智能化控制论文范例6篇

智能化控制论文

智能化控制论文范文1

电气工程是以计算机为操作平台,现代控制技术的应用可以为住户提供技术信息,在实现信息共享的同时,为住户提供极大的便利。在电气工程中,电气控制控制技术以电气工程的实时监控为基础,及时分析系统反馈的运行数据,并评价系统的运行状况,以便于能够及时、有效的发现运行故障,提高了电气工程的安全性;同时在节能环保的基础上极大的保证了居民生命财产的安全。

2电气控制技术的发展阶段

2.1手动化到自动化

电气控制技术的初始阶段是手工控制阶段,随着科学技术的发展,手工操作逐渐迈向了半自动化操作阶段,并随着应用经验的积累和科学技术的进步,逐渐实现了自动化。其主要的表现形式为控制方法和控制设备的自动化,这一阶段的电气控制技术是一次革命化的变化,极大解放了人力资源,优化了人力资源配置,为电气控制技术的发展奠定了基础。

2.2简单化到智能化

电气控制技术实现简单的自动化后,还需要借助人力的操作,因此其故障率一直比较的高,同时这些失误通过控制人力操作是难以避免的。因此,相关的专家把研究的重点放在了更高级的电气控制技术上,尤其是智能化技术更是科学家研究的重点,自动化的电气控制技术不可避免的会出现故障问题,人为故障比率较高,但是智能化控制技术则提高了机器的改错能力,极大提高了系统运行的可靠性,因此,电气控制技术实现了智能化的控制是一次深层次的革命,实现了控制技术的质的飞跃。

2.3逻辑化到网络化

电气控制技术在漫长的发展历史中已经实现了智能化的发展模式,但是随着人们需求的提高,智能化的控制技术已经不能满足时展的需求,因此进行控制技术的革新势在必行,尤其是简化控制技术是革新的重点。当前电器控制技术面临着从逻辑化到网络化的发展趋势,海量的统计数据整理发展到了信息化的处理模式,电气控制技术的控制原理也从单一的触头硬接线逻辑控制系统发展到了微处理器或者微计算机为中心的网络化自动控制系统,同时其控制设备的体积减小,设备操作更加简洁。

3智能化技术在电气工程中的应用

智能化技术在电气工程中应用取得了很好的效果,在自动化控制、设备故障监测、工程优化等方面发挥着重要作用,提高了自动化程度、加快了电气工程的设备事故监测维修速度,极大地优化了电气工程。

3.1智能化技术理论基础

人工智能技术的概念在20世纪50年代提出,随后被其他领域行业普遍接受采纳,并且智能化技术的应用广泛推展。电气工程是人类从事各种生产活动的基本技术要素,作为计算机技术中高端分支的智能化技术正逐渐被应用其中。人工智能技术通过模拟人的智能的方法和技术,开发研究升级的科学技术,人工智能的工作目的是设计出和人类智能相似的机器,以解决工作出现的复杂情况变化,提高工作的效率和精度,通过调查研究显示,在电气工程的自动化控制中使用智能化操作技术能合理整合电气工程中的资源配置,降低成本。

3.2智能技术在电气自动化控制中的应用

智能化技术在电气设备中的应用,涉及的工作领域较多,分工较为明确,是一项很复杂的工作,需要有极强的技术和人才支撑,同时还需要控制人员有较高的责任感和操作能力。另外,要加强电气控制中人工智能的有效使用,电气控制是整个工程中的重要一环,在电气工程中,要加强自动化控制的保护,把GPS定位系统安装在电气控制线路中,通过定位系统控制电气控制的线路工作,以便于能及时的传输、反馈电气工程中的运行数据,并做出智能化分析,及时采用有效的智能化控制措施。

3.3智能技术在电气工程故障检测分析中的应用

在电气工程中,可以使用智能化的控制手段进行系统故障的监测,通过问题的及时反馈,进行智能化的数据分析,以便于进行故障的维修,并能够进一步的实施监控措施,在故障检测中常用的方法有神经网络、模糊网络、专家系统等。对于电气的变压器、发动机、发电机进行有效的监控,利用智能化监测系统能清晰的判断故障的所在,通常在系统中采用模糊理论、神经网络、专家系统来分析,从而提高了工作效率和精度。尤其是在变压器的故障监控中,传统的诊断方法技术是通过检测变压箱中的气体来判断故障,其方法较为复杂、检测时间长,检测精确度差,很难有效的解决故障。

3.4智能技术在电气工程电气设备优化中的应用

主要包含两个方面:①智能化技术的遗传算法,这种算法是通过模仿生物遗传,利用生物的进化规律进行智能搜索和运算,利用生物遗传规律的完美型来优化系统内部缺陷。②智能化专家系统,通过设置完善的数据分析软件,把存在的问题和缺陷进行自我优化。在实际的工程中,一般要结合两种优化措施,以便达到最佳的优化效果。此外,在智能化系统中,也采用模糊逻辑、神经网络的方法进行设备的优化升级,其主要的作用原理是:利用物理学的方法和神经网络的方法进行设备和计算机算法的升级优化,从而解决了神经网络运算的速度问题,极大地提升了计算机的运行处理速度和智能化反应速度。

4数控技术在电气工程中的应用

4.1数控技术的电气工程中的应用前景

数控技术是一种数字化的控制方式,借助于精密的信息处理系统实现了系统数据的监控,同时通过传输系统把相关指令传输到控制中心,控制中心配备的高效、即时的控制系统,可以快速处理传输数据,并做出相关的指令。数控技术在各个领域中发挥着重要作用,数控在20世纪末技术已经逐渐得到了完善,各种系统内的漏洞也逐渐完善化,从而解决了一系列的工程问题,因此为了更好的实现控制技术的安全,保证了电气工程人员的人身安全,实现电气设备的自动化、无人化、程序化、数据化的操作模式应当前数控技术发展的重点。

4.2数控技术在电气工程中应用的合理性与科学性

电气工程系统较为复杂,同时也是一个连续性的工程,因此,数控技术的应用应当结合电气工程的实际,确保电气工程中数控技术运用的合理性与科学性。数控技术的基础环节是数控体系,通常而言,数控体系的完成需要借助于服务主机和控制器,并通过两者之间的连接方式来确定系统的安全性和可靠性。当前KVM主机在电气工程中应用广泛,常采用CATS链接和KVM链接两种模式与数控系统机房进行连接,而本地的控制中心则通过KVM主机收集的信息数据来了解整个电气系统的运行状况,并根据运行数据对系统稳定性做出相应的评估。服务器的功能则是将系统的运行状况转化为数字化的电信号,同时担负着数据的存储和调取功能,这就提高了系统信息存储的科学化和全面,方便了控制工作的进行。此外控制中心也可以根据系统的运行做出相应的指令调整,而指令调整的信息也以同样的方式存储早服务器主机中,方面以后的信息调取工作。远程控制中心则是利用各种网络设备和电气系统与本地控制中心实现有效链接,在同一时内监控多个电气系统,常常应用于较为高层的片区系统。

4.3数控技术对电气工程设备运行环境的监控

数控技术在电气工程的一个重要作用就是运行环境的监控,包括对电气系统运行环境、管理环境的监控。对于电气系统环境的监控包括运行环境湿度和温度、电压、电量等,根据设置的参数来确定外部环境和内部控制系统的匹配度,如果电气控制监控系统的数据出现了异常,例如温度不稳、电压过大或者过小等情况都会造成内部环境的异常,而这些数据都会被及时反馈到控制中心,控制中心接收到相关数据信号后就会与预先设定的警戒值进行比较,从而根据比对的数据做出相应的判断,同时发出有效的指令信号。

5结语

智能化控制论文范文2

罗静华(西安电子科技大学 电子工程学院,西安 710071)引 言随着LED技术的不断发展,推动了白光LED的问世,照明产业开始了绿色照明时代。由于LED能耗少、热辐射低、发光效率高,是一种节能、环保、经济、安全的新型照明器件,因此,加快技术研究并提高其发光效率成为当今首要问题。大功率LED要成为照明业的主体,其中安全、高效的驱动研究是推广应用大功率LED的关键。1 大功率LED工作特性LED是一种新型半导体固态冷光源,它是一种能够将电能转化为可见光的光电器件。一般来说,大功率LED的功率至少在1 W以上,目前比较常见的有1 W、3 W、5 W、8 W和10 W;被称为“绿色光源”的LED,正朝着大电流(300 mA~1.4 A)、高效率(60~120 lm/W)、亮度可调的方向发展。(1)伏安特性大功率LED是低电压、大电流的驱动器件,当LED电压变化很小时,电流变化很大。当正向电压超过某个阈值,即通常所说的导通电压之后,可近似认为,IF与VF成正比,如图1所示。(2)光特性根据LED的发光原理,LED的发光亮度基本随LED的电流正向变化。控制大功率LED的发光亮度,实质是控制它的输出光通量。(3)温 度LED正向电流的大小也是随温度变化而变化的。环境温度一旦超过某一值,白光LED的容许正向电流会大幅度降低。在此情况下,如果仍旧施加大电流,很容易造成白光LED老化。图2是LED的温度与正向电流关系曲线。2系统方案设计光源系统的稳定性与驱动电源有很大的关系,瞬态的电流或电压尖峰等许多因素都很容易对其造成损坏。驱动电源的性能直接影响整个光源系统的工作寿命、稳定性等性能。大功率LED所需的驱动电源为直流的低电压.所以传统上用以驱动灯泡(钨丝)、口光灯、节能灯、钠灯等光源的电源并不适合直接驱动大功率LED。根据以上大功率LED特性,VF的微小变化会引起较大的IF变化;电流过强会引起LED光的衰减,电流过弱会影响LED的发光强度;温度升高时LED的势垒电势降低,电流会越来越大。因此采用恒压源驱动不能保证LED亮度的一致性.并且影响LED的可靠性、寿命和光衰,故超高亮LED通常适宜采用恒流源驱动。另外,要提高发光的效率,设计具有完善、可靠的保护功能的LED驱动系统,具备自动控制与检测的智能型LED驱动成为技术发展的必要途径。本文采用硬件电路设计和软件程序设计相结合的方法,以单片机为核心,通过负反馈调整输出电流以达到稳定的目的,从而完成亮度可调的适合于多种大功率LED的智能驱动系统,使系统的性能得到很大的改善和提高,有效地解决了光源输出稳定性和可靠性的问题。系统原理框图如图3所示。2.1可控恒流源图4是系统中用到的恒流源电路。该电路属于电流串联负反馈的拓扑结构,由集成运放和MOS管构成。为了实现可调恒流源控制,在运算放大器的同相输入端引入由D/A输出的可调电压信号Vin,使其成为受控恒流源。在反向输人端连接采样电阻R。恒流源的输出电流直接取决于D/A的输出电压和采样电阻R1的比值,用公式表示为:Is=Vin/R。集成运放LM358内部包括2个独立的、高增

智能化控制论文范文3

【Abstract】Due to the development and application of advanced technology, intelligent technology is gradually applied in power automation system. This can not only make the automation of power system strengthen, but also make the power automation system to the intelligent direction. This paper analyzes the application of intelligent technology in power system automation, and discusses the application of intelligent automatic control technology in power system, designed to enhance the degree of automation of concentration system

【关键词】电力系统自动化;智能技术;自动化控制

【Keywords】 power system automation; intelligent technology; automatic control

【中图分类号】TP311.52 【文献标志码】A 【文章编号】1673-1069(2017)03-0118-02

1 引言

电力行业中的电力系统已经基本能够实现自动化操作与控制,但与严格意义上的智能化还存在着一定的差异,电力行业的发展也受到不同程度的影响和制约。对此,将智能技术应用于电力系统自动化控制中,不仅能够提升电力系统自动化程度,更能使其向智能化方向发展和迈进。对于“电力系统自动化控制中的职能技术应用”的研究,就具有极大的现实意义。

2 电力系统自动化控制中的智能技术应用现状

现阶段,电力行业也得到了空前发展,电力行业中先进科技的应用程度较深,而智能技术在电力自动化系统的应用也在不断深入和完善。智能技术的应用,仍具有不同程度的局限性,如应用时间较短,系统协调能力不足,无法达成资源的完全共享,致使电力系统自动化程度较低等。同时,由于我国电网技术起步较晚,且理论多于实践,使得无论是从研发或应用上,均与国外发达国家具有一定的差距。但随着电力行业的进一步发展,电力自动化系统正逐步向智能化电力系统转变,这不仅是由单一化向多元化转变,更是电力行业可持续发展的必经之路。

3 电力系统自动化控制中的智能技术应用

3.1 模糊理

通过语言变量及逻辑推理理论的应用,使电力设备及电力系统等达到模拟练习的效果,此种情况即为模糊理论。将模糊逻辑应用在电力自动化控制系统中,能够使电力系统自身具备健全且极为系统的逻辑推理能力,并通过此种模糊推理的方式,将人类的决策做进一步的模拟,并通过电力自动化系统得以发送指令并实现操作[1]。在此情况下,技术数据能够依据规则,对逻辑进程进行严格的控制,即通过模糊理论及逻辑推理,能够模拟人的决策,对电力自动化系统进行前期的模糊输入或直观推理,使电力自动化系统完成决策工作。对于电力自动化系统来说,其能够将模糊理论所发出的模糊指令,简单识别为人力的逻辑推理与决策,并将模糊理论等同于进行操作的人员大脑。

3.2 神经网络控制

此处所说的神经网络控制由来已久,自20世纪40年代初期,神经网络控制便以开始进入众多科研人员的视野和认知当中。但此种神经网络控制的研发,却未能在接下来的时间里,得出较为骄人的研究成果,直至人们对神经网络的需求逐步增加,才使得此种慢慢搁浅的研发项目重新受到人们的重视与关注,并通过全新科技的应用,在神经网络控制课题方面,取得了极为重要的研究成果[2]。这也为后期神经网络控制系统的建立,打下了坚实的基础。所谓神经网络控制,即采用特定的方式,将数量众多的神经元进行紧密连接而形成的。并且神经网络具有特定的、进行权重连接的信息,并能够依据特殊的学习算法将权重信息进行不断调整,从而达成自m维空间中至n维空间中的映射。而且,此种神经网络所形成的映射为复杂化的非线性映射[3]。现阶段,对于神经网络的研发方向为建起神经网络模型,以及与其所对应的神经网络学习算法。此外,神经网络硬件的实现问题,也是现阶段神经网络研发中重要的课题内容之一。

3.3 线性控制

线性控制,也可称为线性最优控制,此种研究是建立在优化理论基础上的研究形式,也是现代控制理论中重要的构成部分。并且,此种线性控制形式,也是当前阶段现代控制理论中研发深入程度最大,且最为成熟的理论控制形式。这也使得线性最优控制成为了当前应用最为广泛的控制形式之一[4]。部分研究线性最优控制的科研人员,通过不懈的努力,终将线性最优控制的理论在实践中得以研发及应用,并明确论述出线性控制理论的应用依据。即通过最优控制中的励磁控制,能够使长距离输电线路的输电能力得到进一步加强,并能使动态品质得到显著的改善。并且,经过长期、反复的试验得出结论:将此种最优励磁控制方式应用与大型设备之中,所起到的效果最佳。除此之外,通过理论与实践的充分结合,也促使制动电阻器通过水力发电时间达成最优控制模式得以实现,并在电力系统中得到了普遍的应用。

3.4 专家系统

由于智能技术的融入而形成的专家系统,在电力自动化系统中被广泛应用。这其中涉及的方面众多,不仅包括电力系统性能的恢复、应急处理系统的应用、电力系统各种状态的调试与切换等,更涵盖了系统电源状态的识别、故障的隔离与排除,以及短期的电力负荷警示等内容。而其中专家系统的约束力较强,且在智能化程度上仍有待提升。其可进行智能化的操作,但却无法对各类操作融入模糊理论,无法对适配功能形成深入的认知,这也使得其分析问题、解决问题,以及学习能力方面都具有明显的局限性。同时,由于分析问题与解决问题的能力缺乏,也导致此种专家系统对较为复杂问题的组织能力也明显不足。

3.5 集成智能系统

对于集成智能系统而言,其不仅包括智能控制方法与智能系统,还涉及与电力自动化系统进行深入的交联。并且,此种集成智能系统是现阶段所应用到的较为先进与形成规模的控制形式。现阶段,电力自动化系统中所应用到的集成智能系统研发程度较低,但通过专家系统与神经网络相融合模式的提出,使得继承智能系统在研发上进入了全新的阶段,同时也为集成智能系统的进一步研发创造出众多可供参考和借鉴的内容。此外,随着智能技术在电力自动化系统中的深度融入,也使得对于集成智能系统的研发上升到全新的高度。此种全新的继承智能系统,即是将智能技术在电力自动化系统中所实现的功能予以融合,并采用可起到模M人类决策意识的模糊逻辑理论作为系统的基础架构,使得集成智能系统必将能够实现最大程度的智能化,使电力自动化系统得到更为完善的发展。

4 结语

综上所述,将职能技术应用与电力系统自动化控制中,能够在提升电力系统自动化程度的基础上,进一步增强电力生产、运输以及管理的效率,使电力企业在缩减成本的同时,使自身的经济收益得以显著提升,将极大地促进电力行业的发展进程,使电力行业运用全新的技术手段,在激烈的市场竞争中立于不败之地。

【参考文献】

【1】智能技术在电气自动化控制中的应用探究[J].电子技术与软件工程,2014(07):259.

【2】张智,张红.关于电力系统自动化中智能技术应用的分析[J].科技与企业,2014(16):155.

智能化控制论文范文4

关键词:人工智能 电气 自动化控制

人类智能主要要包括三个力面,即感知能力,思维能力,行为能力,而人工智能是指由人类制造出来的“机器”所表现出来的智能。人工智能主要包括感知能力、思维能力和行为能力。

1.人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是门边沿学科,属于自然科学和社会科学的交叉。涉及哲学和认知科学、数学、心理学、计算机科学、控制论、不定性论,其研究范畴为自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法等,应用于智能控制,机器人学,语言和图像理解,遗传编程。

当今社会,计算机技术已经渗透到生产和生活的方方面面,计算机编程技术的日新月异催生自动化生产、运输、传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈,所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。

2.人工智能控制器的优势

不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下

(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素。例如:参数变化,非线性时,往往不知道。)

(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。例如:模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍。

(3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时,通过响应数据也能设计它们。

(5)运用语言和响应信息可能设计它们。论文格式,自动化控制。

(6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。论文格式,自动化控制。。现在没有使用人工智能的控制算法对特定对象控制效果非常好,但对其他控制对象效果就不会一致性地好,因此对具体对象必须具体设计。

3.人工智能的应用现状

(1)优化设计电气设备的设计是一项复杂的工作,它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的。因此,很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进,使传统的CAD技术如虎添翼,产品设计的效率及质量得到全面提高。

用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计,因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

(2)智能控制的功能实现

①数据采集与处理:对所有开关量、模拟量的实时采集,并能按要求处理或存贮。

②画面显示:模拟画面真实显示一次设备和系统的运行状态,可实时显示电流、电压等所有模拟量、计算量、隔离开关、断路器等实际开关状态及挂牌检修功能,能生成历史趋势图。

③运行监视:具有对各主要设备的模拟量数值、开关量状态的实时智能监视,有事故报警越限和状态变化事件报警,事件顺序记录、声光、语音、电话图象报警。

④操作控制:通过键盘或鼠标实现对断路器及电动隔离开关的控制,励磁电流的调整。按顺控程序进行同期并网带负荷或停机操作。系统对运行人员的操作权限加以限制,以适应各级运行值班管理。

⑤故障录波:模拟量故障录波,波形捕捉,开关量变位,顺序记录等(包括主要辅机)。论文格式,自动化控制。。

⑥在线分析:不对称运行分析、负序量计算等。

⑦在线参数设定及修改:保护定值包括软压板的投退。

⑧运行管理:操作票专家系统,运行日志,报表的生成及存储或打印,运行曲线等。

人工智能控制技术在自动控制领域的研究与应用已广泛展开,但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。

4.恒压供水案例简析

恒压供水在工业和民用供水系统中已普遍使用,由于系统的负荷变化的不确定性,采用传统的PID算法实现压力控制的动态特性指标很难收到理想的效果。在恒压供水自动化控制系统的设计初期曾采用多种进口的调节器,系统的动态特性指标总是不稳定,通过实际应用中的对比发现,应用模糊控制理论形成的控制方案在恒压系统中有较好的效果。在实施过程中选用了AI 一808人工智能调节器作为主控制器,结合FXIN PLC逻辑控制功能很好地实现了水厂的全自动化恒压供水。对于单独采用PLC实现压力和逻辑控制方案,由于PLC的运算能力不足编写一个完善的模糊控制算法比较困难,而且参数的调整也比较麻烦,所以所提出的方案具有较高的性价比。

本案例中只是一个人工智能在电气自动化中的一个小小的应用,也是电气元

件生产供给的一个方向,实现机械智能化是我们努力的追求,将人工智能的先进的最新成果应用于电气自动化控制的实践是一个诱人的课题。

人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能完成的复杂的工作,电气自动化是研究与电气工程有关的系统运行。人工智能主要包括感知能力、思维能力和行为能力,人工智能的应用体现在问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器人学等方面。而这诸多方面都体现了一个自动化的特征,表达了一个共同的主题,即提高机械的人类意识能力,强化控制自动化。因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。

参考文献:

智能化控制论文范文5

[关键词]人工智能;电气工程;智能控制;遗传算法

中图分类号:S258 文献标识码:A 文章编号:1009-914X(2015)16-0344-01

引言

近年来,人工智能在电气智能控制方面应用已经越来越广泛、深入[1]。例如:基于人工智能的故障的诊断和预测、电气产品设计优化和保护与控制等领域。电气产品的设计随着计算机技术的发展,逐渐由手工设计向计算机辅助设计不断转变,,尤其是在引进了人工智能技术之后,大大提高了设计产品的质量和效率[2]。人工智能技术在电气设计方面的应用主要包括专家系统和遗传算法。其中的遗传算法是一种优化的先进算法,在产品的设计优化上有举足轻重的作用[3]。因此电气产品的人工智能化设计很多都采用了这种方式进行优化。

本文中,主要以遗传算法在电气智能化控制领域的应用为例,分析基于人工智能的电气智能控制技术。

1 人工智能控制器的优势

人工智能控制的主要优势[4]在于:(1)它们的设计不需要控制对象的模型;(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能;(3)比古典控制器的调节容易;(4)在没有必须专家知识时,通过响应数据也能设计它们;(5)运用语言和响应信息可能设计它们;(6)它们对新数据或新信息具有很好的适应性。

2 人工智能控制技术的主要方法及优化算法

2.1 人工智能控制技术的主要方法

(1)模糊控制

模糊控制系统是以模糊数学、模糊语言形式的知识表示以及模糊逻辑的推理规则为理论基础,采用计算机控制技术构成的一种具有反馈通道的闭环结构的数字控制系统[5]。

(2)专家控制

专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。专家控制可以灵活地选取控制率,灵活性高。通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强[1]。

(3)神经网络控制

神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表示特定的信息,通过不断修正连接的权值进行自我学习,以逼近理论为依据进行神经网络建模,并以直接自校正控制、间接自校正控制、神经网络预测控制等方式实现智能控制[3]。

(4)集成智能控制

智能控制技术的集成包括两方面:一方面是将几种智能控制方法或机理融合在一起,构成高级混合智能控制系统;另一方面是将智能控制技术与传统控制理论结合,形成智能复合型控制器。

2.2 人工智能控制技术常用的优化算法

(1)遗传算法

遗传算法依照所选择的适配值函数,通过遗传中的复制、交叉及变异对个体进行筛选,使适配值高的个体被保留下来,组成新的群体,新群体既继承了上一代的信息,又优于上一代,这样周而复始,群体中个体适应度不断提高,直到满足一定的条件[7]。

(2)蚁群算法

蚁群算法是群体智能的典型实现,是一种基于种群寻优的启发式搜索算法。蚁群算法的基本思想:当一只蚂蚁在给定点进行路径选择时。被先行蚂蚁选择次数越多的路径。被选中的概率越大[6]。

3 电动机控制中的遗传算法PID参数优化

本文以直流电动机系统进行了仿真验证,使用了具有突出寻优能力和计算简单的遗传算法进行参数整定,并通过Matlab编程进行参数寻优,整定出的参数使性能指标达到最优。

(1)参数的确定及表示

首先确定参数范围,该范围一般是由用户给定的,然后由精度的要求,对其进行编码。选取二进制字串表示每一个参数,并建立与参数间的关系。再把二进制串连起来就组成一个长的二进制字串,该字串为遗传算法可以操作的对象。

(2)选取初始种群

因为需要编程来实现各过程,所以采用计算机随机产生初始种群。针对二进制编码而言,先产生0~1之间均匀分布的随机数,然后规定产生的随机数0~0.5之间代表0,0.5~1之间代表1。此外,考虑到计算的复杂程度来规定种群的大小。

(3)适应度函数的确定

在实际应用中会因系统中固有的饱和特性而导致系统不稳定,为了防止控制能量过大,在目标函数中加入控制量。因此为了使控制效果更好,本文给出了包含控制量、误差和上升时间作为约束条件的目标函数。因为适应度函数同目标函数相关,所以目标函数确定后,直接将其倒数作为适应度函数进行参数寻优。最优的控制参数也就是在满足约束条件下使最大时,所对应的控制器参数。

(4)优化步骤

下面就可以编程使用遗传算法对PID参数进行寻优。利用遗传算法优化Kp、Ki、Kd的具体步骤如下:

①确定每个参数的大致范围和编码长度,进行编码;

②随机产生n个个体构成初始种群P(0);

③将种群中各个体解码成对应的参数值,用此参数求代价函数值J 及适应度函数值,;

④应用复制、交叉和变异算子对种群P(t)进行操作,产生下一代种群P(t+1);

⑤重复步骤③和④,直至参数收敛或达到预定的指标。

试验的电机性能参数如下:

La电机电感0.24mH=0.00024H

Ra电机电阻2.32Ω

Cm电动机的转距常数23.2mN・m/A=0.0232N・m/A

Ce为电动势常数

Jm转子以及电动机转轴相连的负载总的转动惯量1.1×10-6kg・m2

Fm粘滞摩擦系数2.2×10-4kg・m2/s

根据被控电动机特性,建立电动机的连续传递函数模型为:

,。

遗传算法中使用的样本个数为30,参数Kp的取值范围为[0,20],Ki 、Kd 的取值范围为[0,1],取wl=0.999,w2=0.001,w3=100,w4=2.000。采用实数编码方式,经过100代进化,获得的优化参数如下:

简单遗传算法

Bestfi=0.1408

BestS=11.12200.03590.1276

Best_J=7.1034

改进遗传算法

Bestfi=0.1358

BestS=8.91780.03050.5474

Best_J=7.2538

代价函数J的优化过程和采用整定后的PID控制阶跃响应。

文章应用遗传算法对电机的PID控制器参数进行了优化设计,得到了优化的PID控制参数,从响应曲线可以看出,应用改进后的遗传算法电机响应速度加快,跟踪性良好,控制效果明显提高。

参考文献

[1] 牛红.浅谈电气自动化控制中的人工智能技术[J].世界家苑,2014,32(8):43-46.

智能化控制论文范文6

关键词:研究生;智能理论课程;创新教育

中图分类号:G643 文献标志码:A 文章编号:2096-000X(2016)03-0021-02

人才是社会发展最重要的资源,而我国最重要的人才培养的地方就是高等学府。研究生培养作为高等教育中更为专业性的顶尖人才培养,在我国人才培养中占有不可或缺的地位。随着经济的快速发展,我国在科技文化等方面也经历了巨大的变革,其中意识形态的变化和科学技术的飞速进步,使得传统的研究生智能理论课程体系中仅仅简单操作计算机的技术已不再能满足当前研究生培养的需要,研究生需通过掌握智能计算并进行智能控制来进行科研工作。但是我国的研究生智能理论课程由于硬件及软件的缺失导致课程开设并不全面,学生对智能控制等理论也是一知半解,不能更好的应用于研究中,使得科研工作进行缓慢而耽误计划中的科研安排。如何让研究生更好的学习智能控制理论并熟练操作计算机,以创新为驱动的理念优化研究生智能理论课程体系是我们需要关注的问题。

一、智能控制理论及研究生的智能理论课

(一)智能控制理论

智能控制理论自上世纪末提出以来经过20多年的发展已经具有初步的模型和规模,应用于不同的模型并结合电脑分析其复杂的结构和功能。传统的经典控制只具有单线性的的输入和输出模式,而经过科技的发展,我们需要分析的模型结构也更为复杂,需要获得的信息也更全面,智能控制理论就是基于这种不确定的被控对象和复杂环境而设。从范围来讲,与传统控制相比智能控制的范围更广阔,从系统的整体出发并包括各种非线性和复杂多变量;从深度来讲,智能控制分别应用于各种专业模型,通过数学演算和智能分析实现专业智能自动化;另外,智能系统还可以自我调节、自我学习、自我适应及自我修复等能力。

(二)研究生智能理论课的必要性

智能理论是最新一代的控制理论,在数学模型、医学模型、工程模型等专业模型方面都具有非常强的应用能力。研究生不仅在专业课程理论方面比本科学生更深入,在应用实践上也应掌握更专业性的操作技术。现代操作技术普遍以计算机模型为依托,数学演算为基本方法,所以研究生在学习专业课的同时也应学习以计算机为基础的专业智能控制理论及操作,掌握智能计算和智能控制基础理论和基本方法,并能够应用所学理论与方法从事智能计算技术的研究工作。

二、研究生培养须以创新为基本理念

我国走的是自主创新的道路,创新是一个国家健康发展的灵魂,支撑着国家的科技、经济、文化等方面建设。研究生教育除了掌握本学科系统专业知识的基本理论和相应的技能外,研究生通过系统的学习和锻炼应具备一定的创新能力才能为国家事业发展做出贡献。培养具有创新精神的学生也是我国高等教育要实现的重要目标。

(一)我国研究生创新人才培养中的问题

研究生在科研学习过程中表现出创新能力不强的原因主要有以下几方面:第一,科研题目没有创新性,学生在开题时没有勇气接受比较难的问题,对已经较为成熟的课题仅作部分改动,不敢做较新颖的课题。第二,研究生针对不同的科研问题,不能具体问题具体待之,而是采用相似问题的解决办法,不能更深入去发现问题的本质及原因。第三,研究生对自己的题目不能提出具有创新性的科研问题,只是模仿别人的关注点,进一步证实别人的观点。再者,现在高校中论文的发表情况成为衡量学校和老师的主要指标,导致有的老师在培养学生时过于追求论文的数量而非质量。这样的环境下大部分的科研成了为了而做,而不是为解决什么问题而探究。另外,随着我国社会经济的飞速发展,整个社会处于一种功利状态,包括研究生教育也不像以前专为培养专业人才为出发点。对于这种现象,学校在招收研究生时应关注学生的动机目的,给真正喜欢科研的学生提供学习的机会。

(二)构建利于培养创新人才的课程体系

良好的课程设置对于培养创新人才有积极的作用。其中最重要的一方面就是加强各个学科之间的跨学科学习。所有学科都起源于我们的生活,学科和学科之间必定存在着某种联系。虽然专业性的研究使学科划分更为细致,但是若想深度理解某一学科内容,相关的学科知识也必须认真学习。多个学科之间的交叉学习不但可以开阔眼界,还可以使研究生在学习过程中发现不同学科之间的隐秘联系性,进而促进学生从多方面思考并发现问题的本质。研究生在初学阶段,更多的接触综合性的课题可以扩大研究视野、更容易抓住问题解决的突破口,提高学生科研能力。同时,在课程设置方面要多考虑更容易活跃研究生思维的课程,比如数学统计和科研方法之类的学科。数学统计这门课程本身具有非常强的的逻辑性,学生较多学习数学课可以联系思辨能力,并且良好的数学统计方法运用也是研究生分析数据时必须熟练掌握的技能。

三、智能理论课程体系及存在的问题与改革

研究生的课程体系是指根据研究生的专业和研究方向进行课程设置和时间安排,此体系需符合研究生阶段的学习目标及研究生的学习能力,研究生需在规定时间内通过必要的课程考试才能结束相关课程学习。智能理论课程体系由相关的计算机及高等数学等课程组成,并配有一定的实践操作课程,研究生在学习期间需掌握基本的智能控制理论并熟练操作智能设备,完成科研工作。

(一)智能控制理论课程设置结构问题

智能控制理论课程属于交叉性的学科,学生在学习这门课程的同时需学习其他的专业性课程以及选修课程。不同课程的时间比例不同,不同学校需根据不同的专业来确定学习课时。专业课程更复杂,所以需要学习的时间也更长;选修课辅助专业课的理解同时拓展知识面,也需要一定的课时比例并且考核。但是经过考察发现,国内几个重点大学的选修课程安排非常全面丰富,时间也较长,学生所学情况也更好,而普通大学选修课程安排时间较少,学生学习情况也不如重点大学。所以全面修订智能控制理论课程体系的培养方案,按情况适当的增加相关选修课程及考核,对于学生学习更有利。

(二)智能控制理论课程设置内容问题

研究生在理论知识方面学习时间不如本科学生长,而且智能控制理论教材中涉及过多的公式推导和和抽象概念,同时智能理论包含的知识面非常广泛,从数学、物理等理科知识到医学知识,每个小知识身后都有复杂的理论概念。所以不但教师在教授过程中非常头疼,学生面对如此庞大的知识量也很难充分理解并应用。尤其在智能理论设计中,学生对设计题目相关专业一无所知,全凭感觉摸索,设计出来的模型当然毫无意义。

(三)智能控制理论课程授课方式问题

由于智能控制理论课程本身偏向于理论方面,再加上枯燥的公式推导,各种多媒体设施在教师授课的过程中很难发挥其作用,大部分的教师只能按照教材理论的发展过程授课,学生听课时也会觉得枯燥无味,更不愿提前预习。还有不少老师会提前把授课内容做成幻灯片的形式在课堂上播放,但是长时间依赖幻灯片而非逐步向同学们解释理论的演变过程,会使学生对所学知识模糊不清,不理解根本原因,更不能应用于实际中。

(四)理论与实践学习时间比例不平衡

我国高校普遍存在注重理论知识学习而忽视实践课程的现象。智能控制理论学科本身在理论上具有概念抽象性,如果不适当的进行智能控制实践,那么所有学到的知识只能是死记硬背而不能灵活运用。现在有许多智能控制相关的软件,学校应加大这部分软件投资,使学生在学习理论的过程中配合软件实践学习,进而加深对智能控制理论的理解。

四、结束语

智能控制理论作为一门新兴学科在社会中所起的作用越来越明显,众多高校中关于智能控制理论的学习也受到越来越多的重视。同时,研究生教育必须把培养创新意识、创新精神、创新品质和创新能力作为教学工作的核心。由于课程体系的设置在创新人才的培养中占有重要的地位,所以通过分析研究生学习智能控制理论学科时存在的诸多问题并改革智能控制理论课程体系,使学生可以更好地学习智能控制理论并从事智能计算技术的研究工作,为我国培养创新型的技术人才打下良好的基础。

参考文献

[1]马彦,洪伟,陈虹.控制理论与控制工程专业研究生课程体系与教学改革研究[A].HubeiUniversityofTechnology,China.Proceedingsof2010ThirdInternationalConferenceonEduca-tionTechnologyandTraining(Volume7)[C].HubeiUniversityofTechnology,2010:4.

[2]李建平,黄建华,谢正.基于创新教育理念的研究生数学课程体系优化[J].高等教育研究学报,2014,1:23-27.

[3]万明.我国研究生教育体制改革研究[D].中国科学技术大学,2013.