高层建筑设计论文范例6篇

前言:中文期刊网精心挑选了高层建筑设计论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

高层建筑设计论文

高层建筑设计论文范文1

本次设计的安徽省柏星置业有限公司柏星丽景广场Z08#楼为18层高层住宅,主体结构为框架剪力墙结构,基础为钢筋混凝土筏板基础;抗震设防烈度为6度,设计地震分组为第二组,地震加速度为0.05;主体屋面板顶标高为49.700m,该楼西面、南面、东面、及部分北面室外地坪标高为-3.150m。北面左侧部分室外地坪标高为-0.150m,即四周基础埋深不一致,高差为3.0m,局部总平面示意图如图1所示。该工程基础埋深最高处埋深5.05m,最低处基础埋深2.05m,即有效埋深2.05m,按照《高规》第12.1.81条之要求,基础埋深取(49.700m+3.150m)/15=3.52m,根据该场地地质报告及项目总平面图,场地中等风化岩石外露,如按照规范要求的1/15房屋高度确定基础埋深,将会给施工带来极大的困难,建设成本也会提高。

2设计思路

2.1地基承载力验算

根据该工程地质报告,基础持力层为层③中等风化石灰岩,岩石埋藏深度浅、强度高、工程性质良好,地基承载力特征值fak=3000kPa,计算结果显示的基础底板下基底平均压力值(含基础自质量)为pk=279kPa,即pk<fak,地基承载力满足设计要求。

2.2结构的抗倾覆验算

根据PKPM2010版系列结构软件satwe计算结果,结构整体抗倾覆验算数据如表1所示。表1Z08#楼结构整体抗倾覆数据依据以上计算结果及《高规》第12.1.7条之条文解释,该工程结构的抗倾覆能力具有足够的安全储备,不需再验算结构的整体倾覆。

2.3结构的抗滑移验算

高层建筑在承受地震作用、风荷载或其他水平荷载时,筏形基础的抗滑移稳定性应符合下式的要求[2]图1Z08:#楼局部总平面示意图抗倾覆力矩倾覆力矩比值零应力MrMovMr/Mov区/%X向风荷载1318648.136019.336.610Y向风荷载620252.955291.011.220X向地震Y向地震1279152.0601675.125794.525794.549.5923.3300建设工程能源技术与管理EnergyTechnologyandManagement2014年第39卷第6期146Vol.39No.62014年12月Dec.,2014KsQ≤F1+F2+(Ep-Ea)L式中:Ks为抗滑移稳定性安全系数,取1.3;Q为作用在基础顶面的风荷载、水平地震作用或其他水平荷载,kN;F1为基底摩擦力合力,kN;F2为平行于剪力方向的侧壁摩擦力合力,该工程忽略不计;Ea、Ep分别为垂直于剪力方向的地下结构外墙面单位长度上主动土压力、被动土压力,kN/m;L为垂直于剪力方向的基础边长,m。

2.3.1基础顶面处的风荷载、水平地震作用力根据该工程基础四周嵌固条件,最不利抗滑移方向为Y向,依据结构软件satwe计算结果得出,作用在基础顶面Y向的风荷载、水平地震作用总合力Q=2050.94kN

2.3.2基础底面摩擦力合力F1计算基础底面摩擦力合力计算公式为:F1=μ(F′k+Gk)式中:μ为基底与岩石地基的摩擦系数,本工程取0.40;F′k为上部结构恒载传至基础顶面的竖向力,根据PKPM2010版系列结构软件satwe计算结果为76032.97kN;Gk为基础自重及基础上土重之和,其值为22370.80kN。经计算F1=39361.50kN2.3.3结构两侧主动土压力、被动土压力计算垂直于剪力方向的地下结构外墙面单位长度上主动土压力Ea、被动土压力、Ep计算式分别为:Ea=12φaγh2kaEp=γh2kp式中:φa为主动土压力增大系数,该工程取1.0;γ为填土的重度,该工程取18.0;h为挡土结构的高度,该工程为5.05m;ka为主动土压力系数,该工程取0.2;kp为被动土压力系数,该工程取5.0。经计算,Ea=45.9kN/mEp=45.0kN/m

2.3.4该工程的抗滑合力该工程抗滑合力为:F1+F2+(Ep-Ea)L=39361.50+0+(45.0-45.9)×28.5=39335.85(kN)

2.3.5该工程的抗滑移验算该工程的抗滑移验算式为:KS=F1+F2+(Ep-Ea)LQ经计算,KS=19.1即KS>1.3依据以上计算结果,该工程基础的抗滑移稳定性验算满足《高层建筑筏型与箱型基础技术规程》(JGJ6-2011)第5.5.1条之规定[2]。

2.4本工程所采取的抗滑移措施

该工程采用1000mm厚钢筋混凝土筏板基础,设计在满足承载力、稳定性要求的前提下,采用了一种抗滑移基础,是在筏板基础底面东西两侧及南侧各设置一道抗滑趾,抗滑趾的长度方向与基顶水平推力的方向垂直,如图2所示。抗滑趾的宽度和高度是通过计算确定的,其值应能满足抵抗与基底交接面处的抗剪切及抗弯能力;抗滑趾长度与基础底面宽度H同向且等值。通过在基础底面增设抗滑趾,能有效增加基础的抗滑移能力,从而保证岩石地基上高层建筑筏板基础抗滑移的稳定性。图2Z08#楼基础埋置剖面图

3结论

高层建筑设计论文范文2

随着国内人口的逐渐增多,城市化的进程在不断加快。我国有着人口众多,人均资源不足,土地数量有限的矛盾局面,在城市建筑建设中,必须要遵守稀土如金的原则,用更高层的建筑来做到节约土地资源,同时为人们提供充足的工作生活居住空间。同时高层地标性的建筑也为城市的相貌增添了魅力。越来越多的城市在发展过程中,对高层超高层的需求不断增加。建筑行业应该根据市场需求来调整发展方向,对高层建筑的需求需要设计师们不断开发研究出科学合理的设计方案。在满足人们对高层建筑实用性要求的同时,增强建筑在艺术上感官上的美感追求。同时利用高科技,新世纪,新工艺和新材料来建设使用周期长,对环境破坏小又与城市自然景观相匹配的现代高层建筑。

2高层建筑设计的基本方法

2.1剪力墙的设计据有关部门的相关规定,在设计中需要充分考虑到各种具体的条件,必去剪力墙的受力特点和区别等等,合理的剪力墙及拥有分布均匀特点的墙体,其建筑的钢心和质心是在同一个地方的。目前来说,很多高层建筑剪力墙数量多分布广,为了确保工程的经济适用和安全性能,需要严格控制剪力墙的钢筋配置。

2.2地基的基础设计工程造价的决定性条件是地基的基础设计。所以地基的基础设计必须保证万无一失,步步惊心。高层建筑的基础结构设计人员要想确保有这完善的基础设计,要实施因地制宜政策,根据当地的条件和相关建筑政策调整设计内容。

2.3荷载组合要求采用点算程序化计算设计出地基承载力及各荷载组合的特点。当风荷载及地震效应导致高层住宅边角地方竖向作用力大时,如果短期荷载等同于永久荷载,边角的竖向结构就会偏大,而中间又是在原有的小值之上,地基墙体就会受力不均产生裂缝。组合地震作用及重力荷载时,应增大承载力,同时提高承载力的特征值在组合重力荷载和风荷载时。在设计时,设计人员要最大程度地降低地基变形和差异变形。

2.4消防设计情况及其对策高层建筑的外部尺度的规划是十分重要的。一般来说,高层建筑消防相关的供水系统主要由消防水池和自动喷水装置构成。消防水池主要是用于存储一定量的水源以供火灾放生的紧急使用,具体的设置位置和设置数量应该依据实际的情况和相关规定执行。而在实际中,常常会发现水池设置位置不当或水池点设置过多或过少等问题,这些都会造成实际的安全隐患,或者对于水资源的浪费。因此,消防水池的布局与数量,必须依据实际的建筑情况,进行合理规划。而自动喷水装置只要是指各楼层设置的灭火器及烟雾探测喷水器。这样的消防系统应该加大设置力度,力求做到每一层都有足够的数量。同时,还需要格外注意在地下室,楼梯拐角等容易忽略的死角位置设置足够的探测喷水器以避免意外的发生。

3高层建筑基础设计中常见的问题

3.1主梁有次梁处附加筋问题基础结构设计当中,在梁下部的作用力点附以钢筋,做到集中荷载由另加的横向钢筋结构来承重。梁截面高度范围不同,加不加筋对于主梁来说选择也不同,当主次截面相差很大时,主梁就不用加钢筋了,因为荷载较小,没有必要。反而如果相差不大,次梁荷载相对来说较重,就需要添加附加钢筋来分担次梁的承重,实现安全性。针对箱、筏基础底板跳板的阳角问题,如果说底板的钢筋是双排并且两个方向同时有的话,阳角不能够决不允许添加辐射筋。

3.2弹回再压缩设计开挖基坑时,会有一部分基地反弹受到约束,那就是摩擦角范围内的坑边的基地。然而坑中心地基没有周围其他东西的影响,基土是可以实现反弹的,针对回弹部分,人工可以进行清除工作。不过并不是所有的坑基中心都需要人工清理,针对小基础的坑底,坑底约束力较大,回弹可忽略不计。

3.3梁、板的计算跨度梁板结构的意思是,用刚性支座梁,放在梁的中心线位置,这时候梁板就相当于截面板。如果梁是扁的的话,高度和厚度基本等同,长度和弯矩选择梁中心位置即可,同时加上两者的较大值配筋。

4高层建筑设计的提升方法

4.1环境因素一个建筑是否与周围的环境相融合是很重要的,符合我国古代天时地利人才能和的思想。充分考虑当地的气象水文和地质因素,深入了解影响工程质量的各种环境因素,在做完调查研究工作之后再开展各项设计活动。水文地质是一个在设计中很容易忽视的部分,然而它的地位却不容撼动,地下水对岩层土层有着直接的重要影响,建筑物的稳定性和耐久性受到地下水文地质的影响比较大。尤其是高层住宅建筑,关乎到很多人的生命安全,更是要充分研究考察选址的地下水文和地质情况。

4.2优化建筑位置及朝向设计建筑选址是很重要的一个环节,需要考虑到城市其他设施的空间布局,把对城市的影响最大化。建筑物的位置选择和朝向设计是设计师要考虑的首要因素,人们的生存依赖于阳光,在明亮的环境中更有助于培养愉悦舒适的心情,在建筑设计时,依照当地的自然环境,让建筑物朝向光照时间长的方位,这样就可以减少用户在用光方面资源的消耗和浪费。提前设计好日影图,使建筑物最大程度上接受太阳的照射,以此来确定建筑物的位置和走向。由于我国大部分的地区都在北半球,因此建筑物坐北朝南的情况居多,建筑体南面的开窗要尽可能大,而其他防卫的窗户面积越小越好。减少热能的损耗,使得用户在不实用空调暖气等设施的情况下,也可享受怡人的温暖。

4.3优化围护结构墙体设计现代的高层建筑需要有通风,透光,保温三个最基本的条件要求。为了实现室内室外环境的完美统一,最大程度上降低对能源的消耗,在围护结构墙体设计方面,也需要建筑师大下功夫。一般来说可选用的产品主要有玻璃幕墙,高分子吸湿除潮材料等。在科学的基础之上选择墙体设计材料,减少了建筑成本,同时延长了高层建筑物的使用年限。

4.4运用当代科学技术的新设计当前,低碳式高层建筑设计主要运用的设计手法有以下几种,如利用物联网,数字化技术,仿生学特色来发展建筑行业的低碳式理念。这些新理论新技术的应用,提高了高层建筑设计理念,确保建筑物的质量和效果。

5结语

高层建筑设计论文范文3

超高层建筑高度要求与结构类型和抗震烈度密不可分,超高层结构设计要进行两种方法以上的抗震核算,并且进行抗震设防专项审查。世界超高层建筑有迪拜哈利法塔,高828m;广州塔,高600m、上海环球金融中心,高492m等。超高层建筑因其超高的高度而具有不同于普通建筑和高层建筑的特点。首先,对于超高层建筑,传统的砖、石等材料已难以适用,其结构类型也更具选择多样性,如钢筋混凝土结构、全钢结构和混合结构等。其次,超高层建筑的垂直交通与消防,由于其超高的高度,较依赖于垂直交通,同时也给消防增加了困难,这就要求超高层建筑的每一层都需设置灵敏的烟雾报警器、自动喷淋和适当的避难所。最后,超高层建筑通过对风作用效应、重力荷载作用效应、施工过程的影响、空间整体工作计算、结构整体内力与位移、抗震性能等设计计算分析,进而提高超高层的抗震性和安全性。

2超高层建筑结构抗侧刚度设计与控制

为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。

2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。

2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。

3超高层建筑的性能化抗震设计

超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。

4超高层建筑多道设防抗震设计

除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。

5结语

高层建筑设计论文范文4

关键词:高层建筑;板式转换层;施工

1高层建筑转换层的应用与发展现状

中国目前的钢筋混凝土高层建筑一般在二十至五十层之间,其中尤以二十至三十五层居多。中国国内己建成的这个高度范围内的高层建筑占全部高层钢筋混凝土建筑的80%左右,可见这个高度范围内的高层建筑是与中国城市的经济发展和需求水平相适应的,因而应用最多。在建筑功能的要求上,高层建筑中很少是功能单一的住宅、写字楼或宾馆,高层钢筋混凝土建筑多是地下部分是停车场,地上1-7层左右为商场、娱乐场所等,上部小开间的使用部分可以设置住宅、宾馆、或办公室。有统计表明,高层建筑中有转换层结构的占80%左右。带转换层的高层建筑转换层部分,由于梁、柱或板的尺寸较大,所以从模板的支撑系统,钢筋的绑扎、钢析架的安装或预应力的张拉顺序,大体积混凝土的浇注等方面在施工技术要求上都有极为严格的限制。在某种程度上可以说,转换层施工是高层建筑的“瓶颈”,如果说一幢高层建筑在支撑系统选择,钢筋绑扎,混凝土浇注,预应力张拉,机械设备的选择等方面做到方案科学,现场施工组织合理,定会带来良好的经济效益和社会效益。

2高层建筑板式转换层的设计技术

转换板设置位置,是人们关心的板式转换框支剪力墙结构抗震性能的重要问题之一。随着人们对梁式转换框支剪力墙结构在转换层位置设置较高时,转换层对结构抗震性能不利的认识,从而提出了转换层位置较高的框支剪力墙的抗震设计概念,并且限制转换层下大空间结构的层数。然而,板式转换结构随着转换层位置的提高,结构是否也表现出同样的动力特性及反应,也是值得讨论的。本文结合厦门安宝大厦工程,采用三种模型来计算和分析板式转换结构转换层位置对结构抗震性能的影响。计算模型中,转换层、标准层结构布置如图1所示。图中黑色填充区域为转换层下部框支柱和落地剪力墙;实线部位为转换板上布置的剪力墙。转换板厚2200mm;落地剪力墙厚度为400mm;框支柱截面为1200mm×1200mm和1000mm×1000mm两种;标准层x向剪力墙厚为250mm,y向剪力墙厚为200mm。转换板所在的上、下楼层的层高分别为2.2m、3.6m(净高,不含转换板厚),结构总高度为98.70m。三种模型分别为:

Hst0——无转换层结构,以原工程转换板上部结构为基础,增加结构标准层,使其高度与原结构相同;

Hst3——转换板设置在第3层顶,并将原工程x向井筒开洞,转换层上、下结构等效侧向刚度比γex=0.7046,γey=0.8971。

Hst6——转换板设置在第6层顶,将模型Hst3的第1层复制增加三层,使其高度与原结构相同,同时,其转换层上、下结构等效侧向刚度比也与模型Hst3接近。结构计算分析采用ANSYS软件。

图板式转换最大的优点是可以在转换层以上随意布置结构型式和轴网,特别适用于建筑物上下部轴网错位复杂甚至互不正交的情况。但转换板传力路径不清晰,受力状态复杂,结构分析计算繁冗。由于抗剪和抗冲切的需要,转换板厚一般在2M以上,这一方面造成转换层质量和刚度的突变,在地震作用时结构反应增大,转换层上下相邻层更成为结构薄弱层,不利于建筑物抗震;另一方面由于自重和地震作用的增加,下部竖向构件的荷载明显增大,设计难度大。研究表明,转换厚板的内力和位移分布严重不均,最大值与最小值间相差可达几十倍。从整体上看,板式转换的力学性能和经济指标均较差,在实际工程中应慎用。当上下轴网变化但仍正交时,可采用正交主次转换梁的结构型式来实现转换。

3板式转换层施工方案决策问题和模型的确立

3.1板式转换层施工方案决策问题

最常用模板支撑方式有上面谈到的三种方法,①落地支撑法②叠合梁原理法③吊模法。那么对于一个含有转换层的施工项目而言,如何选用更优的施工方案,如何安全可靠、质量优良、工期准时、技术方便、简单可行、工程造价成本又比较低的情况下完成转换层结构的施工,是项目承建者的所追求的目标,所以在遇到此类问题时,经常存在如何决策方案才比较科学的问题。由于方案的优劣是一个相对的概念,并且施工方案的选择还受很多外部因素的影响。对于转换层施工来说,如果转换层所在位置较低,距离基础在四层以内的话,落地支撑法将是最为理想的选择;对于大于四层以上的情况,以上三种施工方法哪个方案最优,决策者如何进行决策。

3.2转换层施工方案决策模型的建立

层次分析法(AnalyticHierarchyProcess,简称AHP法)是美国运筹学家沙旦(T.L.Saaty)于上世纪70年代提出的,是一种定性与定量分析相结合的多目标决策分析方法。特别是将决策者的经验判断给予量化,对目标(因素)结构复杂且缺乏必要数据情况下更为实用,所以近几年来此法在我国工程实践的方案决策中得到了广泛应用。层次分析法的基本内容是:首先根据问题的性质和要求,提出一个总的目标;然后将问题按层次分解,对同一层次内的诸因素通过两两比较的方法确定出相对于上一层目标各自的权系数。这样层层分析下去,直到最后一层,即可给出所有因素(或方案)相对于总目标而言按重要性(或偏好)程度的一个排序。

4高层建筑板式转换层的施工要点

由于板式转换层结构的上述特点,在确定转换层结构施工方案时应考虑下列几个方面的问题:①转换层的自重和施工荷载往往非常大,应选择合理的模板支撑方案,并进行模板支撑体系的设计。②对大体积转换层,混凝土施工时应考虑采取减小混凝土水化热的措施,防止新浇混凝土的温度裂缝。③转换层的跨度和承受的荷载很大,其配筋较多,而且钢筋骨架的高度较高,施工时应采取措施保证钢筋骨架的稳定和便于钢筋的布置。④对预应力混凝土转换层,由于其跨度和承受的荷载都很大,预应力钢筋数量大,因此,要合理选择预应力的张拉技术以防止张拉阶段预拉区开裂或反拱过大。⑤设置模板支撑系统后,转换结构施工阶段的受力状态与使用阶段是不同的,应对转换梁(或转换厚度)及其下部楼层的楼板进行施工阶段的承载力验算。

(1)混凝土工程。在进行大跨度超高度转换梁及转换厚板的混凝土施工时,应采取措施防止新浇混凝土产生温度裂缝。目前实际工程中采取的措施有:

①根据混凝土的配合比和预计的施工气候及现场条件,采用大体积混凝土结构三维有限元温度分析程序(3DTFEP),对大跨度超高度转换梁及转换厚板整个过程中的温度状况进行模拟计算,掌握混凝土在浇筑后一个月内的各部分温度的变化规律,为大跨度超高度转换梁及转换厚板的施工提供科学的预测分析和依据。

②大体积混凝土转换结构施工时,应采取措施控制混凝土内部与混凝土表面温度差小于15℃,实际工程中可采用下列方法:a.蓄热保温法,即常规保温方法。混凝土的养护要把握两个关键,即在升温阶段以保湿为主,在降温阶段以保温为主。b.内降外保法,即在大体积混凝土内部循环埋管通水冷却降温,使大体积混凝土水化热温升降低,减少混凝土内部与混凝土表面的温差,然后在大体积混凝土转换结构的表面及其底面采取保湿措施。c.蓄水养护法,即在混凝土初凝后先洒水养护2h,随后进行蓄水养护,蓄水高度一般为100mm。

③浇筑厚大的转换层结构混凝土时,为防止混凝土内外温差过大和提高混凝土抗拉强度,在选用水泥方面可采取下列措施:a.优先选用水化热低的矿渣硅酸盐水泥或火山灰硅酸盐水泥。b.掺用沸石粉代替部分水泥,降低水泥用量,使水化热相应降低。c.掺入减水剂,减少水泥用量,使混凝土缓凝,推迟水化热峰值的出现,使升温延长,降低水化热峰值,使混凝土的表面温度梯度减少。

④浇筑厚大的转换层结构混凝土时,为防止混凝土内外温差过大和提高混凝土抗拉强度,在施工方法上可采取下列措施:a.采取先施工转换结构周围结构或墙体,防止混凝土表面散热过快,内外温差过大。b.变冬季施工的不利因素为有利因素,减低混凝土的入模温度。在夏季高温气候施工时,采用冰水搅拌,以减低混凝土的入模温度。c.采用分层次施工,每层厚300mm~500mm,连续浇筑,并在每一层混凝土初凝之前,将后一层混凝土浇筑完毕。D.采用叠合梁原理,将转换结构按叠合构件施工,可缓解大体积混凝土水化热高,温度应力过大,对控制裂缝发展有利。

(2)钢筋工程。转换梁的含钢量大,主筋长,布置密,在梁柱节点区钢筋“相聚”。因此,正确地翻样和下料,合理安排好钢筋就位次序是钢筋施工的关键。

①钢筋翻样前必须弄清设计意图,审核、熟悉设计文件及有关说明,掌关规定。翻样时考虑好钢筋之间的穿插避让关系,确定制作尺寸和绑扎次序。

②一般转换层结构主筋接头全部采用闪光对焊或锥螺纹接头连接、冷挤压套筒连接;对于两端做弯头的钢筋,采用可调伸螺纹接头解决钢筋旋转的困难。

③当转换梁高度或转换板厚度较大时,应采取措施保证钢筋骨架的稳定和便于操作。

参考文献

[1]唐兴荣.高层建筑转换层结构设计与施工[M].北京:中国建筑工业出版社,2004.

[2]余红生.转换层支撑系统的选型及其安全性分析[M].建筑安全.2003.

高层建筑设计论文范文5

建筑物底面对建筑物空间形态的水平方向和垂直方向的稳定性都是十分重要的,由于建筑物是钢筋水泥等重物的砌筑而成,因此结构荷载必须能将其重量向下作用于地面,而建筑设计的一个基本要求就是要检测地基是否能承载所选择的结构体系中向下的作用力(如图1)。因此,在建筑设计最初阶段就需要对主要的承重墙和承重柱的分布和位置作出总体考量。竖向和水平向结构体系设计在低层、多层和高层建筑中设计基本原理都是一致的。竖向结构体系成为设计的控制因素有两个:①较大的垂直荷载要求有较大的墙、柱或井筒;②侧向力所产生的倾覆力矩和剪切变形要大得多。侧向荷载与竖向的荷载相比,其对建筑物的效应不是线性增加的,而随建筑物的增高迅速增大。例如,在所有条件相同时,在风荷载作用下,建筑物基底的倾覆力矩近似与建筑物高度的平方成正比,而其顶部的侧向位移与高度的四次方成正比。在高层建筑中,不仅是抗剪,而更重要的是抵抗变形和整体抗弯,可见,高层建筑在结构受力性能方面比低层建筑更加复杂。图1高层建筑结构受侧向荷载和竖向荷载示意(a)受风荷载示意(+压力,-吸力)(b)在风荷载和重力荷载组合作用下结构受力示意

2高层建筑设计中存在的问题

高层建筑在进行设计时为了更好地满足对大客流量和开阔的视野空间的要求,通常在楼梯设计时是以宽大的敞开楼梯来作为主要的客流通道,同时,为了更好的满足建筑防火方面的要求,高层建筑在进行设计的时候要采用封闭的楼梯间或者是防烟楼梯间,如图2。因此,在进行高层建筑设计的时候,设计人员通常采用防火卷帘来作为封闭方式,这样能够更好的达到防火方面的要求。在进行设计的时候为了更好的满足相关规范要求,同时确保楼梯的数量和形式满足使用方面的要求,但是,这种设计方案是一种不可取的方式,在出现火灾的时候,人员在疏散方面存在着一定的安全隐患。在进行高层建筑设计的时候还是存在着一个非常明显问题,就是地上层和地下层共用楼梯的问题,在防火方面,为了避免在出现火灾的情况下建筑内的人员由地上层进入到地下层,不应该出现共用楼梯的情况。但是在实际设计时,由于在结构设计方面要考虑的问题非常多,因此,在楼梯设计时经常会出现地上和地下贯通的情况,这样能够在结构上面更加便利,但是也是会导致出现一定的安全隐患。在很多的高层建筑设计中,设计人员对楼梯的设计方案并没有得到很多施工人员的注意,同时,在进行设计的时候对疏散通道的宽度也存在着一定问题,疏散通道的宽度在进行设计的时候通常是会受到疏散门的影响,因此,在进行设计的时候,要对防火审核非常重视。

3高层建筑中建筑设计的措施

3.1高层建筑整体设计探析

(1)主体设计。当代高层建筑设计中的一个全新的要求就是实现建筑本身的生态节能,这就要求对建筑本身主体的裙房部分加强设计,裙房的设计对高层建筑周围街道的人性化空间的创造等有很大影响。对裙房的设计不仅要注重人性化,更要注重形式的多样性。(2)处理手法上的巧妙运用。高层建筑的实际建筑设计阶段,高层建筑的塔楼设计并不能有很大的变化空间,但是可以从底层部分入手运用一些巧妙地处理进行空间上的拓展,通常都是采用入口缩进和底层架空等手段进行设计。

3.2高层建筑中的分类建筑设计探析

(1)底层入口设计。底层入口相对来说很重要,在北方地区,高层建筑的底层入口在设计上首先应该避开地域内的冬季迎面风,保证冬季的底层温度。而在我国的南方地区,一定要保证底层入口设计的通风散热,因为南方的夏季较为炎热,可采用局部或全部架空的方式避免对通风的阻碍。

(2)建筑围护设计。一般来说大部分人在高处都会有一定的恐惧心理,尤其在高层建筑上。在高层建筑的设计中一定要注重防护栏的设计,良好而合理的设计可以在使用性上给人以安全感。

(3)服务设施设计。高层建筑在设计初期要充分考虑到建筑的服务设施,这对高层建筑的整体感觉非常重要。首先在底层入口处要设置值班室,方便对出入人员的管理,其中要配置先进的夜间电梯紧急呼叫装置以及公用电话等,还要有特定的停车处和分户信箱。

3.3高层建筑设计中的安全问题探析

(1)高层建筑的防火问题。防火问题对于大多数建筑尤其是高层建筑来说异常重要,建筑设计师要对防火问题的设计进行加强。

(2)电气的问题。高层建筑的电气问题主要分为三个方面,一是消防电源与配电问题,要求供电电源来自不同发电厂或不同的区域变电站,以保证突发事件时供电及时解决。二是应急照明问题,高层建筑发生火灾或者其他突发状况时事故照明要正常。三是高层建筑的电梯安装问题,电梯的位置设置要合理,电梯运行过程中噪音不应太大,且最大荷载量应符合高层建筑的需要,方便快捷。

(3)防雷击问题。防雷击问题也是高层建筑设计的重点,应本着“整体防御、综合治理、多重保护、突出重点”的原则,从结构设计上做好防雷工作。高层建筑的顶端是防雷设计的重点,可以安装避雷针、避雷网或者避雷带等。同时要利用建筑中的钢筋作接地装置,建筑周围也要做避雷带,内部金属物体也要接地。

4结束语

高层建筑设计论文范文6

关键字:综合建;高层;广场;消防报警

随着建筑逐渐向综合化方向发展,完善的消防电气子系统显的尤为重要。火灾自动报警子系统的设计首先必须符合《火灾自动报警系统设计规范》(GB50116-98)。做到安全适用,技术先进,经济合理。同时应符合现行的有关强制性国家标准、规范的规定。本文以葫芦岛某广场的火灾自动报警子系统的设计过程进行介绍。

1、工程概况

葫芦岛市某广场位于葫芦岛新区,建筑总高度66.2M,建筑面积22000㎡,地下二层,地上十七层。地下二层为设备空调,消防设备及消防水池等功能用房。地上分三部分:一、二层为商场,三层为健身房及棋牌厅,四层以上为高级宾馆,集金融、娱乐与休闲、住宿于一体的现代化多功能综合建筑。

2、系统设计

某广场属于一类建筑,火灾自动报警等级为一级保护,采用控制中心报警系统。在一层消防控制室内设有火灾报警控制柜,消防联动控制柜,火灾事故广播柜及消防专用通信柜。

2.1、报警区域的划分

《火灾自动报警子系统设计规范》明确规定报警区域应根据防火分区或

楼层划分。一个报警区域宜由一个或同层相邻几个防火分区组层成。海德广场地下一层为建筑上划分为一个防火分区,为一个报警区,在区域中心位置设置一台区域报警控制器,地下二层为建筑上划分的一个防火分区,为一个报警区。在区域中心位置设置一台区域报警控制器,地上部分分为三个防火分区。一、二层商场为一个防火分区、三层休闲娱乐也分为一个防火分区,四层至十七层高级宾馆为一个防火分区,每个防火分区划分为一个报警区域,分别在每层门厅位置上设置一台区域报警。安装高度底边距地1.5M,采用墙上暗装方式。根据《高层民用建筑设计防火规范》规定,高层建筑设有上下层相连通的走廊敞开楼梯,自动扶梯,等开口部位时,应按上下连通层作为一个防火分区。在这种情况下,报警区域的划分为一个区域。

2.2、探测区域的划分

①探测区域应按独立房(套)间划分。一个探测区域的面积不宜超过500㎡,从主要入口能看清其内部,且面积不超过1000㎡的房间,也可以划分为一个探测区域。地上部分除规范规定的划分外,其余均按上述同样标准原则划分探测区域。

②本工程下列场所分别单独划分探测区域

a敞开或封闭的楼梯间

b防烟楼梯前室,消防电梯与防烟楼梯间合用的前室

c走道坡道、管道井。

2.3、火灾探测器的设置

根据监测的火灾特性不同,火灾探测器分为感烟、感温、感光、复合和可燃气体类型,每个类型又根据其工作原理的不同而分为若干种。

a火灾探测器的选择

不同种类火灾探测器,其响应原理,结构特点,适用场所均不同。在火灾自动报警系统的设计中,选择火灾探测器的种类要根据探测区域内可能发生的初期火灾的形成和发展特点,房间高度,环境条件以及可能引起误报的原因等因素综合确定。根据《高层民用建筑设计防火规范》的规定地下二层设备用房选用感烟探测器。地下一层为汽车库选用感温探测器,配电室、变压器室、高压配电室选用感烟探测器。柴油发电机房及油箱室选用防爆型复合式感烟探测器。地上部分、商场营业厅、办公室、会议室、宾馆客房、消防电梯前室、防烟楼梯前室、楼梯间以及活动场所设置感烟探测器。厨房设置感烟和可燃气体探测器。《高层民用建筑设计防火规范》规定疏散通道上的防火卷帘,感烟探测器动作后,卷帘下降至地面(楼板面)1.8M,感温探测器动作后,卷帘下降到底。用作防火分隔的防火卷帘。火灾探测器动作后,卷帘下降到底。因此,在疏散通道上方防火卷帘两侧,设置感温、感烟火灾探测器组及其报警装置。且两侧设置手动控制按钮,用作防火分隔的防火卷帘两侧设置感烟探测器,并将卷帘们两侧的感烟、感温探测器的报警信号及防火卷帘的关闭信号送至消防控制室。

b探测器的布置

探测器的布置即要考虑探测区域的面积,每只探测到保护面积、保护半径、安装间距如下表所示:

同时,要考虑房间的高度、屋顶坡度和探测器自身灵敏度的影响,也要考虑到梁突出顶棚的高度,内部走道的宽度,至端墙的距离,至墙壁距离以及房间间隔情况的影响。

2.4、手动报警按钮的设置

在每个防火分区内至少设置一个报警按钮,从一个防火分区内的任何位置到最近的一个报警按钮的距离不应大于30M,本工程在地下室、商场、办公室、宾馆的走廊,各楼层的楼梯间、电梯间、电梯前室及文艺活动场所的出入口均设置手动火灾报警按钮,安装于墙上,底边距地1.5M.

2.5、火灾报警装置的设置

火灾报警装置是火灾自动报警子系统中的一种消防安全设备。根据《高层民用建筑设计防火规范》规定。本工程地下一、二层2的走廊和疏散出口设置声光报警器。安装高度为底边距地2.0M.地上办公楼,商场各层走廊、楼梯口及商场内设置声光报警器。安装高度为底边距地2.0M.在地下一、二层及地上各层的主要出入口的明显位置设置楼层显示器,安装高度为底边距地1.5M.

2.6、消防专用电话的设置

消防专用电话是重要的消防通信工具之一,为了保证火灾自动报警系统快速反应和提前报警,同时保证火灾时消防通信指挥系统的可靠,灵活,畅通。消防控制室设置一台消防专用电话总机,为独立的通讯系统,并设置可直接报警的外部电话,在消防水泵房,柴油发电机房、配变电室,主要通风和空调机房,排烟机房、消防电梯机房及其他与消防联动控制有关的且经常有人值班的,设置消防专用电话分机。安装高度为底边距地1.4M.手动报警按钮均带有电话插孔。

2.7、火灾应急广播的位置

火灾应急广播是火灾自动报警系统中的一种重要的消防安全设备,根据国家标准《高层民用建筑设计防火规范》规定,本工程采用火灾应急广播与公共广播合用方式,火灾时,能在消防控制室将火灾疏散层的扬声器和公共广播扩音机强制转为火灾应急广播状态。

在走廊、门厅、地下一、二层及其他公共场所设置扬声器,功率为3W,客房扬声器为1W,安装方式为地下室装于墙上,底边距地3.0M,其余吸顶安装,安装数量能保证从一个防火分区的任何部位到最近一个扬声器的距离不大于25M,走道内最后一个扬声器至走道的距离不大于12.5M.

2.8、系统供电设计

火灾自动报警子系统是消防用电设备。根据《建筑设计防火规范》和《高层民用建筑设计防火规范》等有关规定,本工程火灾自动报警系统采用了双电源末端互换并备有直流备用电源。

火灾报警系统的CRT显示器,消防通讯设备等电源由UPS装置供电。消防报警控制器系统电源的保护开关不许采用漏电开关。

2.9、接地设计

消防报警控制器属于电子信息设备。系统接地对保证系统正常工作,保证人身安全十分重要,根据《高层民用建筑设计防火规范》规定,本工程采用共用接地装置,接地电阻不大于1Ω。设有专用接地干线。在消防控制室设置专用接地板,专用接地线从消防控制室,引至接地体。接地线采用铜芯绝缘导线BV-5001×25㎡PC40管,埋地引至接地体。由消防控制室引至各消防电子设备的专用接地线采用BV-5001×16㎡.对消防电子设备凡采用交流供电时,设备金属外壳和金属支架均做保护接地,接地线与电气保护接地线(PE线)相连接。

2.10、消防联动系统设计

消防联动系统是火灾自动报警系统的执行部件,消防控制室接收火灾信息后能自动或手动启动相应的消防联动设备。火灾发生时,火灾报警控制器发出报警信息,消防联动控制器采用总线编码模块控制,并在消防控制室设有手动,直接启动。相应的消防联动设备,火灾发生时,火灾报警控制器发出报警信息,消防联动器接收报警信息并发出联动信号,启动有关消防设备,实施防火灭火。

本工程对消防水泵、排烟风机、正压送风机等消防联动设备采用总线编码模块控制,并在消防控制室设有手动直接启动,停止装置。消防水泵、喷淋泵的运行、防烟、排烟风机的工作及故障状态。消防控制室均布显示,并能显示水流指示器。报警阀,安全信号阀的工作故障状态。

2.11、系统布线设计

火灾报警系统的布线是应符合一般建筑电气系统布线的基本要求。同时还当根据《高层民用建筑设计防火规范》的规定,本工程设计如下

①火灾自动报警线路,采用阻燃型铜芯绝缘电线ZR-RVS-0.45/0.75KV2×10mm穿钢管敷设

②消防联动控制线采用耐火型铜芯控制电缆NH-KW-0.45/0.75KV穿钢管敷设

③火灾事故广播线路采用耐火型铜芯电线NH-RYB-2×1.0穿钢管敷设

④消防电话线路采用阻燃型铜芯电线ZR-RWP-(2×0.5)穿钢管敷设

⑤消防电力设备线路采用耐火型铜芯电缆或电线NH-YJV-0.6/1KV在金属线槽敷设或钢管。

火灾自动报警系统及联动控制系统是该工程防火设计最为重要的设计内容之一,特别是早期预报系统技术性能的优劣是重要的。

随着经济的发展及人类对空间的认识,建筑物逾来逾庞大复杂,同时火灾的危险也随着升级,因此完善的火灾报警系统是必要的,它是一门技术性、专业性、政策性很强的工作。设计时,必须认真仔细推敲。其中各个环节的合理性,可靠性,并严格按照国家现行的规范、规定所达到完善优秀的设计方案。

参考文献