY[2]最早报道了利用石膏与碳酸钙焙烧钾长石制取硫酸钾的工艺,钾的溶出率达到了80%。邱龙会等[3-5]对钾长石―石膏―碳酸钙体系中加入硫酸钠进行了研究,发现该过程受克-金-布固膜扩散控制;加入添加剂令焙烧温度降低50 ℃~100 ℃,钾的分解率达到90%。陈定胜等[6]在研究钾长石―硫酸钙―碳酸钙体系时,钾溶出率为94%。经研究发现钾长石热分解反应的ΔGoT

1.2 熔盐离子交换法

由于高温有效地破坏钾长石的Si-Al-O的网络结构,进而提高K2O的活度,因此可以通过离子交换进行释钾反应。刘F等[8]为探究阴离子对钾长石释钾效果的研究,证明了阴离子对钾长石中钾的溶出率存在影响。因此近些年国内外熔盐大部分选择氯化物。

韩孝钊等[9]首次使用离子交换模型进行了实验解释了钾长石与氯化钠的离子交换机理,并计算内扩散离子交换过程的表观活化能约为38.06 kJ/mol;化学交换控制时的表观活化能约为129.69 kJ/mol。彭清静等[10]证实了氯化钙熔浸钾长石提钾过程是一液固相反应过程,通过动力学计算证实整个过程由Ca2+在钾长石内部扩散(即内扩散)所控制,Ca2+扩散时必须克服由邻近负离子所产生的势垒(即化学键)。

胡天喜等[11]以氯化钠与氯化钙混合助剂进行了实验,证明较单独使用氯化钙或氯化钠而言,释钾率明显变高。范丽艳等[12]用Na2CO3为助剂,焙烧后,钾长石分解率可达90%以上。证实该体系机理函数:1-2a/3-(1-a)2/3,动力学补偿效应方程:ln(A/[A])=0.1408E/[E]+2.9735。李刚等[13]在该体系的基础上提出了钾长石―氯化钙―碳酸钠体系,经实验,钾的提取率高达91.88%(见表2)。

2 无机酸分解体系

长沙化学矿山设计院最早在中国用无机酸分解钾长石,并成功制备了硫酸钾[14]。彭清静等[15]完善了上述工艺,钾的总收率为85.4%。国内学者采用盐酸,磷酸等逐渐替代氢氟酸进行释钾工艺的完善。如韩效钊等[16]分析了钾长石―磷矿―磷酸不同组合反应体系的钾、磷溶出率。郭德月[17]等人建立钾长石磷矿盐酸反应体系,实验优化后,钾和磷的溶出率能达到90%以上(见表3)。

3 微生物分解体系

微生物分解体系的机理分为两种,一是硅酸盐细菌对含钾矿物的溶蚀作用,使矿物颗粒晶格逐渐发生变形或崩解,代谢产物能够对钾主动吸收,使矿物颗粒进行化学降解[18]。二是菌株通过产生葡萄糖有机酸或大量的胞外多糖对钾长石进行溶解,释放矿物中K、Si等元素。易浪波等[19]证明细菌能够有效分解钾长石。钾长石分解菌分解钾长石具有技术流程短、绿色环保等好处,但硅酸盐细菌溶钾的效率低,K2O浸出率仅为12%左右[20]。菌种的繁殖力和生命力对释钾环境要求苛刻,菌种培养周期长等限制了该应用。

4 水热法分解体系

水热法提钾是固液反应,条件温和、过程简单。王忠兵等[20]经优化实验,钾的溶出率可高达90%以上。侯宇刚等[21]证明碱溶体系和磷矿―磷酸―酸溶体系均可经水热法释钾,释钾率为90%以上。马鸿文等[22]对水热工艺进行优化,K2O回收率达94.0%以上,实现乐资源利用率最大化(表4)。

5 其他

微波辐射具有传统加热方式无法比拟的优点,如选择性加热物料,升温快等。在微波磁场中,SiO2、Al2O3等物质对微波能量的吸收存在差异而被选择性的加热,从而出现局部温差,加强了钾长石与助剂的接触面积,从而提高钾离子的溶出率。赵晶星等[23]利用微波辐射协助水热反应进行释钾实验,钾的溶出率达92%。

2016年,张艳芳等[24]在超声波体系下进行了钾长石硫酸酸浸动力学研究,结果表明,超声波能强化钾长石的酸浸过程,钾浸出率可以提高3%~8%。经实验,钾的浸出率可达83.23%。计算活化能为45.69 kJ/mol,属于化学反应控制过程。

6 结语

我国非水溶性钾矿资源丰富,品质良好,为钾盐/钾肥产业的发展提供了良好的资源保障。钾长石开发利用的关键是资源利用率高、一次性源消耗少、能耗低、三废排放接近于零、产品方案合理且附加值高的关键技术。熔盐离子交换分解钾长石工艺具有反应分解彻底,资源利用率高、环境相容性好等特点,是一类具有发展潜力的技术,尽快推进其产业化进程,是解决我国水溶性钾盐资源短缺的有效途径之一。

参考文献

[1] 苏双青,杨静,马鸿文,等.非水溶性钾资源制取钾盐技术评价[J].化工矿物与加工,2014,43(2):46-51.

[2] Bakr MY,Zatout AA,Mouhamed MA. Orthoclase, gypsum and limestone for production of aluminum salt and potassium salt[J].Interceram,1979,28(1):34-35.

[3] 邱龙会,王励生,金作美.钾长石―石膏―碳酸钙热分解过程动力学实验研究[J].高校化学工程学报,2000,14(3):258-283.

[4] 邱龙会,王励生,金作美.钾长石―石膏―碳酸钙热分解烧成物中硫酸钾的浸取过程[J].高校化学工程学报,2000,14(5):465-469,

[5] 邱龙会,金作美,王励生.钾长石热分解生成硫酸钾的实验研究[J].化肥工业,1999,27(3):19-21.

[6] 陈定盛,石林,雷强.钾长石―CaCO3―CaSO4体系的热分解反应与ΔG0T计算[J].化工矿物与加工,2008,37(10):4-7.

[7] 夏举佩,任雪娇,李国斌,等.钾长石―硫酸钙―氧化钙热反应制备可溶性钾机理研究[J].北京工业大学学报,2014,40(11):1735-1740.

[8] 刘F.阴离子对熔盐浸取法从钾长石中提钾的影响[J].矿产保护与利用,2005(4):36-37.

[9] 韩效钊,胡波,陆亚玲.钾长石与氯化钠离子交换动力学[J].化工学报,2006,57(9):2201-2206.

[10] 彭清静,邹晓勇,黄诚.氯化钠熔浸钾长石提钾过程[J].过程工程学报,2002,2(2):146-150.

[11] 胡天喜,于建国.CaCl2-NaCl混合助剂分解钾长石提取钾的实验研究[J].非金属矿,2013,36(6):10-12.

[12] 范丽艳,刘月娥,甄卫军,等.高温煅烧哈密钾长石工艺及热分解动力学研究[J].过程工程学报,2016,16(4):684-691.

[13] 李刚,朱媛媛,易凌云,等.低品位钾盐助剂焙烧与水浸及结晶制备钾盐[J].过程工程学报,2016,16(4):684-691.

[14] 申军.钾长石综合利用综述[J].化工矿物与加工,2000,29

(10):1-3.

[15] 彭清静.用硫-氟混酸从钾长石中提钾的研究[J].吉首大学学报,1996,17(2):62-65.

[16] 夏举佩,任雪娇,阳超琴,等.磷石膏、钾长石制备硫酸钾的新工艺初探[J].2013,32(3):486-494.

[17] 郭德月,韩效钊,王忠兵.钾长石―磷矿―盐酸反应体系实验研究[J].磷肥与复肥,2009,24(6):14-16.

[18] 连宾,傅平秋,莫德明,等.硅酸盐细菌解钾作用机理的综合效应[J].矿物学报,2002,22(2):179-183.

[19] 易浪波,彭清忠,何齐庄,等.高效长石分解菌株的筛选、鉴定及解钾活性研究[J].中国微生态学杂志,2012,24(9):

773-785.

[20] 王忠兵,程常占,王广志,等.钾长石-NaOH体系水热法提钾工艺研究[J].化工矿物与加工,2010,39(5):6-7.

[21] 侯宇刚,刘月娥,甄卫军,等.新疆哈密钾长石提钾工艺比较性研究[J].化工矿物与加工,2012,41(12):12-16.

[22] 马鸿文,苏双青,杨静,等.钾长石水热碱法制取硫酸钾反应原理与过程评价[J].化工学报,2014,65(6):2363-2371.