测控工程论文范例6篇

测控工程论文

测控工程论文范文1

一、测量控制点的布局

以下图为例,测量控制点的布局主要注意以下三个方面:

1、本工程总占地面积约3.36万平方米,工程基坑南北宽126m,东西长238m,基坑深度11.650m,承台和集水坑、电梯井位置开挖深度在12.35~16.10m。整个工程共5座塔楼及裙楼。

2、本工程甲方给定的水准点位于南海路与宏达街交叉口,高程4.162米。在发达街上给定两个基准点,详见附图1。

3、根据实际情况,本工程引测水准点6个,基准点16个。

二、测量控制点的保护

1、甲方给定的基准点附近,禁止堆放材料,并派专人看管,定期对基准点进行复核。

2、引测的控制桩必须用混凝土保护,需要时用钢管进行围护,并用红油漆作好测量标记。

3、严禁在甲方给定的基准点附近加工、倒运钢筋及进行其他施工活动,防止磕碰、刮、擦破坏基准点。

测控工程论文范文2

关键词:连续梁;悬浇;施工工艺;关键技术

Abstract: based on the high-speed rail bridge deformation monitoring in the process of the construction of the large bridge construction experience, summed up the high speed railway suspended pouring construction technology in construction of continuous girder bridge, and the key technology of for some construction made a detailed introduction. Including detection method for construction, monitoring stations arrangement and observation method is introduced and the control of the linear beam body, etc made some reviews, expectations for later engineering can play a guiding role.

Keywords: continuous beam; Suspension pouring; Construction technology; The key technology

中图分类号:U445文献标识码:A文章编号:2095-2104(2013)

1 施工监测方法

1.1 施工监测理论

实际工作监测理论是指通过施工控制理论与方法严格控制和调整连续梁在施工的每一个阶段[1-4]。通常情况下,理论计算应与实践相结合。通过理论计算得出连续梁施工中桥梁的变形,包括梁所受内力作用、梁体所受挠度、梁墩的沉降量等等;通过实际检测,可以得到施工过程中的一些关键控制参数,如主梁线形、主梁应力等等。分析理论与实测参数之间的误差,从而来指导实际施工过程,并采用合理的方法来控制。

进行施工监测流程:首先对现场安装实时监测体系,得出实时监测值;与此同时,对于现场进行相关实验验证,通过实验得出现场测试参数。比较这两组参数,再进行参数识别与修正,得出施工控制参数。通过设计方案,按设计参数通过相关理论计算出施工参数,与测试值进行对比分析,并进行分析和修正,最终确定下阶段的施工资料,指导施工。

施工监测的原则为:第一、根据相关连续梁的实际施工特点,来确定实施监测;第二、实施监测所需要测得的主要参数为桥墩的变形和梁体内力两个方面;第三、施工阶段不同对于监测的侧重点不同,最开始进行桥墩施工时,所需要重点监测的是桥墩的内力与变形,同样的,梁体施工过程主要是监测梁体。

施工监测的内容主要包括:其一、控制前期理论分析。即通过理论来模拟连续梁的施工全过程,得出各施工阶段下理论的结构预期状态,计算分析出理论上各施工阶段的变形和受力预期情况;并对施工误差进行相关理论分析,确定出理论上减小误差的施工方法,整理出内力与变形的调整方案。其二、现场测试得出实际参数。根据实际施工情况,设计相关试验,以一个尽可能真实的环境来模拟施工,得出现场测试的数据,通过这些数据所得参数与第一步的参数比较,综合分析,使得施工控制与实际情况相符。其三、施工过程的实时监测。主要监测数据为变形特性和力学特性,通过监测进行反馈分析。其四、实时控制分析。对于上面三步所得到的数据进行整体考虑,结合实际施工环境,制定出最有效的施工方案。

当遇到实际测得参数与理论参数偏差较大时,应立即检差施工流程,看是否是施工过程所导致的较大误差,在则进行理论分析指导,综合考虑,协助施工方一起解决问题。

2 监测方法与检测点布置

建立现场监测网

通过现场勘测,确定出现场控制点,以现场控制点为基础,组成监控网络。监控点的布置原则是连续梁的每段桥梁都必须布置两个及以上监测点,原则上为三个不在一条直线的三个观测点。使用全站仪对每一个观测点进行观测控制,保证整个观测网络的稳定性。观测频率依据施工情况来定,开始施工时,需要进行每天监测,施工完成之后,时间间隔可稍微长些。监测网的等级要求与监测距离有关,一般来说,平面控制网监测按一级标准实施监测,高程控制网监测使用二等水准技术进行检测。

布置监测点与检测要求

目前连续梁的施工大都采用悬臂挂篮技术,这种施工方法的监测点一般布置在挂篮上的主梁以及底篮所浇筑梁体上,通常情况下,梁体的监测点位于梁体的端部与梁体中部位置,特殊情况下依据具体情况而定。现浇边跨的观测点主要布置在两侧梁体、腹板与底模上。对于梁体的监测主要采用钉入式的方式布置监测仪器,端部布设点设置在实际端部的50cm处,防止脱落;中间的布置点尽可能布置在中轴线上,防护墙的内外各布置2个;腹板上的布置点主要作用是验证梁体两端是否发生扭曲。其中值得注意的是,梁体每施工一段,就要进行及时观测,开始的观测点应该多设置几个,对于腹板的翼缘处设置辅助观测点,监测各阶段施工。

3 梁体的线性控制

为了保证通过线性理论的计算值能够直接指导实践,对于梁体的各种因素必须要综合考虑[5],综合识别修正梁体的一些参数,设置合理的梁段立模标高,对于梁段立模标高的定义公式如下:

式中:表示梁段立模标高;

表示第i段梁体的设计标高;

表示其他梁体自重对于第i段所产生的挠度值;

表示由于张拉预应力对于第i段产生的挠度值;

表示由于外界因素(收缩、徐变)对第i段所导致的挠度;

表示梁体上的活荷载值对梁体所造成的挠度;

表示梁体所受机械重力所导致的挠度;

表示挂篮变形值;

表示温度的修正后的挠度值。

通过上式,可以看出梁段的立模标高的影响因素,分别为自身影响因素与外界的影响因素;因此对于实际情况下,应当综合考虑各种外界因素,对于理论值进行及时修正。

实践表明,对于张拉预应力值、管道的摩擦系数值以及温度应力所导致的徐变值等等都与设计值有较大偏差,这种偏差所导致的挠度计算值偏差也会很大,因此在实际工程施工过程中,因对这些关键性因素格外注意。

4 温度影响与观测对策

对于一些受日照情况好的桥梁,其混凝土凝结时间会比较短,因此前期对这种桥梁的监测频率要比较高;与此同时,有些地段的日夜温差较大,对于混凝土结构的变形影响就会比较大,因此这种情况应当每隔一个小时进行一次观测,若发现混凝土由于热胀冷缩导致桥梁结构不稳定现象,应及时采取措施补救。

结束语:对于悬浇连续梁的施工过程,没有真正能够知道实践的施工工艺,在施工过程中,各种外界影响因素都会有所不同,因此根据经验来进行即时的指导显得非常的重要,对于桥梁的检测手段与检测频率也需要综合考虑当地的各种因素,选择最适合的施工方法。

参考文献

[1]孙树礼.京沪高速铁路桥梁工程[C]//2008中国高速铁路桥梁技术国际交流会.北京:中国铁道出版社,2008.

[2]刘名君,曾永平,戴胜勇,等.客运专线无砟轨道悬臂浇筑连续梁线形控制探讨[C]//2008中国高速铁路桥梁技术国际交流会.北京:中国铁道出版社,2008:373-377.

[3]张文建,郑景文.京津城际铁路大跨度连续梁徐变及线形监控[C]//2008中国高速铁路桥梁技术国际交流会论文集.北京:中国铁道出版社,2008:390-399.

测控工程论文范文3

关键词:斜拉桥;索力监控;温度测定;应力监控;施工监控

1.大跨度斜拉桥施工监控的任务和目标

1.1施工监控的概念

桥梁施工控制就是对桥梁施工过程中结构的受力、变形及稳定性进行监控,使施工中结构处于最优状态,保证施工过程安全和成桥状态(包括内力和线形状态)符合设计、规范要求。

1.2施工监控的主要任务和目标

1.2.1桥梁施工控制的主要任务

桥梁施工控制的主要任务,就是桥梁施工过程中的安全控制和桥梁结构线形与内力状态的控制。桥梁施工控制,由于桥梁的结构形式、施工工艺和具体控制内容的不同。其操作方法也不相同。总的说,桥梁施工控制方法可分为事后控制法、预测控制法、自适应控制法、最大宽容度法。也有文献从控制思路上将施工控制分为:开环控制、反馈控制和自适应控制。

1.2.2桥梁施工控制的目标

(1)施工过程中和竣工后结构内力状态满足设计要;

(2)成桥结构线形、索力满足设计要求;

2.大跨度斜拉桥施工监控的主要内容

根据大跨度斜拉桥结构和施工方法的特点,施工监控的工作内容主要包括:①施工过程的仿真计算;②施工过程的现场测量;③施工过程的参数识别;④施工过程的标高和索力调整。第①项工作的目的是获取施工过程大桥的理论数据,第②项工作的目的是获取施工过程大桥的实测数据,在上述两项工作的基础上即可进行第③项工作,对大桥的有关参数进行识别。上述三项工作均是为第④项工作服务的,通过第④项工作即可对大桥的施工实施控制。

2.1大跨度斜拉桥施工控制仿真计算基本内容

桥梁施工过程的仿真计算已成为现代桥梁确定静力状态的主要手段。施工控制仿真计算是施工控制的基础,它的实质就是通过建立合理的模型,采取行之有效的结构分析方法,对桥梁的成桥状态和施工状态进行一定精度的模拟分析过程。后者也就是桥梁的施工过程计算,即在成桥设计目标状态确定后,再对成桥过程中的每一施工阶段进行模拟实际工况的仿真计算,求得斜拉桥在每一施工工况下主梁截面的应力、斜拉索的张拉力、主梁挠度、塔柱位移以及结构内力等控制参数的理论值,以确定斜拉桥从上部结构施工开始至二期恒载施加完毕后的成桥状态这一施工全过程的理论参考轨迹。无论在实际施工中采用哪种控制理论,采取恰当的施工过程模拟分析方法,得出相对准确的施工控制参数,是保证施工控制精度和施工进展速度的关键。

桥梁施工仿真计算都是为桥梁施工过程中的监测监控服务的,也是为施工控制所服务的。桥梁施工控制就是对桥梁施工过程中结构的受力、变形及稳定性进行监控,使施工中结构处于最优状态,保证施工过程安全和成桥状态(包括内力和线形状态)符合设计和规范要求。桥梁施工控制的主要任务,就是桥梁施工过程中的安全控制和桥梁结构线形与内力状态的控制。

2.2大跨度斜拉桥施工过程的现场测量

施工过程的现场测量内容主要包括索力测量、主梁与墩塔应力测量、主梁标高与塔顶位移测量、混凝土容重与浇筑量测量、混凝土弹模与收缩徐变系数测量以及温度影响测量等。

2.2.1索力测量

斜拉桥索力测量的准确与否是关系到斜拉桥施工控制能否顺利实施、斜拉桥能否成功修建的几个关键问题之一。在工程实践中,常用的索力测定方法有油压表量测法、压力传感器量测法、振动频率量测法(常用方法)、磁通量法。其中振动频率量测法是常用的方法,用该方法测量拉索的索力时,需首先设法测出拉索的振动频率,因拉索的振动频率与拉索的索力之间存在一定的关系。对于某一根给定的拉索(即已知拉索的长度、拉索的线密度及拉索两端的支承条件),只要测定拉索的自振频率就可以求得拉索的索力。

2.2.2应力测量

在斜拉桥上部结构的控制截面布置应力测点,以观察在施工过程中这些截面的应力变化及应力分布情况,根据当前施工阶段向前计算至竣工,预告今后施工可能出现的状态并预告下一阶

当前已安装构件或即将安装的构件是否出现不满足强度要求的状态,以确定是否在本施工阶段对可调变量实施调整。由于电阻应变传感器在混凝土振捣时极易被损坏,即使不损坏,其绝缘度也无法保证,另外,在混凝土表面贴片也不能保证可靠,容易发生漂移,不能保证长期监测时读数的可信性。所以,在主梁各断面应力监测用钢弦应变计,钢弦应变计为一密封式自保证体系,与外界物质并不直接相关,测试是,通过测其频率即可得到混凝土的应变,从而得到应力。

在应力测量中,测量得到的应力要经过处理分析后才能应用,因为在测量的应力中包含混凝土收缩、徐变引起的应变计变形。所以测量得到的数值一般偏大。因此,在施工现场用混凝土做一个试验块,在试验块中埋应变计,这样可以测量出在相同情况下不同时间混凝土的收缩量。

单索面斜拉桥是大悬臂箱梁,由于拉索的布置方式及锚固点偏向箱梁顶板及预应力布置有关,存在一定的剪力滞效应,因此,布置应变计是要注重测量箱梁截面的剪力滞效应。应变计的布置如图所示。

2.2.3温度测量

斜拉桥的温度场测试包括:主梁截面的温度场测量、主塔截面的温度场测量、斜拉索内部温度场测量以及温度对主梁标高、索力、塔顶偏位、相关截面的应力应变的影响测量。

通过温度测试提供主梁、索塔、斜拉索的各测试断面的温度短期变化曲线(即测量出比较有代表性的某一天或几天24h内结构温度变化情况)和季节性温差变化曲线以及索内外温差和中心点温差的对应关系曲线。结合塔柱偏移和主梁线形以及索力的测量结果,总结出结构日照温差变形规律和季节性的温差变形规律。 主梁及主塔的温度测试采用在测试断面预埋测量元件(热敏电阻),用数值万用表测量热敏电阻的电阻值,然后根据电阻与温度的标定曲线,由所测电阻值推荐出温度值。

斜拉索的温度测量,采用特制的长约2m的试验索段,试验索段的构造方法与实际索完全相同。在试验索段的内部钢丝上埋设热敏电阻,用数值万用表测量其电阻值,然后根据电阻与温度的标定曲线,由所测电阻值推荐出索的内芯的温度值。

2.3施工过程的参数识别

2.3.1参数识别的特点

大跨度斜拉桥结构一般采用节段悬臂方法施工,施工阶段多,工况复杂,影响参数众多。由于施工因素的不确定性,施工误差不可避免,造成实际结构参数往往偏离设计理想值。而在大部分情况下,受场地条件和测量仪器所限,实际结构参数往往无法直接量测得到。此时,为了更好地对当前及后续的结构状态进行把握和控制,需要进行结构辨识工作。换言之,必须通过结构响应的某些可观测量,采用间接的数值分析方法来对实际结构参数进行识别估计。

2.4施工过程的标高与索力调整

斜拉桥节段施工过程中主梁标高(挠度)及结构内力的控制至关重要,它直接关系到成桥线型及成桥内力的控制以及各施工阶段相应的调整措施的准备。预应力混凝土斜拉桥主梁施工控制主要是通过对主粱标高(含立模标高)与索力的调整来实现的,这种调整是相对于设计值而言的。

2.4.1主粱标高的调整

主粱标高的调整包括主粱每节段施工完毕后当前节段的标高(简称阶段未标高)的调整以及主梁立模标高的调整等。

(1)阶段末标高的调整

阶段末标高的调整量必须控制在一个较小的范围之内,同时要确保主梁线型平顺,即既要保证主梁各节段绝对标高的精度,也不能让主梁出现明显的折点。

(2)立模标高的调整

主粱立模标高的调整量由四部分组成:

①阶段末标高的调整引起的立模标高调整量,取为阶段末标高调整量;

②牵索挂篮施工具体方案(挂篮刚度与牵索方案)以及识别后的主梁阶段重量与调整后的施工索力引起的立模标高调整,可以通过前述的主梁牵索挂蓝施工模拟计算活得;

③挂篮的非力学因素变形引起的立模标高调整量,可根据经验确定,一般在5mm~lomm左右;

④温度效应引起的立模标离调整量。

2.4.2施工索力的调整

所谓的施工索力是指主梁每节段施工完毕后当前节段的斜拉索张拉力。根据控制理论,可以适当的调整施工索力来及时消除或者减少施工误差引起的影响。这种调整方式可以理解为是一种单索力调整方式,他的一个最大的好处就是索力调整与节段施工同步完成,不需要占用额外时间,可以确保

工期。

施工索力的调整有两个作用:

①及时消除主梁节段超重的影响;

②当上一节段的阶段末标高实测值与设计值的差异超过±30mm时,可以消除一部分差异,使下一节段的阶段末标高调整量可以同时满足绝对标高与线性平顺两方面的要求。施工索力的调整量可以通过理论值计算获得。

结束语:本文仅以综述的形式概括大跨度斜拉桥施工监控的技术流程,介绍了国内外斜拉桥的发展现状,斜拉桥的特点,施工监控的主要内容等。通过学习桥梁施工监控这门课程,我们可以对桥梁的施工监控有一定的了解,得到了两个结论:

(1)桥梁施工监控是确保桥梁施工宏观质量的关键;

(2)桥梁施工监控是桥梁建设的安全保证。

参考文献

[1] 向中富.桥梁施工控制技术[m].人民交通出版社,2001.5

[2] 范立础.桥梁工程[m].人民交通出版社,1987

[3] 施智勇.大跨度斜拉桥施工监控技术研究.华中科技大学硕士学位论文,2005

[4] 韩大建、苏成、王卫峰.崖门大桥施工监控的技术流程与主要成果.桥梁建设,2003.1

[5] 王卫锋、徐郁峰、韩大建等.崖门大桥施工中的索力测试技术[j].桥梁建设,2003.1

[6] 韩大建、苏成、邓江.崖门大桥施工过程的参数识别与调整措施.桥梁设计,2003.1

[7] 王荣辉、薛礼建.矮塔斜拉桥索力测试方法研究.中外公路,2011.4

[8] 谭红霞、陈政清.大跨度斜拉桥施工阶段主梁的立模标高研究.湖南大学学报(自然科学版),2007.8

[9] 颜东煌.斜拉桥合理设计状态确定与施工控制.学位论文.湖南大学,2001

[10] 卜一之、吴国胜.大跨度斜拉桥参数识别方法研究与应用.桥梁建设,2009.2

测控工程论文范文4

关键词:无砟轨道 高速铁路桥梁 线形控制

中图分类号:U231文献标识码: A

前言:伴随我国社会经济的不断进步,交通事业的发展可谓日新月异,而城市的进步也给交通发展提出了越来越严苛的要求,使得道路交通开始向着越来越多元化的方向发展。客运专线在近十年间就发生了翻天覆地的变化。无砟轨道高速铁路桥梁的线形控制就是这一发展过程中非常重要的一部分,它在我国高速铁路桥梁的建筑史上具有重要的意义,将高速铁路桥梁的发展推向了一个全新的高度。因此,本文针对无砟轨道桥梁的特点对无砟轨道高速铁路桥梁的施工控制方法及措施进行研究.

1、无砟轨道桥梁施工控制特点

对于一般的有砟轨道桥梁,桥梁施工控制仅给出箱梁底板立模高程即可,梁顶板立模高程根据箱梁底板立模高程和该段梁高确定,由于现有施工技术水平限制,一般有砟轨道桥梁混凝土浇筑后的梁面不平顺,高程起伏较大.但对于无砟轨道客运专线(高速铁路)桥梁,列车运行速度较快,轨道的平顺度要求较高,如京津城际客运专线采用Ⅱ型板式无砟轨道系统,Ⅱ型板式无砟轨道桥梁桥面系统主要构造为箱梁、底座板、轨道板,箱梁和底座板整体结构分离,为保证底座板在温度等因素的作用下可以自由伸缩,梁面的平整度精度要求较高.

另外,Ⅱ型板的铺设对于梁面高程及徐变上拱值要求也较高,为使梁顶高程满足浇筑底座板和铺设Ⅱ型无砟轨道板的需要,需要对梁顶面高程进行严格控制.由于无砟轨道桥梁对梁体的平顺度要求较高,这样对桥梁的施工控制提出了更高的要求,不仅合拢前合拢段两端的合拢误差不能过大,在桥面系施工完成后梁面的绝对标高也要满足要求。故在施工过程中需要准确估计后续工序对本阶段梁的位移影响.

2、无砟轨道桥梁顶面线形控制

在箱梁混凝土浇筑后,若顶板高程与设计高程有偏差,则需要在铺设底座板之前对梁面高程进行修整,若超出较多,不但修整的工作量很大,且会影响顶板钢筋的保护层厚度,对结构的耐久性等产生影响.为减小箱梁顶板混凝土面的后期修整量,提出了将箱梁顶面及底面高程同时控制的施工控制措施,另外还提出了箱梁顶面在混凝土浇筑即将完成时的梁面高程,如下所示:

式中: h1 为混凝土浇筑即将完成时的箱梁顶面高程;

htop为浇筑混凝土前的箱梁底面立模高程;

hlI为本段前端梁高;

fcon为浇筑本段混凝土时本段前端预测挠度;

fgl为预测本段挂篮变形.

根据式(1)计算的梁顶面立模高程,在混凝土即将浇筑完成时控制完成梁顶面的浇筑工作,可以消除本阶段预测挂篮变形及预测浇筑混凝土产生的梁端挠度误差对梁顶面高程的影响,减小后期梁面的修整工作,保证结构顶板钢筋的保护层厚度.

3、施工控制方法

为达到良好的线形控制效果,需要对后续工序对已浇筑混凝土梁段的挠度影响进行准确预测,在无砟轨道高速铁路大跨度桥的施工控制过程中引入灰色理论及自适应控制方法进行线形控制,并采用最小二乘法对参数进行调整[3_6].

3.1 灰色控制理论

灰色理论的特点是以现有信息为基础来进行数据加工和处理,建立灰模型来预测系统未来发展变化,灰色系统模型的主要模型是GM(1,N)模型.GM(1,N)模型适合于各变量动态关联分析,适合于为高阶系统建模提供基础,但不适合预测用.适合预测的模型只能是单变量模型即GM(1,1)模型[3_6].利用灰色理论建立的模型其形式为:

(2)

式中:a为发展系数;

B为灰作用量;

X(1)为原始数列

X(0)的一次累加生成数列.

解方程(2)可得:

式(3)也称为GM(1,1)的预测响应式,其还原值为

对于悬臂施工桥梁,一般将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.

3.2 自适应控制方法

对于预应力混凝土桥梁,施工中每个工况的受力状态达不到设计所确定的理想目标的重要原因是有限元计算模型中的计算参数取值,主要是混凝土的弹性模量、材料的比重、徐变系数等与施工中的实际情况有一定的差距.要得到比较准确的控制凋整量,必须根据施工中实测到的结构反应修正计算模型中的这些参数值,以使计算模型在与实际结构磨合一段时间后,自动适应结构的物理力学规律,图1为自适应控制的原理图(8).

对于悬臂浇筑的桥梁,主梁在墩顶附近的相对线刚度较大,变形较小,因此,在控制初期,参数不准确带来的误差对全桥线形的影响较小,这对于上述自适应控制思路的应用是非常有利的.经过几个节段的施工后,计算参数已得到修正,为跨中变形较大的节段的施工控制创造了良好的条件.

4、施工控制实例

4.1 工程概况

哈齐客运专线起自哈尔滨站止于齐齐哈尔站。本段为哈齐客专一标段(里木店特大桥部分),线路设计时速250km/m。(本桥桥面铺设无缝线路,钢轨为60kg/m,轨高0.176m)地处哈尔滨市与肇东市交界处,线路基本呈东南---西北走向,地势平坦。线路大致与既有滨州线并行。里程为DK36+161.99至DK41+197.92里木店特大桥(桥长5041m),共有155个墩含2个桥台。本桥桥梁为预制混凝土箱梁跨度为32.7米共154跨。

4.2 本桥特点

对于大跨度梁式桥,一般采用悬臂施工,不同的结构形式,不同的施工顺序(合拢顺序、预应力张拉顺序)对桥梁的累计位移和预拱度设置均有较大影响.为此本文以哈齐客运专线里木店特大桥部分比较无砟轨道桥梁的累积位移.跨四环桥与其他悬臂浇筑连续梁桥的不同在于该桥为不对称桥梁,梁体竖向刚度较小,中跨悬臂长度较大,且有张拉吊杆的横隔板,施工顺序为悬臂施工到14 块一边跨支架浇筑现浇段一拆除边跨现浇支架(边跨未安装支座,为悬臂结构)一中跨施工15#、16 块一合拢一拆除临时支撑,安装边跨支座一施工拱一张拉吊杆一桥面系施工.为说明本桥与一般连续梁结构的不同,以哈齐客运专线里木店特大桥部分作为对比,跨五环桥原设计方案为全部悬臂施工,悬臂4#块后改为支架施工,故列出五环桥的两种不同施工方法的计算结果.对于预应力混凝土连续梁桥,若已施工梁段上出现误差,除张拉预备预应力束外,基本没有调整的余地,且这一调整量也是非常有限的,而且对梁体受力不利.因此,一旦出现线形误差,误差将永远存在,对未施工梁段可以通过立模高程调整已施工梁段的残余误差,如果残余误差较大,则调整需经过几个梁段才能完成.对于无砟轨道高速铁路桥梁,若施工过程中梁体线形出现较大的施工误差,将给后续工序带来较大的困难,需在施工过程中严格控制梁体线形.

4.3 灰色理论与自适应控制方法的结合应用,

连续梁拱组合桥的施工过程随着时间的推移,其影响因素诸如温度、湿度和其它的一些因素是逐步变化的,且这种变化是一种随机的灰色过程.为计人这些影响因素的变化,确保所建立模型的有效性,必须进行反馈校正.在利用灰色理论施工控制时,对理论值与实测值建立误差序列,以此为原始序列,建立GM(1,1)模型,并及时采用新陈代谢模型进行模型的反馈校正,即每补充一个新值,便去掉一个最老的数据,以维持数据序列的维数,采用这种处理方法可使预测模型得到有效的修正,提高预测精度.对于跨四环桥,将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.在第i节段施工完成后,测得前 节段挠度变化、实际拱度实测值,考虑到温度对梁体挠度的影响,挠度观测均在日出前进行.理论挠度、拱度由桥梁专业软件BSAS建立模型求得.

对于悬臂施工桥梁,预拱度设置的准确与否主要在于结构各阶段的位移预测是否准确9,在无砟轨道高速铁路桥梁的施工控制中可以引入灰色理论和自适应控制方法两种预测方法进行预测结构的变形,从而确定结构的预拱度.在进行实测结果和理论结果的误差分析时,为消除测量误差带来的影响对实测结果进行了曲线拟合,采用拟合后的数据进行预测;自适应控制方法的关键在于参数估计,对于无砟轨道桥梁可采用最小二乘法进行参数估计6.

预测完成后对两种方法的预测挠度结果进行比较,确定下一阶段结构的预拱度.跨四环桥159#墩II#一14 块浇筑混凝土时的梁端部竖向挠度如表1所示.

两种方法预测的各阶段梁体挠度与实测挠度值较为接近,灰色理论预测的挠度相对与实测值较为接近,在位移较大的中跨侧,灰色理论预测的预拱度值较自适应控制方法稍大,但相差不大,两种方法均可用于大跨度无砟轨道高速铁路桥梁的施工监控,实际监控中可采用两种方法结合预测.

4.4 线形控制结果

以159 墩为例,14 块施工阶段梁体竖向挠度与理论挠度对比.16 块施工阶段梁体竖向挠度与理论挠度对比.由于灰色理论预测仅对梁端部竖向位移进行了预测,故仅列出自适应控制方法的理论位移结果10.

在本桥的施工监控工作中,相对于普通桥梁,在混凝土即将浇筑完成时增加了一次测量工序,应用式(1)控制梁顶面标高,跨四环桥成桥后梁体实际线形与理想线形的对比如图7所示,理想线形为倒退分析所得的理想状态计算结果.施工阶段实测位移与预测位移较为接近,说明在本桥监控中预测方法较为准确的反映了实际情况;成桥后梁体实际线形与理论线形较为接近,误差均在1 C1TI以内,四环后期桥面修整工作不大即可满足铺设桥面板的平整度要求,节省了工期时间,保证了铺设桥面板等工序的顺利进行.由哈齐客运专线里木店特大桥动态检测报文提出的梁面标商控制方法适合于无砟轨道高速铁桥的施工控制中,高程的测量需要精密测量仪器来测量.

结语:综上所述,在无砟轨道高速铁路桥梁的线形控制技术方面,我们还有很多值得探究之处,要在已有基础上进一步的完善无砟轨道交通的设计理论,不断地加强无砟轨道桥梁的技术标准与技术要求,以更好的为我国高速铁路事业推波助澜,将我国的高速铁路事业推向一个全新的阶段。

参考文献:

测控工程论文范文5

【关键词】龙岩特大桥,概论,施工监控,组织体系,监控计算,施工监控

中图分类号:X924.3文献标识码: A 文章编号:

一、龙岩特大桥概论

龙岩特大桥(60+100+60)m连续梁跨龙岩市南环路,对应的桥墩编号为35#~38#。

设计线路等级为Ⅰ级,牵引类型为电力牵引,设计速度目标值为200km/h客货共线。线路情况为双线,线间距4m,小里程侧17.8m位于缓和曲线上,其余位于直线上。(60+100+60)m连续梁梁全长60.75+100+60.75=221.5m,边支座中心线至梁端0.75m;中支点梁高7.6m,跨中梁高4.6m。梁体为单箱单室、变高度、变截面结构。箱梁顶宽13m,底宽6.4m,顶板厚度37-47cm,腹板厚度45-47-90cm,底板厚度50-130cm。在端支点、中支点、中跨共设5个横隔板,隔板设有孔洞。

二、施工监控组织、工作体系

施工监控工作是一个复杂的系统工程,涉及建设、设计、施工、监理和监控等多个部门和单位,尤其是施工监控目标需要各个部门和单位密切合作、团结协调、共同努力来实现。因此,为确保各项工作的有序、协调、有效开展,必须事先建立完善的组织体系和信息传递机制。

为保障施工监控工作的高效运作,必须明确施工监控实施过程中的各项工作制度和组织制度。为此,在施工监控阶段,成立由大桥的建设单位、设计单位、施工单位、监理单位和监控单位有关人员组成的“施工监控领导小组”,负责施工监控工作过程中的总体协调工作。

为确保监控工作及时进行和监控的有效性,我公司将组织精干人员组成“施工监控工作组”,常驻现场,密切配合现场施工,监控工作组下设监控计算和监控测量小组。

三、施工监控计算

连续梁桥施工采用分阶段逐步完成的施工方法,结构的最终形成,需经历一个长期而复杂的施工与结构体系转换过程,对施工过程中每个阶段的变形计算和受力分析,是桥梁结构施工控制中最基本的内容。

同时,为了能够确保施工过程中结构的安全,保证成桥状态最大程度地接近设计目标状态,必须采用合理的理论分析和计算方法来确定桥梁结构施工过程中每个阶段在受力和变形方面的理想状态,以便为施工提供中间目标状态,控制施工过程中每个阶段的结构行为和状态,使得其施工过程受力合理,而且最终的成桥线型和受力状态满足设计要求。

桥梁的施工控制计算分析不仅应能够对整个施工过程进行正确描述,反映整个施工过程结构的真实受力行为,而且也能确定结构各个阶段的理想状态,为施工提供中间阶段结构状态。

施工监控的过程就是通过对施工过程的仿真计算,初步确定每个悬浇阶段的立模标高,并在施工过程中根据施工监测的成果对误差进行分析、预测和调整后续梁段的立模标高,以确保施工过程中结构的可靠度和安全,确保合龙精度以及成桥后的桥面线形、内力符合设计要求。

本项目监控计算准备采用多套软件进行,对本项目桥梁复核计算和施工架设过程采用“桥梁博士”和“MIDAS/Civil”进行平面和空间计算。另外,施工监控中还根据需要采用Ansys软件对0#块墩区域进行局部计算分析。对本项目桥梁监控计算采用正装法进行计算,整个计算步骤按主桥施工架设过程进行,直至主跨合龙。

三、施工监测

(一)监测项目

本桥的施工监测内容主要包括:线形测量,结构应力测试,温度场测量等几个方面。其中线形测量主要以施工单位的测量为主,监理、监控组进行复核,特别是对关键阶段的复核。结构应力测试和温度场测量由监控监测小组负责。

(二)线形监测

1、线形监控网及高程监控基准点复核

建立主桥线形监控网,在监控网中按规范要求测设主桥高程监控基准点,其为理论不动点,由水准基点引测其高程。为防止测点位置移动或破坏,线形测试前需对高程监控基准点进行复核,要求每两个月复测一次。测量采用水准仪进行。

2、主梁立模标高与截面尺寸的放样监测

在施工挂篮移动到位,固定底模后,用极坐标法测出每节段的桥轴线及底板两边点。因箱梁采用变截面形式,所以底板上每点的里程不同高程也不同。根据设计及施工监控计算所提供的资料在立模前计算出挂篮每块前端的底板和顶板主要监控点(见图4-1中a,b,c,d,e,f,g,h,i各点)的坐标,利用全站仪直接监控各主要点的平面位置,再根据水准监控点用水准仪来监控各主要点的高程。监控好各主要点后用钢尺来监控细部尺寸,在保证每块箱梁的平面和高程的基础上还要保证局部尺寸和位置。

图4-1箱梁截面立模监控点

以上是箱梁立模时的模板监控,它是现浇悬臂箱梁监控的一个部分。其监控关键在于通过挂篮试验数据,准确预测浇注过程中的弹性和非弹性变形,在放样过程中对这些变形给予适当的考虑,保证箱梁截面在浇注成形后最优化,减小截面特性施工误差。此项工作在每一节段立模前均需进行。

四、质量目标及保证措施

(一)质量目标

我公司对此工程的质量目标是:(1)测试成果真实可靠,监控质量满足设计要求,研究报告具体翔实;(2)提供业主满意的技术服务。

(二)保证措施

贯彻GB/T19001—2000标准,根据我公司《质量手册》、《程序文件》开展各项工作。

(1)公司的监控组织体系为:公司管理层—公司监控工作专家组—现场监控工作小组。

(2)选派业务素质高的人员组成现场监控组,并使成员各具所长,配合密切,以利于各项工作的开展。公司成立监控工作专家组,对监控方案充分论证,对现场监控组给予技术指导。

(3)选择性能可靠的测试元件,严把元件质量关。对本工程使用的元器件,在埋设前均进行检测,在埋设时要求技术人员细致耐心,认真负责,并取得施工单位的大力配合,确保元件的成活率在85%以上。

(4)对本桥施工监控的仪器设备均经标定,确保仪器设备准确可靠。并在使用过程中经常进行检查和保养,一旦仪器设备精度有疑问时,即应进行检定,以保证测试数据的有效性。

(5)对测试工作加强自检、互检,严格复核签字制度。在复核中一旦发现不正常的数据,立即进行必要的复测,以避免错过测量时机,造成漏测或无效测量。

(6)加强各项记录的管理。

参考文献:

[1]许长青,杨平.建筑工程施工监理质量控制专家系统[J].南京林业大学学报,2004(3).

测控工程论文范文6

关键词:测控电路;教学改革;理论;实践

作者简介:刘得军(1965-),男,河北迁安人,中国石油大学(北京)地球物理与信息工程学院电子系,教授;钱步仁(1964-),男,江苏泰州人,中国石油大学(北京)地球物理与信息工程学院实验中心,高级实验师。(北京 102249)

基金项目:本文系中国石油大学(北京)2012年度重点课程建设类教学改革项目的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)30-0110-02

“测控电路”是测控技术与仪器专业的一门专业必修课,同时也是该专业的核心课程。通常情况下,测控系统主要由传感器、测控电路和执行机构三部分组成,利用测控系统可以把被测的目标非电量信号通过传感器转换为电量参数,再由测控电路进行信号调理与转换,之后进入微机或执行机构,以达到控制的目的。测控系统中测控电路的主要作用是对传感器的输出信号进行放大、隔离、调制解调及信号转换等一系列处理后,[1]使之满足后级执行机构(负载)对测量与控制信号的精度需求。测控电路对整个测控系统测控目标的准确实现起到举足轻重的作用。因此,针对测控技术与仪器类本科生来说,在进入专业课程学习阶段安排“测控电路”课程的学习非常必要。通过对该课程的教授,力求使学生对测控电路设计、测控电路板制作、电子元器件焊接到测控电路调试等全过程有清晰、全面的掌握,从而为后续实际工作和继续深造奠定良好的测控电路分析与设计基础。

一、“测控电路”教学现状及存在的问题

“测控电路”课程专业性强,需要“电路分析基础”、“模拟电子技术”、“数字电子技术”、“单片机原理”等专业基础课程作支撑,若衔接不好,则会给“测控电路”课程的实际授课带来困难。根据几年的教学实践可以看出,目前“测控电路”课程教学主要存在以下几个问题:由于我国目前的教育体制还普遍采用应试教育方式,多数学生只适应初等教育期间掌握的数理化学习模式,对大学初期开设的电类专业基础课程的特点不熟悉,基础掌握不牢靠,再加上学生的自主学习意识普遍不强,因而不能尽快适应和较好掌握“测控电路”这门课程的学习模式;现有的教材理论性过强,不易理解,有些内容也过于陈旧,不能紧跟测控电路的发展;理论教学内容偏多,导致实践与理论教学脱节,学生的实践动手能力得不到应有的锻炼。

二、“测控电路”教学内容改革与探索

针对“测控电路”课程的教学现状与存在的问题,结合中国石油大学的实际办学特点,在重点课程建设类教学改革项目的资助下,学校对该课程的教学内容及教学方法进行了必要的改革与探索。

1.理论教学内容改革与探索

(1)精简教学课程,更新教学内容。目前中国石油大学本科生“测控电路”课程教学所采用的教材是天津大学精仪学院张国雄教授主编的《测控电路》。该教材在内容设置上非常丰富,面面俱到,有些内容在其他课程中偶有介绍,因此若直接按照该教材内容安排讲授的话,可能会出现一定程度的重复。例如,“信号运算电路”和“模拟数字转换电路”分别在“模拟电子技术”和“微机原理”课程教学中被详细讲授过。这就要求“测控电路”授课教师在授课准备过程中应该详细了解所授课专业班级开设的其他相关课程的教学内容,从而对“测控电路”教学内容有重点地进行筛选,既要保证教学内容丰富,又要确保减少不必要的重复,进而提高课堂的教学效率。

教师在教学过程中,应根据学生对本专业知识点和重复内容的掌握状况及时更新教学内容,适当去除较偏较难的知识点和陈旧内容,加入最新测控电路的发展趋势及工程实例。

(2)建立课程构架,实现多课程融合。一门课程只能体现出一个工程项目的小部分知识点,如果各门课程间没有协作,那么就很难完成一个实际的工程项目。因此,孤立学习“测控电路”这门课程是难以充分理解该课程的主要知识点并将其活学活用于实践当中的。

“测控电路”只是测控系统中的电路部分,完整的测控系统还包括传感器单元与执行机构。所以在授课时,让学生通过了解测控系统建立起课程构架,才能为理解与实践打下坚实的基础。