功率因数范例6篇

功率因数范文1

关键词:无功功率;功率因数;无功补偿技术

中图分类号:TM46文献标识码:A文章编号:1009-2374(2009)07-0110-02

一、无功功率和功率因数的定义

(一)有功功率和无功功率

在交流电路中,由电源供给负载的电功率有两种:一种是有功功率,一种是无功功率。有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为机械能、光能、热能等的电功率。无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外做功,但是只要有电磁线圈的电气设备,就要消耗无功功率。

(二)功率因数

电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,这个相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上功率因数是有功功率和视在功率的比值,即cosΦ=P/S。功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。只有把电路中的无功功率降到最小,才能将视在功率大部分用来供给有功功率,改善供电效率。

二、无功功率的产生和作用

(一)无功功率的产生

在具有电感或电容的电路中,在每半个周期内,电感(或电容)把电源能量变成磁场(或电场)能量贮存起来,然后再把贮存的磁场(或电场)能量释放返回给电源。这种情况下只是进行能量的交换,并没有真正消耗能量,我们把这个交换的功率值称为无功功率。正因为如此,无功功率比较抽象,它在电路中来回流动。尽管无功功率说明一个元件的平均功率为零,但它代表了在电感或电容中储存及释放磁场能量或电场能量所需要的真实功率。电力网中,在电源、电感元件和电容元件之间发生能量的交换。与无功功率相关的能量是储存的电感性及电容性能量之和。

(二)无功功率的作用

无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。

三、无功功率的危害

尽管无功功率说明一个元件的平均功率为零,但它代表了在电感或电容中储存及释放磁场能量或电场能量所需要的真实功率。电力系统中某些点之间由于无功功率不断来回地交换引起发电、输电及供配电设备上的电压损耗及功率损失。由于电力系统的效率及电压调整十分重要,因此无功功率在电力系统的传输是头等重要的。

无功功率的增加,会导致电流增大和视在功率增加,从而使发电机、变压器及其他电气设备容量和导线容量增加,也降低了发电机的有功功率的输出,降低了输变电设备的供电能力。无功功率的增加,使总电流增大,因而使设备及线路的损耗增加,这是显而易见的。无功功率的增加,使线路及变压器的电压降增大,如果是冲击性无功功率负载,还会使电压产生剧烈波动,使供电质量严重降低。

无功功率还造成了低功率因数运行和电压下降,使电气设备容量得不到充分发挥。所以我们要尽量减小无功功率的影响:(1)大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率;(2)变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态;(3)供电电压超出规定范围也会对功率因数造成很大的影响。当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,所以应当采取措施使电力系统的供电电压尽可能保持稳定。

当然,上述这些措施只是从一定程度上减小了无功功率的危害,如果要从根本上减小无功功率的影响,改善功率因数的话,我们需要引入无功功率补偿技术。

四、无功功率补偿

(一)无功功率的补偿原理

设补偿后无功功率为Qc,使电源输送的无功功率减少为Q’=Q-Qc,功率因数由cosΦ提高到cosΦ’,视在功率S减少到S’,视在功率的减小可相应减小供电线路的截面和变压器的容量,降低供用电设备的投资。

可知,采用无功补偿措施后,因为通过电力网无功功率的减少,降低了电力网中的电压损耗,提高了用户的电压质量。由于越靠近线路末端,线路的电抗X越大,因此越靠近线路末端装设无功补偿装置效果越好。

(二)无功补偿的作用

1.提高电网及负载的功率因数,降低设备所需容量,减少不必要的损耗;

2.稳定电网电压,提高电网质量,而在长距离输电线路中安装合适的无功补偿装置可提高系统的稳定性及输电能力;

3.在三相负载不平衡的场合,可对三相视在功率起到平衡作用。

(三)低压网无功补偿的一般方法

低压无功补偿我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。下面简单介绍这三种补偿方式的适用范围及使用该种补偿方式的优缺点:

1.随机补偿。随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补偿磁无功为主,此种方式可较好地限制农网无功峰荷。

随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等特点。

2.随器补偿。随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是农网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。

随器补偿的优点是:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。

3.跟踪补偿。跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

跟踪补偿的优点是:运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

五、结论

本文简单讨论了无功功率的定义、产生,分析了无功功率的作用及危害,并从原理上分析了无功补偿技术,探讨了几种低压无功补偿技术的优缺点。本文对于了解无功功率以及进行无功补偿具有一定的指导意义。

参考文献

[1]陈允平,等.基于任意周期电压电流的无功功率定义及其数学模型[J].中国电机工程学报,2006,26(4).

[2]吴捷,等.交流异步电动机无功功率补偿的技术探讨[J].云南电力技术,2007,35(4).

功率因数范文2

关键词:电网 功率因数 并联移相电容

沙隆达股份有限公司是一家以氯碱化工为基础,农药化工为主体,精细化工为特色的大型化工企业。主要生产能力为:农药3万吨,烧碱6万吨,化工原料及中间体30万吨,自采盐矿20万吨。下属能源动力厂主要负责水、电、汽、冷等能源的管理和运行。我厂电力系统总装机容量为47500KVA,设有一个110KV变电站、4个10KV区间变电所和4套电解整流装置,共有电力变压器22台,整流变压器4台,年用电量2亿多千瓦时,其中整流装置用电量要占总用电量的三分之二。整流装置平均功率因数比较高,可以达到0.95,但由于整流装置的存在,谐波分量也比较重。其它动力负荷主要是异步电动机,平均功率因数很低,我厂主要针对低压配电网络进行补偿,补偿前整个电力系统的功率因数只有0.87,补偿后整个电力系统功率因数可以达到0.95以上。

影响我厂功率因数的主要原因及对策:

一、异步电动机对功率因数的影响

我厂绝大部分动力负荷都是异步电动机, 异步电动机转子与定子间的气隙是决定异步电动机需要较多无功的主要因素,而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。因此,在选择异步电动机时,既要注意它们的机械性能,又要考虑它们的电器指标,合理选择异步电动机的型号、规格和容量,使其处于经济运行状态,若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故从节约电能和提高功率因数的观点出发,必须正确的合理的选择电动机的容量。其次,要提高异步电动机的检修质量,因为异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。

二、电力变压器对功率因数的影响

电力变压器的无功功率消耗,是由于变压器的变压过程是由电磁感应来完成的,是由无功功率建立和维持磁场进行能量转换的。没有无功功率,变压器就无法变压和输送电能。变压器消耗无功的主要成分是它的空载无功功率,提高变压器的功率因数就必须降低变压器的无功损耗,避免变压器空载运行或长期处于低负载运行状态。

三、整流装置对功率因数的影响

单就整流系统而言,其功率因数可达到0.95,但是由于整流系统网侧电流不是正弦波,整流变压器除向电网吸取基波电流外,还向电网送出谐波电流,严重影响并联电容的运行。尽可能减少谐波分量的产生是消除整流装置对功率因数补偿设备影响的根本办法。整流机组的网侧谐波分量与等效相数有密切关系,提高等效相数是抑制谐波产生的有效措施。我公司整流系统共有四台整流变压器,为提高等效相数,我们分别将整流变压器接成/?和Y/?,从而组成12相整流系统,这时单套6脉波整流的工作原理不变,只是一台整流变压器通过Y/移相使5,7,17,19……次谐波相互抵消,注入系统的只有12K±1次特征谐波,在不增加设备的前提下,达到了最大限度抑制谐波分量,减少了谐波分量对电容运行的影响的目的。

我厂对提高功率因数采取的措施

提高自然功率因数

提高自然功率因数主要是靠提高变压器、电动机负载率、调整负荷结构,使功率因数达到最佳。

二、并联移相电容提高功率因数

由于我公司实际生产工艺中没有使用同步电机,所以我们采用并联移相电容器的方式进行功率因数补偿。

(一)、补偿方式的选择:

根据移相电容器在工厂供电系统中的装设位置,有高压集中补偿、低压成组补偿和低压分散补偿三种方式。

高压集中补偿是将高压移相电容器集中装设在变配电所的10KV母线上,这种补偿方式只能补偿10KV母线前(电源方向)所有线路上的无功功率,而此母线后的厂内线路没有得到无功补偿,所以这种补偿方式的经济效果较后两种补偿方式差。同时因我厂存在整流装置,虽然我们对其进行了调整,但仍然不能完全避免谐波分量的产生。如采用高压集中补偿,会对高压电容器的安全运行造成严重影响。

低压分散补偿,又称个别补偿,是将移相电容器分散地装设在各个车间或用电设备的附近。这种补偿方式能够补偿安装部位前的所有高低压线路和变电所主变压器的无功功率,因此它的补偿范围最大,效果也较好。但是这种补偿方式总的设备投资较大,且电容器在用电设备停止工作时,它也一并被切除,所以利用率不高。

低压成组补偿是将移相电容器装设在车间变电所的低压母线上,这种补偿方式能补偿车间变电所低压母线前的车间变电所主变压器和厂内高压配电线及前面电力系统的无功功率,其补偿范围较大。由于这种补偿能使变压器的视在功率减小从而使变压器容量选得小一些,比较经济,而且它安装在变电所低压配电室内,运行维护方便。同时由于我厂存在谐波源,车间变压器的存在,也起到了隔离和衰减谐波的作用。有利于低压移相电容器的安全稳定运行。

综合以上三种补偿方式的优缺点,根据我厂的实际情况,我们选择了低压成组补偿方式。

(二)、补偿容量的确定

对于车间变(配)电所,安装的容性无功量应等于装置所在母线上的负载按提高功率因数所需补偿的容性无功量与变压器所需补偿的容性无功量之和。

负载所需补偿的装置容量Kvar(千乏)按下式考虑

QC1=P(tgφ1-tgφ2)

Qc1——负荷所需补偿的容性无功量(Kvar)

P——母线上的平均有功负荷功率

φ1——补偿前的功率因数角

φ2——补偿后的功率因数角

2)变压器所需补偿的装置容量Kvar(千乏)按下式考虑:

QC2= (UK%/100+IO%/100 ) Se

Qc2——变压器所需补偿的容性无功量(Kvar)

Uk%——变压器阻抗电压的百分数

I0%——变压器空载电流的百分数

Se——变压器额定容量(KVA)

(三)、低压成组补偿设备的选择:

选择补偿设备,应在充分考虑安全性的同时,根据各厂实际情况,从实用性、可靠性入手,将费效比最大化。

1、投切方式的选择:

电容投切有两种方式:人工投切和自动投切。人工投切对运行人员是件繁重的工作,且难以实现及时准确地操作,影响供电电压质量。我们采用自动投切方式。可实现电容器的自动投切,我们采用了JKG系列无功功率自动补偿控制器,这种控制器能随意设定投入门限、投入延时、切除延时、过压门限、过压延时、欠流切除等参数,能自动跟踪功率因数变化合理选择电容组数,还能在功率因数超前时快速切除已投电容。在我厂的应用中,这种控制方式能满足我厂的实际要求。

2、移相电容器的选择

我厂选用的电容器为BSMJ0.415-18-3型自愈式移相电容器。该电容器的额定工作电压415V,容量18Kvar,三相三角形接法,具有自放电功能,最高过电压110%额定电压,最高过电流130%额定电流。

电容容量的确定要考虑到开关、接触器的容量,补偿梯度大小对电气设备的影响及维修成本,还有各厂实际使用习惯。我厂广泛采用18 Kvar三相移相电容器,我们认为其补偿梯度合理,设备费效比高。

额定电压的确定要考虑到变压器低压母线电压的波动和补偿后母线电压升高的因素,并联补偿移相电容器的额定电压应大于并联补偿移相电容器的实际工作电压。

3、断路器的选择

QF1—QFn为单台电容器提供主保护,我厂选用GV3—M40施耐德空气开关。该开关具有过流和速断保护功能,我们一般将空开过流整定值整定在30A左右,可有效保护电容过电流。该开关分断能力强,分断电流可达35KA,可靠性也比较高,单台电容器故障时能可靠切除,不影响其它电容器的运行。QF我们选用施耐德NS型塑壳断路器,该断路器具有电子式过流和速断保护功能,动作准确可靠,分断能力极强,并具有稳定可靠的限流能力,可作为整套电容器组的后备保护。采用上述两种开关后,我们完全可以将电容故障限制在电容柜内,而不对配电系统产生影响。

补偿效果:

通过对全厂供配电系统安装并联移相电容器组,向电网提供可阶梯调节的容性无功,补偿多余的感性无功,使我厂实际功率因数提高到0.95以上,补偿效果明显。

减少供电损耗,节约电费

以线损为例,我厂年用电量约为2亿千瓦时,补偿前线损率约为5%,补偿后功率因数从0.87提高到0.95,则每年可减低线损约为200万千瓦时,按每度电0.4元计算,可节约电费开支80万元,加上电力系统功率因数奖60万元,每年共计节约电费开支140万元。

提高设备利用率

功率因数从0.85提高到0.95,设备利用率提高11.8% 。减少设备投资,充分发挥设备潜能。

改善供电质量

减少电压损失,降低电压波动,有效改善供电质量。

功率因数范文3

关键词:功率因数;节约电能;供电质量

功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分地发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于全国广大供电企业,特别是对于拥有自发电网的广大企业来说,若能有效地搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。目前,辽宁省本溪市本钢集团有限公司北营公司就有这样的三台50MW的发电机组。

一、影响功率因数的主要因素

首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P有一定时,如减少无功功率P无,则功率因数便能够提高。在极端情况下,当P无=0时,则其功率因素=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。影响功率因数主要是下面几个方面:

(一)异步电动机和电力变压器是耗用无功功率的主要设备

异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成的。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。

(二)供电电压超出规定范围也会对功率因数造成很大的影响

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

(三)电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响

我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。

二、低压网无功补偿的一般方法

低压无功补偿我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。下面简单介绍这三种补偿方式的适用范围及使用该种补偿方式的优缺点。

1. 随机补偿

随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补偿磁无功为主,此种方式可较好地限制农网无功峰荷。

随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等特点。

2. 随器补偿

随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是农网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。

随器补偿的优点是:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。

3.跟踪补偿

跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

跟踪补偿的优点是:运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

三、采取适当措施,设法提高系统自然功率因数

提高自然功率因数是在不添置任何补偿设备,采用降低各用电设备所需的无功功率减少负载取用无功来提高工矿企业功率因数的方法,它不需要增加投资,是最经济的提高功率因数的方法。下面将对提高自然功率因数的措施作一些简要的介绍。

1.合理使用电动机

合理选用电动机的型号、规格和容量,使其接近满载运行。在选择电动机时,既要注意它们的机械性能,又要考虑它们的电器指标。若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故从节约电能和提高功率因数的观点出发,必须正确地合理地选择电动机的容量。

2.提高异步电动机的检修质量

实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。

3.?采用同步电动机或异步电动机同步运行提高功率因数

由电机原理知道,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即能向电网输出无功,从而达到提高低压网功率因数的目的。

4.合理选择配变容量,改善配变的运行方式

对负载率比较低的配变,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。■

参考文献

功率因数范文4

当前,我国的电力事业突飞猛进的发展,电网的扩张速度越来越快,扩张的范围也越来越广,因此电力系统的负荷也成几何倍数的增长,电网的等级也越来越高,发电厂、用电设备的单机容量也越来越大。由于电网容量的逐渐增加,对于电网的无功要求也在逐渐的增多,如果网络的功率因数和电压的降低会使得电气设备不能够很好的得到利用,降低了网络的传输能力。从而就会引起系统的不必要的损耗。因此如何解决好电网中的无功功率的补偿技术问题,提高系统的功率因数来减少设备容量和功率的损耗,对于稳定电压和提高供电质量具有非常重要的意义。

1功率因数

电网中的电动机、变压器等电气设备的电气模型中既有电感又有电阻的感性负载,而感性负载的电压和电流之间存在一个相位差,相位差的余弦值就是功率因数,它在数值上就是有功功率和视在功率之比,即。电网的功率因数可以反映电网中用电设备的使用情况是否合理,是一个重要的电能利用程度和用电管理水平的技术指标。

2无功补偿

无功补偿就是利用无功功率补偿设备发出无功功率,避免电网输电系统传输的无功功率,从而可以降低系统的无功功率损耗,从而提高系统传输的无功功率,从而可以改善系统的供电质量。所以在电力系统的设备中按照比例安装电容元件,从而可以让两者的电流相互抵消,从而减小系统中电压向量和电流向量的夹角减小,从而可以提高系统能够提供的有功功率,这就是无功补偿的原理。

因此无功功率补偿主要是为了提高系统的功率因数,从而减少设备容量和功率的损耗,进而达到稳定电压,提高电网的供电质量的效果。

3影响功率因数的主要因数

功率因数的产生主要是因为用电设备在交流电网的工作环境中,除了消耗有功功率以外还会消耗系统的无功功率,在系统的有功功率一定的情况下,如果减少系统的无功功率Q,就可以提高系统的功率因数。在某种极端的情况下,当无功功率为零的情况下,系统的功率因数就是1。因此提高系统的功率因数的问题实质就是减少系统设备的无功功率的使用量。

3.1在电网系统中,异步电动机和变压器是消耗系统无功功率最大的设备。在异步电动机中,定子和转子之间的气隙决定了异步电动机需要较多的无功功率。而异步电动机所消耗的无功功率主要是它在空载时的无功功率和在一定负载下的无功功率增加值两个部分构成的。所以如果要想改善异步电动机的功率因数就要防止电机空载运行,并且需要尽可能的提高系统的负载率。变压器所消耗的无功功率主要是在它在空载时的无功功率,他和变压器的负载率没有关系。因此要想改变电力系统和企业的功率因数,变压器就不能空载运行,或者长期的运行在低负载的情况。

3.2供电电压超过规定的范围也会对电网的功率因数造成影响。

当供电电压高于额定值的10%时,无功功率的增长就会很快。根据资料显示,如果供电电压高过额定的10%,工厂的无功功率就会增加35%。当供电电压低于额定值的时候,无功功率就会相应的减少,这样也会提高系统的功率因数。但是较低的工作电压就会影响用电设备的正常工作。因此应该尽可能的保证系统的供电电压稳定在额定电压内。同时对于电网频率的波动还会对异步电动机和变压器的磁化无功功率造成影响。

3.3电网的频率波动会给异步电动机的正常工作造成影响。当异步电动机在低频的工作情况下,相应的转速就会下降,而火电厂的泵和风机等辅助设备的力矩也会有所下降,从而影响电厂的正常运行。

3.4提高功率因数的主要方式

3.4.1根据变压器补偿,把低压电容器通过低压保险接在配电柜的二次侧,用来补偿配电变压器空载无功功率和漏磁无功功率。随着变压器的无功功率补偿有以下优点:管理方式方便可靠,同时利于系统接线,能够有效的补偿空载时候的无功功率,这样就使得无功平衡,从而提高了配变的利用率,降低了无功的损耗,是目前情况下补偿系统无功的最常使用方法。

3.4.2根据异步电动机进行补偿。把低压的电容器和电动机并联,通过控制保护装置和电机同时投切,来保证补偿电机的无功损耗。这种方法可以有效的限制用电设备的无功功率。这种根据电机进行补偿的优点在于用电设备在运行的过程中就可以进行无功补偿,当用电设备不运行的时候,补偿设备就不工作。而且不用频繁的调整电机的补偿容量。具有投资小、安装方便等特点。

3.4.3跟踪补偿。指的是把无功功率补偿投切装置做为控制保护装置,把低压电容器组补偿在大用户0.4KV母线上,进行补偿。这种方式适合在100KVA以上的专用配电用户,可以代替以上的两种补偿方式,并且这种补偿方式的补偿效果也比较好。这种补偿方式的优点是运行方式灵活,运行的维护工作量小,比前两种补偿方式的寿命长,并且系统的可靠性增强。但是它的缺点是补偿装置的结构复杂,并且对于初期的投资成本比较高。

参考文献:

[1]唐艳群,高久国,陈晨.浅谈电网无功补偿[J].湖州师范学院学报,2009(S1).

[2].配网无功补偿分析[J].硅谷,2009(17).

功率因数范文5

引言

电力电子产品的广泛使用,对电网造成了严重的谐波污染。这使得功率因数校正(PFC)技术成为电力电子研究的一个热点。功率因数校正的目的,就是采用一定的控制方法,使电源的输入电流跟踪输入电压,功率因数接近为1。传统上,模拟控制在开关电源应用中占据了主导地位[1]。随着高速度,廉价的数字信号处理器(DSP)的出现,在开关电源中使用数字控制已成为发展的趋势[2][3][4][5][6]。

本文对实现PFC的模拟控制方法和数字控制方法进行了比较,介绍了采用数字控制的独特优点。详细讨论了采用数字信号处理器作为控制核心时的设计事项和方法。

1 PFC模拟控制和数字控制的比较

功率因数校正的模拟控制方法已经使用了多年,也有现成的商业化集成电路芯片(比如TI/Unitrode的UC3854,Fairchild的ML4812,STmicroelectronics的L6561等)。图1(a)是基于UC3854的模拟控制电路结构方框图。电路采用平均电流控制方式,通过调节电流信号的平均幅度来控制输出电压。整流线电压和电压误差放大器的输出相乘,建立了电流参考信号,这样,这个电流参考信号就具有输入电压的波形,同时,也具有输出电压的平均幅值。PFC的模拟控制方法简单直接。但是,控制电路的元器件比较多,电路适应性差,容易受到噪声的干扰,而且调试麻烦。因此,模拟控制有被数字控制取代的趋势。

图1(b)是PFC的数字控制原理框图。类似于模拟方法,使用了两个控制环路:电压环和电流环。电压环通过调节平均输入电流来控制直流总线电压,电流环控制交流输入电流使之跟踪输入电压。控制过程由DSP完成,通过DSP的软件来实现电流和电压的调节。

数字控制方法具有以下几个优点:

1)通过软件调整控制参数,比如,增益和带宽,从而使系统调试很方便;

2)大量控制设计通过DSP来实现,而用模拟控制器是难以实现的;

3)在实际电路中,使用数字控制可以减少元器件的数量,从而减少材料和装配的成本;

4)DSP内部的数字处理不会受到电路噪声的影响,避免了模拟信号传递过程中的畸变、失真,从而控制可靠;

5)如果将网络通信和电源软件调试技术相结合,可实现遥感、遥测、遥调。

现在,数字控制PFC方法已经在深入研究。文献[7]提出了一个基于模拟仪器公司ADMC401的数字控制PFC方案,如图2所示。为了实现数字控制,模拟控制变量〔包括输入电流iL(t),输入电压vin(t)和输出电压vo(t)〕必须转换成数字量。将模拟控制变量除以他们相应的参考值(,和),得到相对值,再由ADC变换器将获得的相对值转换成数字量。其中iL,n,vin,n,vo,n分别表示相应的第n个采样值。

数字控制器包括一个电流环和一个电压环。对于电流环,将指令输入电流减去输入电流iL,n所得的电流误差ie,n输入到电流环数字PI控制器。最后,将控制器输出的占空比Dn输入到PWM产生单元,控制开关S的通断。对于电压环,PFC变换器的输入电导期待值ge,n与输入电压vin,n相乘,得到指令输入电流iL,n*。

2 数字控制的实现

在实现一个电力电子系统的实际数字控制器时,需要考虑大量的因素,比如,控制处理器的选择,采样算法和采样频率的确定,PWM信号的产生,控制器和功率电路之间的连接,硬件设计和控制算法的软件实现等。这些因素都会对系统的性能产生很大影响,需要细心设计和实际实验。

2.1 微处理器的选择

在设计控制系统时,微处理器的选择需要考虑很多的因素,诸如功能,价格,硬件设计的简单性和软件支持等。现在,已经有多种内嵌有PWM单元和A/D转换等控制外设的DSP芯片可供选择(比如TI的TMS320C2XX系列,AD的ADMCXXX系列,Motorola的DSP56800等)。以TI公司的TMS320C2XX系列为例,它拥有很多良好的特性,比如,多个独立可编程的时钟,50ns指令周期,16位并联乘法器,两通道多路复用的10位A/D转换器,还有片内RAM和EEPROM等。这使得它成为实现功率变换系统数字控制的首选。如果需要进一步降低成本,可以选择STmicrocontroller的8位DSPST52x420。

2.2 采样算法和采样频率的选择

在设计数字控制器时,选择合适的采样频率起着重要的作用,因为,采样频率直接影响到可完成的功能和数字控制系统的可靠性,因此,它应该在合成控制器之前确定。对于更高的系统带宽要求,应该使用更高的采样频率。然而,采样频率的提高也对字长和数字控制器的计算速度提出了更高的要求。工程设计的目标总是使用更低的采样频率来达到给定的设计要求。

由于Boost变换器的输入电流含有大量谐波。因此,采样频率必须远高于开关频率,输入电流才能不失真地还原。由于开关频率已经很高(>20kHz),要采用更高的采样频率是困难的,而且,处理器也来不及处理相应的控制计算任务。而使用比较低的频率将产生频谱重叠。虽然可以在A/D转换前加入前置滤波,但是,这样又需要更高的带宽。因此,采样频率选择与开关频率同步,这样,开关纹波就成为隐性振荡,不会在还原信号中出现。这种采样方法在一个周期中只采样一次,称为SSOP(singlesamplinginoneperiod)方法。采用这种采样方法时,有一个采样点确定的问题。电感电流在开关的瞬间存在电流尖峰,如图3所示。显然,应该避免在开关点进行采样,否则系统将不能正常工作。在PFC应用中,输入电流必须跟踪输入电压,而且输出电压要保持恒定,PWM信号将在一个大的范围内变动,因此,这个问题变得更加突出。

为了保证在每次开关周期中确定一个固定的采样点,而且远离开关点,一个简单的设想就是在两个尖峰之间(上升沿或者下降沿)的中点进行采样,即采样平均电流。但是,当上升沿或者下降沿非常窄的时候(即开关的占空比非常窄或者非常宽),采样信号的准确度仍然会受到开关噪音的影响。如图4所示,如果采用上升沿采样,当导通时间较长时〔图4(b)〕,采样点(Ai)是可靠的,反之是不可靠的〔图4(a)〕。为了克服这个缺点,采用改进的采样算法。这个算法同样是同步采样,但是,采样边沿的选择取决于开关的导通时间。如果导通时间大于关断时间,选择上升沿;反之采用下降沿。这样便很好地避免了开关噪声的影响。而且算法本身简单,计算量少。如图5所示。

2.3 PWM信号的产生

为了叙述方便,定义一个开关周期的起点p,如图6所示。对大多数数字PWM单元来说,占空比的值应该在开关周期开始之前装载入寄

存器,因此,控制变量的采样应该在p点之前准备好,以便控制算法的计算及时完成。这里采用平均电流控制,选择采样点,得到每个开关周期的输入平均电流测量值。理想的采样点si和实际采样点sr之间有一个时间延迟τd。τd由两个原因造成,一个是在信号链中低通滤波器产生的相移,另一个是开关S的开关指令和实际开关动作之间的延迟。这样,留给处理器完成控制计算的时间就是τc。延迟τd和计算时间τc共同决定了反馈环路的延迟。

式中:Ts为开关周期。

使用顶点规则采样PWM方法产生开关指令。如图7和图8所示。对于输入信号u在平衡值附近的小偏移,顶点规则采样PWM的响应可以描述为

|gPWM(jω)|=cos(ωTo) (2)

∠gPWM(jω)=wTs/2 (3)

式中:To是稳态时开关导通时间的一半。

因为,期望的电流环的带宽在1kHz到10kHz之间(开关频率为50kHz),PWM的增益趋于统一。因此,顶点规则采样PWM的传输函数可以近似为

2.4 电流环和电压环的数字PI控制器

电压环和电流环都包括PI控制器。参看图1,一个数字PI控制器可以表达为

un=A0xn+A1xn-1+un-1 (5)

或者

gPI(z)=U(z)/X(z)=(A0z+A1)/(z-1) (6)

等效模拟控制器的传输函数是

gPI(s)=U(s)/X(s)=KPI(1+1/stPI) (7)

因为采样频率有限,当一个模拟转换函数采样生成离散时间函数时,如果模拟函数包含了频率高于1/2采样频率的分量,会发生重叠效应,如图9所示。

为了消除高频分量(频率大于fs/2)的影响,使用Tustin规则

s=2/Ts(z-1)/(z+1) (8)

那么数字控制器的参数A0和A1和模拟等效参数KPI和τPI的关系为

3 结语

功率因数范文6

关键词:功率的因数;无功补偿;节省电量

中图分类号:TM714.3 文献标识码:A 文章编号:1006-8937(2013)17-0107-02

在农村地区分布的电网,电量的负载荷主要在生活照明、以及较小的工厂方面使用,这些用功消耗大都为感性的负载荷,用的功率都很小,但相对与电网的成本投入比较,是不经济的。面对这些问题,应该增加无功补偿器,这样可以提高整个电网的功率以及效率,最终能够节省电力资源,还能减少电量的损失。

1 提升功率的因数

①通过改善功率的因素变化曲线,减少电力设备的使用,例如:电线、变压器等。这样可以减少电网的投资成本,节省电力的资源。

②藉由良好功因值的确保,减低电网中的电源浪费,而且能使整个电网的负载降低,升高电力的质量。如110 kV以下的线路,其电压损失可近似为:U (PRQX)/Ue,其中,U为线路的电压损失,kV;Ue为线路的额定电压,kV;P为线路输送的有功功率,kW;Q为线路输送的无功功率,kvar;R为线路电阻;X为线路电抗。

由上式可见,当用户功率因数提高以后,它向电力系统吸取的无功功率就要减少,因此电压损失也要减少,从而改善了用户的电压质量。

③能够增加电网系统的涨幅度,尽力挖掘各个设备的能力。在现有的设备中,添设了电容器,就可以提升因数,进一步提升负载荷的容量。

2 功率因数与无功功率的关系

在交流电路中,电压与电流之间的相位差(φ)的余弦叫做功率因素(Power Factor),用符号cos表示,在数值上,功率的因数曲线图是为了显示有功消耗、以及视在消耗的功率的关联,cosφ呈现出来为:

cosφ=p/s(1)

电力设备的需要的功率中,有功以及无功的关联显示为:

Q=S×sinφ(2)

综上式(1)、(2)得出:

Q=P×tgφ(3)

得出功率的因数由cosφ1变化至cosφ2,所要无功补偿的容量是:

Qc=P(tgφ1-tgφ2)(4)

式中,P为用电设施的有用功功率,kW;Q表示用电设施在不变的功率因数时所需求无功功率,kvar;Qc当功率因数从cosφ1上升到cosφ2时那么无功的补偿容量也要增加,kvar;补偿前的功率的因数角用φ1表示,φ2则表示补偿以后的因数角。

在式(4)中可以得出要想使功率因数变大,一定要使无功功率变小并且把补偿设备的数量变大从静电容器的特点出发,因其具有轻便、易安装、能量损失少、维护方便并且可以自动投切等优点。所以目前大部分采用的都是通过静电容器来使功率因数变大的方法。

3 变压器的功率因数和有功功率损耗的关系

变压器在工作时,在提供额定的有功功率的情况下,变压器的铜损消耗掉的电能和其载荷的视在功率的二次方存在着成反比的关系表示如下:

s=p/cosφ(5)

功率因数变大前其铜损耗的表示:

Pt1=(S1/Se)2Pk=[P/(Secosφ1)]2Pk(6)

功率因数变大后其铜损耗的表示:

Pt2=(S2/Se)2Pk=[P/(Secosφ2)]2Pk(7)

式中,S代表变压器的对外提供的视在功率,kVA;增大功率因数的前后其视在功率分别用S1和S2表示,kVA;P表示变压器提供的有功功率,kW;变压器的额定铜损消耗用Pk表示,kW;Pt1和Pt2分别表示变压器的功率因数被增大前后的铜损消耗,kW;Se表示额定容量,kVA;cosφ1和cosφ2表示功率因数的值在提高前后的大小。

因此在功率因数变化下,变压器在铜损消耗上的下降用百分数表示如下:

η=[(Pt1-Pt2)/Pt1]×100%=[1-(cosφ1/cosφ2)2]×100% (8)

4 增大功率因数的主要办法

如何降低电力系统各组成部分无功功率的消耗是增大功率因数的主要办法,尤其是在负载方面消耗的功率的减少,让电力系统在提供有功功率的时候,减少无功电流在这过程中所的消耗。有很多种方法可以用来提高功率因素,以下介绍两种。

4.1 如何提高自然功率因数

改善用电设备的功率因数和降低用电设备的无功功率的方法,就是提高自然功率因数的方法,主要有以下几点:

①正确选用异步电动机,使其额定容量与所带负载相配合,对于改善功率因数是十分重要的。在选型方面,要注意选用节能型,淘汰高能耗的电动机,并依据电机机械工作对启动力矩、启动次数、调速等方面的具体要求,选用不同的型号。电动机的效率η与功率因数cosφ是反映电动机经济运行水平的主要指标,都与负载率β有密切关系。GB/T12497-90对三相异步电机三个运行区域规定如下:当负载率β在70%~100%之间时,为经济运行区;当40%≤β≤70%时,为一般运行区;当β

②根据负荷选用相匹配的变压器。电力变压器一次侧功率因数不但与负荷的功率因数有关,而且与负荷率有关。若变压器满载运行,一次侧功率因数仅比二次侧降低约3%~5%;若变压器轻载运行,当负荷小于0.6时,一次侧功率因数就显著下降,下降达11%~18%,所以电力变压器的负荷率在0.6以上运行时才较经济,一般应在60%~70%比较合适。为了充分利用设备和提高功率因数,电力变压器一般不宜作轻载运行。当电力变压器负荷率小于30%时,应当更换成容量较小的变压器。

4.2 如何用补偿方法提高功率因数

运用补偿的方法提高功率因数就是通过发电组提供无功功率设备所消耗的无功功率,以提高功率因数。然而,必须要通过增加黑色金属、有色金属的供应量和增加新设备的方法来提高功率因数。除此之外,因为补偿设备工作时也会有功率损失,如何提高自然功率的因数才是重中之重。但是如果功率因数太小而不足以达到相关规范所要求的数值时,对功率因素的提高,就要采用专门的补偿性方法。通过人工的方式对无功功率进行补偿的方法有:采用同步电动机、应用静电电容器和通过同步调相机进行补偿这三种方法。

5 结 语

通过对上述情况的分析,得出了如下结论:提高功率因数无论对用电设备还是用电者都有很大价值。它能节约电能、降低损耗,不仅如此,而且对国家的能源利用、企业的经济效益起到促进作用,是保证电力系统电能质量、电压质量、降低网络损耗以及安全运行所不可缺少的条件。应根据不同情况采取相应措施来提高功率因数,降低无功损耗,从而提高经济效益。尤其是对于当下正在进行的农村电网的建设和改造来讲,不仅要按相关规定的要求进行勘察、按照施工要求进行设计和施工,而且要根据农村用电荷的主要特点,在进行农村电网建设和改造的同时进行无功补偿设备的安装和建设。

上一篇概念模型

下一篇社会效益