量子力学研究范例6篇

量子力学研究

量子力学研究范文1

关键词 量子力学 教学改革 创新能力 研究性教学

中图分类号:G643.0 文献标识码:A DOI:10.16400/ki.kjdks.2015.07.017

Graduate Education Course Advanced Quantum Mechanics Teaching Reform

HU Ping, PENG Zhihua, GUO Ping, HU Jiwen

(College of Mathematics and Science, University of South China, Hengyang, Hu'nan 451001)

Abstract Postgraduate both the learning process to deepen the knowledge of the process is scientific ability, knowledge of scientific basis. From Graduate Teaching Mode existing problems, discusses the necessity of quantum mechanics graduate students in higher education, research teaching model introduced in the teaching process, improve the quality of teaching so that students master the basic principles of quantum mechanics, based on general ability, innovation ability has been greatly improved.

Key words Quantum Mechanics; teaching reform; innovative ability; research teaching

自上个世纪80年初期恢复研究生教育,我国的研究生教育进入了蓬勃发展的时期。①随着我国高等教育的发展,研究生教育规模的也迅速扩大,研究生教育质量已成为一个全社会关注的焦点问题。我国研究生的素质关系到国家的未来发展,研究生教育是为国家培养现代化建设、发展科技培养高水平、高层次人才;研究生教育是我国站上世界知识经济高点的重要支持;同时也是高校实现由教学型向研究型转变的重要基础。研究生教育不同于本科生教育,研究生教育不仅包含课程教学,同时包含了社会实践、学位论文等诸多环节。②然而作为科研能力、自主创新能力发展的基础――课程教学不仅要传授知识,更重要的是要指导研究生思考,是提高研究生培养质量的根本。

研究生教学质量是整个研究生教育的一个重要部分,如何合理利用现有教学资源条件,使得研究生教学质量能够稳步提高,则成为研究生管理的首要解决问题之一。自上个世纪80年代以来,高等教育改革逐渐兴起,其主要目标就是培养创新型人才,教育界越来越多地关注教学方法创新研究。首先,研究性教学,是一种能有效引导学生主动探究、培养学生创新能力的教学方式,引起全世界各地的教育及其相关部门的关注。目前,教育部实施研究生科研创新项目研究计划, 现在全国已有100多所大学参加这项计划。其次,在过去的几十年中,国内外在总结以前高等教育成果与不足的基础上,以培养创新型人才为教育主要目标,对原有的传统高等教育模式进行了改革。

自从20世纪50年代美国施瓦布教授首先提出学生的学习过程和科学家的研究过程是一致的以来,研究性学习引起了人们的广泛关注,提出了各种相关的理论。③④⑤ 然而,现在国内的高校课堂教学大部分都是基于传统教学模式:教师教学――课堂讲授为主的教学模式。而研究性学习,则主要是以研究问题为基础、由学生主动提出问题、并设计解决方案、解决问题,并在这一过程中获得知识、培养相应的能力,基于此中方式来展开教学与研究的教学模式在国内现有的教学理念与教学资源条件下,应用并不广泛。尤其是在相对较为抽象难懂的理工类课程如量子力学课程教学中应用更是甚少。⑥研究生教育主要是培养学生的科研能力与素养,首先要在“研究”的培养上下功夫,而研究生课程教学正好提供了这一平台。在本文中主要以高等量子力学课程教学为主要研究内容,探讨如何进行课堂教学改革。

自1978年国内恢复研究生招生制度以来,高等量子力学就被列为物理系各专业研究生必修的学位课程之一,同时高等量子力学也是报考博士研究生的考试科目之一,在原来本科阶段“量子力学”的基础上进行深化和拓展,主要是提供学生在后学研究工作中要用的一些知识和方法。量子理论已经成为解决物理学、生命科学、信息科学和材料科学等理论问题的关键。

量子力学作为一门微观物理课程,与经典物理学相比,有一个很明显的差异:其中很多理论很难与日常生活和经验对应,涉及的理论、概念非常抽象,同时涉及非常多的数学知识,如(线性代数、Hilbert 空间、群论、数学物理方法和复变函数等),内容繁多,知识结构广泛,使得学生理解起来有非常大的困难,同时容易诱使学生陷入复杂繁琐的计算,而失去对量子力学学习的兴趣。目前,从我校物理系硕士研究生的实际情况来看,学生的量子力学知识水平参差不齐,有的学生以前没有学习过量子力学,有的学生学量子力学学时非常短,同时每个研究方向对量子力学的需求也不尽相同。 因此,量子力学成为教师公认难教的课程、学生公认难学的课程。 高等量子力学的教学效果将直接影响学生以后的科学研究创新能力与论文水平。为了培养研究生日后的科研能力,我们主要从教学内容和教学方法上进行了改革探讨。

在教学内容上,结合本校教学时限(48学时)和本校学生的特点、学生的研究方向,主要目标是将量子力学的知识应用到其它领域,避免冗长的理论计算,激发学生的创新热情。重点学习量子力学的形式理论、微扰理论、对称性和守恒定律、量子散射理论等。

在教学方法上,根据学生的知识基础和教学内容的特点,改变传统的教学方式,采用学生为主的教学方式。传统的教学方式主要是以教师讲授为主的灌输式、填充式,由于量子力学本身的特点,这些教学方法对量子力学的教学实效非常有限。一方面,一个主角的表演使得本身比较枯燥的量子力学课堂毫无生气,学生面对复杂繁琐的数学推导,思维跟不上教师的节奏,学生的学习热情下降。另一方面,学生本身的角色没有改变,自主学习、自主思考没有可锻炼的平台。教师考虑到自然科学的特点,一定要从知识的传承角度出发,这样教师要去贯彻启发式的教学方式。学生学一门课,学的是前人从实践中总结出来的间接知识。一个好的教师,应当引导学生设身处地去思考,自己是否也能根据一定的实验现象,通过分析和推理去得出前人已认识到的规律?自然科学中任何一个新的概念和原理,总是在旧概念和原理与新的实验现象的矛盾中诞生的。⑦作为教师,要充分利用新旧理论的矛盾提出问题,让学生思考问题,并设计一套完成的解决方案。在量子力学的课堂教学中,笔者结合实际情况,主要采取的是学生讲授为主、教师辅导的方式。尽管学生对量子力学知识的理解有限,但是一方面可以促使学生在课前预习;另一方面学生为了准备一堂课,要查阅相关资料,这样就可以极大地提高学生查找资料的能力,拓展学生知识面。作为教师,从学生讲授中也可以得到一些启发,诸如学生对一个问题理解的切入点与教师理解的不同,从而教师可以调整日后的课堂教学,使得课堂教学的内容从抽象化为通俗。

将科学研究融入到课堂教学,也是实现课堂教学改革的有效方式之一。研究生不仅要学习知识,更要的是做科学研究,寓教于研同样可以提高教学效果。在课题教学中,针对一个主题,在讲授基本知识的同时,更多的引入与之相关的前沿知识,并要求学生设计相关的问题,展开调查研究,以论文、学术报告的方式提交研究成果。通过此种方式,研究生的科学研究能力得到锻炼,创新思维能力得到培养,符合我们培养创新型人才的目标。

本文结合本校研究生的实际情况以及量子力学学科特色,我们主要从从教学内容、教学方法两方面探讨高等量子力学课程的教学改革。随着我国高等教育的发展,研究生课程教学改革还有待进一步地深化,这样才能提升我国研究生教育的整体水平,为祖国的发展培养更多的人才,日益增强国家的综合国力。

本文得到南华大学教学改革研究课题,2014XJG49;南华大学研究生教学改革研究项目 资助

注释

① 周萍.量子力学研究性教学[J]. 中国科教创新导, 2011(17): 89-90

② 高芬.美国高校研究生教学中的“教”与“学”――以美国马萨诸塞大学阿默斯特分校教育学院为例[J].学位与研究生教育,2011(3):73-77.

③ 沈元华.设计性、研究性物理实验介绍[J].物理实验,2004(2):33-37.

④ 顾沛.把握研究性教学、推进课堂教学方法改革[J].中国高等教育研究,2009, (7) :3 1-33 .

⑤ 陈兴文,白日霞,李敏.开展研究性教学培养大学生创新能力[J].黑龙江教育:高教研究与评估,2009(1):123-125.

量子力学研究范文2

关键词:研究生;科研能力;影响因素;作用机理

中图分类号:G643.0 文献标志码:A 文章编号:1673-8381(2015)02-0114-05

研究生教育的基本目标是培养大量具有较强创新能力的高层次人才,为社会各行各业提供充足的创新力量,进而带动社会的技术进步与科学发展。当前,我国正处于创新转型的关键时期,创新驱动发展战略已经成为实现中华民族伟大复兴的根本战略。在此背景下,如何进一步强化研究生创新能力的培养,就成为事关国家前途和民族命运的重要课题。研究生的创新能力主要体现在发现新问题、提出新思路、构建新理论、解决新问题等能力方面,这些能力又具体体现在研究生的科研能力上。因此,研究生创新能力的培养,具体而言就是研究生科研能力的提升。

综合来看,对研究生科研能力的现有研究主要以感性分析为主,而模型化的刻画不够深入,研究的严谨性不足。针对以往研究的不足,拟构建研究生科研能力提升模型,并采用问卷调查方法获取研究数据,运用一手数据对假设模型予以检验,从中分析影响研究生科研能力提升的关键因素及其作用机理。

一、概念定义、研究假设与模型设定

(一)概念定义

文章所研究的主要概念定义如下:(1)学校压力,指学校规定的毕业学术条件对研究生造成的压力;(2)导师压力,指导师的学术要求对研究生造成的压力;(3)同学压力,指同学的科研业绩对研究生造成的压力;(4)政策激励,指学校为提升研究生科研能力而制定的激励政策;(5)政策公平,指研究生感知学校激励政策的公平性;(6)提升紧迫感,指研究生对提升自身科研能力的内在紧迫感;(7)课堂提升意愿,指研究生通过课堂学习提升自身科研能力的意向;(8)课外提升意愿,指研究生通过课外学习提升自身科研能力的意向;(9)提升行为,指研究生为提升自身科研能力所采取的行动;(10)提升效果,指研究生科研能力提升后感受到的成就。

(二)研究假设

学校、导师及同学是研究生在校期间所面对的主要存在,他们对研究生的思想和行为起着决定性的作用。首先,学校是研究生所处的大环境,任何学校都对研究生毕业的学术条件有着具体的规定,这种规定所产生的压力势必会影响到研究生科研能力提升的紧迫感,且这种影响一般来说是正向的,即学校压力越大,研究生科研能力提升的紧迫感就越强。其次,导师作为研究生的监管人,直接对研究生提出学术要求,导师要求所产生的压力势必会影响到研究生科研能力提升的紧迫感,且这种影响一般来说是正向的,即导师要求越高,研究生科研能力提升的紧迫感就越强。最后,周边同学的科研业绩在潜移默化中影响着研究生的思想与行为,从而带给研究生科研能力提升的紧迫感,且这种影响一般来说是正向的,即周边同学带来的压力越大,研究生科研能力提升的紧迫感就越强。此外,学校为提升研究生科研能力而制定的激励政策及其公平性也会对研究生科研能力提升的紧迫感带来影响,一般来说,政策的激励力度越大且越公平,则越能够激发研究生科研能力提升的紧迫感。据此,提出研究假设H1、H2、H3、H4、H5。

假设1(H1):学校的毕业条件要求对研究生提升自身科研能力的内在紧迫感具有显著的正向影响。

假设2(H2):导师的学术要求对研究生提升自身科研能力的内在紧迫感具有显著的正向影响。

假设3(H3):同学的科研业绩对研究生提升自身科研能力的内在紧迫感具有显著的正向影响。

假设4(H4):学校为提升研究生科研能力所制定的激励政策对研究生提升自身科研能力的内在紧迫感具有显著的正向影响。

假设5(H5):研究生感知学校科研激励政策的公平性对研究生提升自身科研能力的内在紧迫感具有显著的正向影响。

研究生科研能力的提升方式主要包括课堂提升和课外提升两种。学校不仅要通过课堂向研究生传播书本知识,更要注意传播科研方法和科学思想,注重科研意识的培养,通过聘请国内外著名的专家学者作学术报告的方式让研究生了解国内外最前沿的科研学术成果;邀请学校专家、教授进行讲座,举办研究生科研成果或论文报告会,用现实的科研成果激发研究生学习科技和创作发明的热情。研究生在具备科研能力提升的紧迫感之后,就会选择采用相应方式提升科研能力。一般来说,研究生科研能力提升的紧迫感越强,其采取课堂提升或者课外提升的意愿就会越强。据此,提出研究假设H6和H7。

假设6(H6):研究生提升自身科研能力的内在紧迫感对研究生通过课堂学习提升自身科研能力的意愿具有显著的正向影响。

假设7(H7):研究生提升自身科研能力的内在紧迫感对研究生通过课外学习提升自身科研能力的意愿具有显著的正向影响。

需求决定动机,动机决定行为。需求是最基本的,只有个体(或群体、集团)产生了某种需求,才会基于这种需求而产生动机,继而有了动机之后,这种动机就会支配相应的行为。研究生通过课堂内外学习来提升自身科研能力的意愿就是一种内在动机,这种动机势必会影响到研究生提升自身科研能力的行为。据此,提出研究假设H8和H9。

假设8(H8):研究生通过课堂学习提升自身科研能力的意愿对研究生为提升自身科研能力所采取的行动具有显著的正向影响。

假设9(H9):研究生通过课外学习提升自身科研能力的意愿对研究生为提升自身科研能力所采取的行动具有显著的正向影响。

任何行为都会产生特定的效果。研究生为提升自身科研能力所采取的行动越多,其科研能力提升的就越快,取得的收获也就越多,个人成就感也就越大。据此,提出研究假设H10。

假设10(H10):研究生为提升自身科研能力所采取的行动对研究生科研能力提升后感受到的成就具有显著的正向影响。

(三)概念模型

根据上述10条研究假设,构建研究生科研能力提升模型,如图1所示。

二、问卷设计与调查

基于图1所示的研究生科研能力提升模型,对各构成概念分别设计了3-5个量表问题,量表采用5分制Likert量表,共计34个量表问题。为了保证问卷设计的可靠性和有效性,分别采用了文献研究、研究生访谈、项目小组讨论、小样本测试等质量控制手段。问卷测试地点选在重庆市,共发放测试问卷200份,收回有效测试问卷180份。根据测试情况,对量表问题进行了修改和优化,最终形成了正式的调查问卷。正式调查的对象为重庆市主要高校的在校研究生,总计发放调查问卷500份,回收443份,回收率为88.6%。其中,有效问卷365份,有效率为82.39%。

三、数据可靠性检验

(一)鉴别度检验

量表问题鉴别度检验的目的在于,将变异程度不显著的量表问题删除。检验步骤是,首先分别计算每份有效问卷中全部34个量表问题的得分总和,将问卷中得分总和最高的27%划归到高分组,得分总和最低的27%划归到低分组;然后就34个量表问题在高分组和低分组之间是否具有显著的差异,做独立样本均值比较t检验。检验结果显示,34个量表问题中只有第5题为0.125,未通过鉴别度检验。

(二)效度分析

效度分析的目的是对变量的测量项目进行净化,具体采用探索性因子分析方法对变量测量项目进行净化。利用SPSS16.0对通过鉴别度检验的33个量表问题进行因子分析。在提取因子前,首先对样本充分性进行检验,第一次因子分析的KMO检验测试系数是0.823,巴特利特球体检验显著性概率为小于0.001,拒绝巴特利特球体检验的零假设,表明样本的相关矩阵有公因子,适于做因子分析。第一次因子分析共提取出10个公因子,解释率为67%。其中,政策激励量表第12题被归入政策公平因子中,课外提升意愿量表第27题被归入提升行为因子中,与问卷设计不符,宜删除第12题和第27题。另外,提升行为量表第28题在各个因子中的载荷均小于0.5,宜删除。

在删除了量表第12题、27题和28题②后,对剩下的30个量表问题再作因子分析。第二次因子分析前的KMO检验和巴特利特球体检验结果与第一次相同,说明适于做因子分析。第二次因子分析共提取出10个公因子,解释率为70%。经方差最大化旋转后,30个量表问题均被很好地归入到10个因子中,量表问题的因子归类与问卷预先设定的变量划分完全一致,且在各自所属因子上的载荷均超过0.50,而交叉因子载荷没有超过0.50,因子结构清晰,表明量表具有较好的收敛效度。

(三)信度分析

本研究的量表题项主要是在借鉴前人研究和专家访谈的基础上而设计的,因此需要对量表的信度进行分析。采用态度量表法中常用的信度检验方法――Cronbach a系数检验。在社会科学领域,普遍认为总量表的信度系数在0.80以上为好,在0.70-0.80之间为可以接受的范围;分量表的信度系数最好在0.70以上,在0.60-0.70之间为可以接受的范围。利用SPSS16.0分别作总量表和各分量表的Cronbach a信度检验,结果列于表1。总量表的Cronbach a值为0.858;各分量表的信度也满足分析要求,适合于作进一步的结构关系分析。

四、模型拟合与假设检验

(一)模型拟合

运用经过检验的问卷数据,对概念模型图1进行拟合,由拟合结果可知,模型的单位自由度卡方指标x2/df为2.25,满足小于3的参考标准。拟合优度指数GFI为0.86,接近0.90的理想标准。比较拟合指数CFI和非正态拟合指数NNFI皆为0.93,满足不小于0.90的理想标准。近似误差均方根RMSEA为0.059,接近0.05的理想标准。据此可以认为,模型的整体拟合效果较好。

(二)研究假设检验

对模型进行整体拟合度检验后,即可进行路径系数检验,进而验证模型设立的研究假设,见表2。

由表2可知,学校压力对研究生科研能力提升紧迫感不存在显著影响,即研究假设H1不成立。剩下的9个研究假设均成立,其中,研究假设H3和H5在10%的统计水平显著异于零;研究假设H4和H9在5%的统计水平显著异于零;其余5个研究假设在1%的统计水平显著异于零。

五、结论与启示

(一)已验证假设的政策含义

1.导师压力对研究生科研能力提升紧迫感具有显著的正向影响,路径系数为0.20,意味着导师的学术要求对研究生造成的压力提高1个单位,研究生科研能力提升紧迫感会提高0.20个单位。同学压力对研究生科研能力提升紧迫感具有显著的正向影响,路径系数为0.11,意味着同学的科研业绩对研究生造成的压力提高1个单位,研究生科研能力提升紧迫感会提高0.11个单位。政策激励对研究生科研能力提升紧迫感具有显著的正向影响,路径系数为0.32,意味着学校为提升研究生科研能力所制定的激励政策提高1个单位,研究生科研能力提升紧迫感会提高0.32个单位。政策公平对研究生科研能力提升紧迫感具有显著的正向影响,路径系数为0.14,意味着研究生感知学校科研激励政策的公平性提高1个单位,其科研能力提升紧迫感会提高0.14个单位。据此,为加强研究生自身科研能力的内在紧迫感,最有效的方式是通过导师压力、同学压力、政策激励和政策公平来驱动。

2.研究生科研能力提升紧迫感对课堂提升意愿具有显著的正向影响,路径系数为0.72,意味着研究生提升自身科研能力的内在紧迫感提高1个单位,其课堂提升意愿会提高0.72个单位。研究生科研能力提升紧迫感对课外提升意愿具有显著的正向影响,路径系数为0.65,意味着研究生提升自身科研能力的内在紧迫感提高1个单位,其课外提升意愿会提高0.65个单位。据此,可以通过强化研究生自身科研能力提升的内在紧迫感,来促进研究生通过课堂内外学习提升自身科研能力的意愿。

3.研究生科研能力课堂提升意愿对提升行为具有显著的正向影响,路径系数为0.46,意味着研究生通过课堂学习提升自身科研能力的意愿提高1个单位,其提升行为会提高0.46个单位。研究生科研能力课外提升意愿对提升行为具有显著的正向影响,路径系数为0.18,意味着研究生通过课外学习提升自身科研能力的意愿提高1个单位,其提升行为会提高0.18个单位。据此,可以通过提高研究生课堂内外学习提升自身科研能力的意愿,来促进研究生提升自身科研能力的行动。

4.研究生科研能力提升行为对其科研能力提升效果具有显著的正向影响,路径系数为0.31,意味着研究生为提升自身科研能力所采取的行动增加1个单位,其提升效果会提高0.31个单位。

(二)未验证假设的原因分析

关于学校压力对研究生科研能力提升紧迫感的研究假设在本研究中并未得到验证。造成这一结果的可能原因,一是调查样本的学校压力不明显,即被调查学校对研究生的毕业条件要求可能偏低,未能带给研究生提升自身科研能力的紧迫感;二是学校压力可能与政策激励之间存在较高的相关性,这种相关性会带来多重共线性,使本来显著的效应变得不显著。扩大样本调查范围和样本容量,是避免上述问题的途径之一,也是本研究有待改进之处。

(三)政策启示

1.对研究生培养政策的启示。鉴于政策激励和政策公平对研究生科研能力提升紧迫感的正向作用,提示学校应当制定积极的研究生科研激励政策,并努力让学生感受到激励政策的公平性,通过合理的政策导向来强化研究生科研能力提升的紧迫感,进而刺激研究生提升自身科研能力的意愿,诱发研究生提升自身科研能力的行为,最终使得研究生成长为国家创新发展的中坚力量。

量子力学研究范文3

关于课题研究申请书1

市教科研领导小组:

姜堰市z初级中学于20__年6月申请立项了《突出学生主体,提高课堂教学效益的实践研究》的泰州市规划课题,经过课题组成员两年多的艰难探索与实践,本课题研究已初见成效。20__年8月本课题研究已到期,现向教科研领导小组提出结题申请。

课题名称:《突出学生主体,提高课堂教学效益的实践研究》

实验研究学校:

课题总负责人(课题组长):

课题副组长:

课题组办公室主任:

课题组办公室副主任:

子课题组长:

课题研究时间:20__年6月——20__年8月

课题研究过程:

该项目研究历时两年多,经三个阶段:

第一阶段:20__.5——20__.5,准备阶段。

专家引领,理念先行。20__年6月,泰州市规划课题《突出学生主体,提高课堂教学效益的实践研究》开题。泰州市教育局教研室胡唐明、钱德春,姜堰市教育局教研室周庆林、李念民、曹沐斌、王书月、孟太、曹军以及特级教师许亚平等到学校进行指导,课题组还专门聘请姜堰市教育局教研室沙化中主任为常务顾问,总体规划,制定目标。根据专家的指导和建议,本课题组请专家到校培训指导;走出去,与先进教科研学校结对,学习外校先进的教科研经验;课题组通过问卷调查,全面了解学生发展需要,分析制约效益课堂的因素,制定提高课堂教学效益的实施方案五效一堂,确定提高课堂教学效益的总体思路和目标。

负责人:

第二阶段:20__.5——20__.5,项目研究实施阶段。

(1)全面推进,突出重点,成立实验班级;典型示范,骨干带动,建立健全五效一堂的实践性实验机制;加强培训,力促成长,建立分层次、形式多样的培训机制,制订提高各层次课堂效益规划(定向初一年级语文、数学、英语三门功课,取得一定的经验后,再向其他科目、其他年级渗透、推广);发挥集体智慧,使五效一堂式集体备课日常化、常态化;正确引导,理论提升,加强新理念的学习,提升应对课改的能力。

(2)以打造高效课堂教学促师生成长,以创新研究促师生发展。

(3)重视教学实践基础上的反思。鼓励实验教师及时将教学所得诉诸笔端,在实践检验中形成论文。

(4)成功举行了首届教师博文比赛,建立骨干教师博客,实行教师论坛制度。为老师提供跨学科的交流平台。

负责人:

第三阶段:20__.5——20__.8,项目研究总结阶段。

整理实验材料,形成研究报告和工作报告,进行问卷调查,反馈实验结果。召开课题结题会,聘请专家对科研成果进行评审鉴定。

负责人:

(一)材料性成果

⒈编印了《树人》《秋韵》等校本教研教材

⒉编印了《五效一堂集体备课资料集》《五效一堂教学案集》等中期成果资料

⒊编印了数期《突出学生主体,提高课堂教学效益的实践研究论文集》

(二)经验性成果

⒈五效一堂课改要求。

⒉促进了教师观念的转变,为素质教育的深入开展和新课程的实施提供了保障。获得了教师专业发展的总体思路和规划。

⒊取得了促进师生发展的系列经验。

⒋获得了课题研究工作的经验。

(三)实效性成果

⒈提高了我校的教育科研能力,促进了教师的专业化成长。

⒉建立起了新的教师专业成长评价机制。

⒊积累了编写校本教材的经验。

⒋形成了良好的校本教研氛围。

此致

敬礼!

____初级中学

关于课题研究申请书2

泰兴市教育局教研室:

在小学作文教学研究这一领域,虽然在情境作文研究、读写结合作文研究、生活作文研究等方面已经取得大量研究成果,但是仍缺乏使学生感兴趣的写作内容和综合性教学策略方面的探索,更缺乏综合性与序列性,没有形成完善的快乐作文教学体系,导致学生习作兴趣不能长久保持,学生写作能力无法自然衔接和循序提高。为此,我校教师在教科室的领导下,结合作文教学实践和现状,确立了《在体验生活中快乐作文》这一课题。这一课题的提出,目的就是在快乐作文教学中寻求使学生更“易于动笔,乐于表达”之路。

课题名称:《在体验生活中快乐作文》 编号:TZJYS2011108选题依据:按照学生的认知规律和心理特点选择适宜的教学策略,并以课堂为现场,以教学为中心,以学生为主体,以校本教研为主,根据研究的内容选择有效的科研方法。在教学中通过分析研究,提高课题研究的质量。

研究的目的和意义:指导学生从体验生活入手,不断增强学生习作的兴趣,促进作文各因素的整体提高;促使学生深化对生活的认识和体验,进而快快乐乐写作文,促使学生主体人格的形成,语文综合能力和人文素养得到同步发展;改变教师的教学观念,使教师在语文教学方面具备较扎实的理论功底和实践能力,习作课堂教学水平和教学质量有新的提高,进而归纳、总结、探索出一套行之有效的快乐作文教学模式。

人员组成及分工:王金明为本课题的主要负责人,组织、指挥、处理实验日常事务。参研人员有王建友、王新锋、黄燕、吴梅、李慧民、封伟华、朱琴、黄慧等。

目前,本课题的研究组织机构已经建立,各项研究工作的准备已经就绪,特向市教研室申请开题,恳求教研室的各位领导、专家批准,并在今后的研究工作中给予关注、支持、指导。

泰兴市南沙小学《在体验生活中快乐作文》课题组

20xx年2月24日

关于课题研究申请书3

本项目将着重于新型量子功能材料的物性表征和新型量子功能材料的探索。主要研究方向为关联系统中的高温超导体、庞磁阻材料、石墨烯和拓扑绝缘体等材料中的电荷、轨道、自旋等自由度相互竞争、相互耦合,以及因此产生的多个量子态竞争和共存、自旋量子霍尔效应等现象。探索新型量子功能材料、发现新的量子态;对新型量子材料的物理基本性质进行研究、输运性质进行高精度测量、结合理论研究理解关联体系的物理机制;利用各种实验手段测量石墨烯和拓扑绝缘体的物理性质,研究因维数效应产生的新奇物理现象。按照项目的不同侧重点和研究手段的不同,将项目按照材料探索、物性研究、输运性质的高精度测量和低维体系四个方面展开研究:

1、新型超导材料和量子态的探索:

本课题的首要目标是探索新的高温超导材料,同时发展晶格结构和电子结构分析技术,以及超高压测量技术,分析自旋、电荷、轨道等有序现象,努力发现新的量子现象。研究内容互相补充,细分为以下几个方向:

(1)新材料的探索与合成及单晶生长:探索新超导材料,主要从事铁基超导材料以及类似的层状、多层含有类似Fe—As面的多元化合物的探索,以及包含稀土和过渡元素的其他层状多元化合物中的新材料探索;总结样品合成和成相规律,发展新方法、新工艺,寻找新现象、新效应;另外将生长高质量单晶样品以用于深入的物理研究。

(2)晶体结构表征与研究:对发现的新材料进行晶格结构、化学成分的表征,从而促进材料的探索;研究新的结构现象,深入分析新型超导体的微结构—物理性能之间的关联,研究化学成键、电子能带结构,研究高/低温结构相变等,研究晶格中缺陷、畸变对超导的影响。

(3)超高压下的量子效应研究:研发一套超高压低温测量系统(100GPa,1.5K),在此基础上研究超高压下铁基材料以及其他新材料中可能出现的新奇量子现象、超高压对超导转变的影响、高压高场下材料的物性和相图,探索高压下可能出现的新量子态和新奇量子现象。

(4)中子散射研究:研究铜氧化物和铁基高温超导材料以及其他新材料的晶格精细结构,电子自旋、电荷、轨道有序结构,研究超导材料及其母体中的自旋激发、自旋涨落的形成、演变及其和超导的关系,研究材料中形成的新的量子态和量子现象。

2、关联体系量子功能材料的物性研究:

利用谱学的方法研究新型量子功能材料的电子结构,主要包括ARPES,STM和自旋极化的STM(SP—STM),以及红外光谱的方法研究关联系统(以高温超导体和庞磁阻材料为主)的电子结构,争取在高温超导和庞磁阻材料的机理研究中有重大突破。具体到各种谱学实验方法和强关联体系中的问题,细分为:

(1)以高精度角分辨光电子能谱为手段,深入研究以高温超导体(包括铜氧超导体和铁基超导体)为主的多种新奇超导体材料。本项目将结合我们在高温超导材料和角分辨光电子能谱上的优势,对高温超导体进行深入系统的研究,重点研究超导态对称性、赝能隙、电子与其它集体激发模式耦合等现象。

(2)锰氧化物体系,特别是三维钙钛矿结构锰氧化物薄膜的电子结构,我们将在不同晶格参数的衬底上生长具有不同组分和厚度的高品质外延锰氧化物薄膜,用ARPES原位测量体系的电子结构。总结锰氧化物体系电子结构随组分、应力和温度的变化规律,研究电子—电子及电子—波色子相互作用对电子行为的影响,揭示电子结构和宏观物理特性之间的联系。从电子结构的角度出发试图阐明锰氧化物体系庞磁阻、相分离、电荷轨道有序等异常物理性质的内在机理。

(3)利用STM特有的原子级空间分辨率,局域态密度能谱,能量分辨谱图,及原子操纵功能。通过高分辨率的空间扫描成像,定位表面相关原子层结构,特别是掺杂原子的位置。研究掺杂原子对表面原子层结构的调制。通过局域态密度能谱,研究库珀电子对的激发态(超导能隙)与赝能隙(pseudogap)的关系。通过分析能量分辨谱图,研究超导序的二维结构及其演变规律。通过改变温度,调整掺杂浓度,及外加磁场,我们可以直观地观察超导序表面二维结构的变化。

(4)发展SP—STM技术研究高温超导材料中电子自旋结构。这个新型的SP—STM将能提供原子级空间分辨率和自旋极化分辨的谱图图像。利用这一工具,我们将着重研究在反铁磁与超导共存的高温超导体中的反铁磁自旋结构,超导磁通蜗旋中反铁磁核心的存在早已由SO(5)理论预测,此结果将验证SO(5)理论预测的结果。另外,我们将利用这一工具研究表面吸附的磁性原子对局域态密度能谱的影响及其与超导电子对的相互作用。

(5)建设强磁场下的红外反射谱测量系统,研究磁场下高温铜氧化物超导体和铁基超导体的准粒子激发行为。重点研究铜氧超导体和铁基超导体中电子与集体激发—声子激发/自旋激发模式的耦合问题。我们将用光学响应或光电导谱对材料的电子结构,传导载流子的动力学性质等重要信息进行分析,研究超导配对引起的能隙特征,揭示电子是与何种集体模式存在较强的耦合等基本信息。

(6)利用高压多重合成条件获得结构简单和性质独特的高质量的铜基和铁基高温超导体及巡游磁性体系单晶,探寻关联体系金属化过程的量子序及其调控机制。在我们成功的高温高压合成以上具有特点的多晶材料的基础上,进一步优化压力、温度和组分等极端合成条件,研制和研究在结构简单的、高质量的含卤素的Sr2CuO2+δCl2—x高温超导体单晶和可能的巡游型BaRuO3单晶,以及“111”型铁基超导体单晶体;运用多种能谱学、磁性、显微学等物理条件的综合表征体系,研究揭示这些体系的量子有序规律。

(7)利用我们发展的新的理论和计算方法,结合实验组的研究进展对多种过渡金属氧化物及其奇异物性进行定量的研究。一方面,为各种实验现象及其物理本质提供理论解释,另一方面,计算模拟并预测一些新型的量子有序现象,包括金属—绝缘体相变,轨道选择性的Mott转变,轨道有序态,Berry相等等。主要研究内容包括自旋与轨道自由度相关的量子现象计算研究;受限强关联电子系统中的量子现象计算研究。

3、量子材料输运性质的高精度测量

(1)首先我们将致力于自行研制加工一套较完备的电学、热学和磁学测量装置,其中包括热导率、热电势、能斯特效应、微晶比热和微杠杆磁强计等较独特的手段。这些装置将可以工作在低温、高真空、强磁场的极端物理条件下,测量结果的精度具有国际领先水平。将完善一套低温比热测量装置,获得比一般商业手段高出一个量级的测量精度。建造一套转角度的比热测量系统。研究非常规超导体的低能激发和配对对称性。完善小Hall探头系统和磁场极慢扫描的振动样品磁强计,精密测量磁场穿透行为,确定下临界磁场和超流密度随温度的变化关系。

(2)我们将对高温超导体、铁基超导体和钠钴氧体系进行深入的实验研究。这三个体系的共性是由于电子强关联作用,电荷与自旋自由度有分离的倾向,然而相互之间又存在着精微的相互作用,从而导致高温超导、超导与磁性紧邻甚至共存、居里—外斯金属等奇妙的物理现象。如何理解电荷与自旋自由度的关系是强关联物理的核心理论问题之一。我们可以通过选取特定的研究手段而选择性地分别探测电荷与自旋元激发,也可以同时研究二者之间的相互作用。将这些不同的手段结合起来将可以对关联体系中电荷与自旋的行为提供一个较完整的图像。我们关注的主要问题包括磁性与超导的相互关系、电荷与自旋有序态的形成机制、自旋自由度对电荷输运和熵输运的影响,等等。

(3)电荷与自旋的相互作用也是很多功能性关联材料在器件应用方面的物理基础,例如钠钴氧体系中自旋熵对热电效应的贡献、多铁材料中外加电场对自旋取向的控制、锰氧化物中外加磁场对电阻的巨大影响,等等。在对电荷自旋相互作用基本原理的理解基础上,我们还将探索它们在功能性器件应用方面,特别是超导效应、热电效应、磁阻效应等在能源和信息领域的新思路、新途径。(4)充分利用化学掺杂和结构修饰进行新量子材料体系的探索工作。采用合适的化学合成方法以及良好的合成设备,获得高质量的合乎要求的样品。采用x射线衍射、电子显微镜等常规实验手段对样品进行结构表征。必要时,通过同步辐射、中子衍射等大型研究设施对系统的结构作更细致的测量。对高质量样品进行各种精密的物理性质测量。包括电阻、磁电阻、霍尔效应、热电效应、能斯特效应、磁化强度、比热、热导、光学性质以及核磁共振和穆斯鲍尔谱等。归纳、总结系统的物理规律特性与电子相图。

(5)在新型铁基超导体系方面,我们将以元素替代作为主要探针,研究铁基超导体的超导机理。理论上拟以CeFeAsO1—xFx、CeFeAs1—xPxO等材料为代表,发展从磁性“坏金属”或“近莫特绝缘体”到重费米子液体过渡的理论框架,用平均场等方法、结合数值计算来研究这一理论,并以此来解释铁基超导材料在输运性质、磁学性质等方面表现出来的多样性和复杂性,探索这类体系中可能出现的奇特量子相变和相应的量子临界性。

(6)在铜氧化物高温超导方面,结合前述精确实验测量,我们将以掺杂莫特绝缘体模型为出发点,研究赝能隙区可能存在的隐藏的量子序、量子序和超导态的竞争和共存、费米面的重组、以及到费米液体区的量子相变。希望由此理解超导相图中在最佳掺杂区附近可能出现的量子临界点以及相联系的一系列反常输运和磁学性质;在重费米合金方面,我们拟以CeCu2(Si1—xGex)2等材料为代表,具体考察关联杂化项对量子临界点产生的影响,研究由于可能由于压力效应引起的f轨道价态杂变化,以及两个近邻的量子相变,确定相应的电阻标度行为和量子临界性。

4、低维量子体系和量子态的研究:

(1)探索制备高质量的石墨烯单晶的方法,研究生长条件对单层石墨烯结构的影响,探索重复性好、效率高、成本低、易控制的制备技术。表征单层石墨烯长程有序度。通过变温、低温STM/STS,深入研究石墨烯体系的本征电子结构以及缺陷、掺杂对电子结构的调制。生长高质量拓扑绝缘体单晶,研究它们的基本性质。

(2)探索和生长高质量的拓扑绝缘体材料,拓扑绝缘体大部分是合金材料,需要优化目前晶体生长工艺。争取准备组分分布均匀,形状规整的大尺寸二元固溶体多晶锭料。

(3)利用STM和扫描隧道谱(STS)表征,研究膜石墨烯的几何结构和本征电子结构。测量石墨烯膜的扶手椅型边缘和锯齿型边缘的局域电、磁性质。将充分发挥变温STM优势,研究单个分子以及多个分子在石墨烯表面可能的奇异动力学行为或几何结构,物化特征。

(4)利用STM研究在拓扑绝缘体的金属表面态;通过表面沉积非磁性杂质研究狄拉克费米子和杂质的相互作用,无磁性中性杂质对于拓扑绝缘体表面狄拉克费米子的散射,为输运性质的研究提供基础,检验和理解前人有效理论预言的拓扑磁电效应。利用自旋分辨的STM技术,观察杂质在实空间诱导的自旋texture。在表面沉积磁性杂质,研究体内磁性杂质所造成的时间反演破缺对于边界态的影响。尤其在带有内部自由度的杂质的研究中,着重研究在拓扑绝缘体背景下两个杂质的内部自由度相互间的量子关联,这对于量子信息处理将可能有重要的潜在价值。

(5)利用角分辨光电子谱测量石墨烯的电子结构,包括石墨烯的色散关系,电子—声子相互作用,电子—激子相互作用,能隙的大小等,以及这些参数随石墨烯层数、石墨烯与衬底相互作用导致的电子结构的变化。利用ARPES研究拓扑绝缘体的表面态,确定能级色散关系,狄拉克点的数目,判定系统是否是强的拓扑绝缘体。利用自旋分辨的ARPES和不同偏振模式的光源分辨电子不同自旋分支的色散关系,测量电子自旋的极化特性。

(6)利用核磁共振技术(NMR)研究研究三维拓扑绝缘体的磁性质,从磁性质上找到拓扑绝缘相变的证据。使用高压和掺杂技术调节三维拓扑绝缘体量子相变,进一步研究其在量子相变点的特性。改进NMR系统,提高核磁共振的灵敏性,从而可以对拓扑绝缘体的表面态进行研究。研究表面的磁激发谱及其金属态的特性,从而得到表面态在微波波段的磁性质,并进一步与块材绝缘态的性质进行对比。

量子力学研究范文4

【关键词】中学 化学教学 量子空间论

【中图分类号】G633.8 【文献标识码】A 【文章编号】2095-3089(2013)10-0154-01

(小叙):课篇第一章节细读、研读、探透性知识点。

1.寻找研究方法 2.课题的研究内容

3.课题研究的一些成果 4.巩固建筑语录

【序言】

化学是在分子、原子层次上研究物质性质、组成、结构与变化规律的科学。化学不断地发展着,目前,人们发现和合成的物质已有几千万种,其中很多是自然界中原本不存在的;这极大地改善了人类的生存和发展条件,丰富了人们的生活。

例如:

1.纳米铜(1nm=10?9m )具有超塑延展性,在室温下可拉长50多倍而不出现裂纹。

2.用隔水透气的高分子薄膜做的鸟笼。

3.单晶硅为信息技术和新能源开发提供了基础材料。

4.用玻璃钢制成的船体。

总之,作为实用的、富于创造性的中心学科,化学在能源、材料、医药、信息、环境和生命科学等研究领域以及工农业生产中发挥着其他学科所不能替代的重要潜质作用。近年来,“绿色化学”的提出,使更多的化学生产工艺和产品向着环境友好的方向发展,化学必将使世界变得更加绚丽光彩。

【寻找研究方法】

第一单元 走进化学世界;

1.物质的变化和性质

2.化学是一门以实验为基础的科学

3.走进化学实验室

第二、三单元 我们周围的空气与自然界的水;空气、氧气(氧气的制取)、水的组成、分子和原子、水的净化。“爱护水资源”。

第四、五单元 物质构成的奥妙、简单统计应用;原子的构成、元素、离子、化学式与化合价 :

如何正确书写化学方程式”?利用化学方程式的简单计算?

第六、七单元 C与C的氧化物燃料及其利用;

分析:金刚石、石墨和C60 (1.CO2 的制取? 2.CO2 与CO的区别、联系?)

应用:燃烧和灭火?燃料和热量?

环保问题:“燃料对环境的影响”

自留田地:“石油和煤的综合利用?”

第八、九单元 金属与溶液的问题;

熟记、认识:金属、金属材料、金属的化学性质;

金属资源的利用和保护、溶液的形成;

溶解度、溶质的质量分数。

第十、十一、十二单元 酸与碱 、盐与化肥 、“化学与生活”。

生活中常见的:1.酸与碱

2.酸与碱之间会发生什么反应

3.盐

4.化学肥料

人体:1.人类重要的营养物质

2.化学元素与人体健康

3.有机合成材料

学生自认化学常用仪器。学习“附录”相关记录 。

【课题的研究内容】

无机化学中量子(分子、原子)力学论

量子化学(Quantum chemistry)是理论化学的一个分支学科,是应用量子力学的基础原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互碰撞和相互反应等问题。

量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法,研究化学问题的一门基础科学。

1927年海特勒和伦敦用量子力学基础原理讨论氢分子结构问题,说明了两个氢原子能够结合成一个稳定的氢分子的原因,并且利用相当近似的计算方法,算出其结合能。由此,使人们认识到可以用量子力学原理讨论分子结构问题,从而逐渐形成了量子化学这一分支学科。

【课题研究的一些成果】

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构,设计并合成人工酶;可以揭示遗传与变异的奥妙,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

【巩固建筑语录】

化学中常见“离子反应”包括:“酸、碱、盐在水溶液中的电离”和“离子反应及其发生的条件”两部分。

无机化学中最关键的是要有实观性:基础高层次的“化学方程式”们。

其次,稀土元素中的各种化学量变、质变及各种物理、化学性反应。

再次,金属的利用、及高等积存用途。

还有,就是气体的大力层存在行式。如同:水、陆、空,人类的生活方式。

参考文献:

[1]初中九年级化学上、下册课本,人民出版社出版,2011年版。

量子力学研究范文5

一、凝聚态物理的重要性

凝聚态物理主要从两个方面体现其重要性:一方面体现为与相邻学科(如粒子物理学)之间在概念、方法、技术等方面的渗透,促进材料科学、能源科学、环境科学等交叉学科的发展,并日益显现出其强大的发展潜力。另一方面为研发和制备新型材料提供了强有力的理论数据和实验支持,同时也为开发和拓展新领域提供了极具实用性的科学理论依据。

二、凝聚态物理的主要研究方向

随着交叉学科的发展和技术需求的提高,凝聚物理的研究范围更加广阔,技术要求更加精密。凝聚态物理的主要研究方向有以下几种。

1.软物质物理学

软物质概念于1991年提出,也称为复杂液体。软物质一般是由大分子或基团组成的,介于固体和液体之间的物相。一些常?的物质,如液晶、胶体、膜,生命体系物质诸如蛋白质、DNA、细胞等,都属于软物质。和由内能驱动的硬物质不同,软物质的组织结构变化主要由熵驱动,变化过程中内能的变化很微小。

2.宏观量子态

宏观量子态是指用量子力学来描述宏观体系的状态,如超导中的电子库珀对。宏观量子态具有典型的量子力学性质,当前宏观量子态领域研究的重点为耗散现象和退相干现象。

3.介观物理与纳米结构

介观是指介于宏观和微观之间的体系。介观物理学所研究的物质大小与纳米科技的研究尺度有很大重合,所以这一研究方向也常称之为“介观物质和纳米科技”。

4.固体电子论中的关联区

凝聚态物理的前身――固体物理学研究的核心问题,就是固体中的电子行为。固体中的电子行为可根据电子间相互作用的大小分为三个区域,分别是强关联区、中等关联区和弱关联区。现今研究固体电子论的大部分学者研究方向都是强关联系统。

三、凝聚态物理的主要研究现象及其理论依据

目前凝聚态物理的主要研究现象有超导、光谱、弱相互作用、磁性研究(微磁学、铁磁学、相图、磁阻、巨磁阻抗效应等)、多向异性、子晶格、态密度、能隙、强关联、激发态、量子通信、冷原子、霍尔效应等。

凝聚态物理所用的理论依据主要源于相变与临界现象的理论,成熟完备的量子力学则是其坚定可靠的理论基石,在这两种理论之下,凝聚态物理根植于相互作用的多粒子理论。凝聚态物理的前身――固体物理学中的一个重要理论依据是能带理论。目前来说一些常用的理论方法有很多,比如蒙特?卡洛方法、波尔茨曼模型、分子动力学模拟、伊辛模型、有效场、平均场,等等。

四、目前凝聚态物理研究取得的一些成就

量子力学研究范文6

1924年,印度物理学家玻色(Bose)将光子作为数量不守恒的全同粒子而成功的导出了黑体辐射定律。随后,爱因斯坦在1924和1925年发表了两篇文章,将玻色对光子的统计方法推广到了全同粒子理想气体,并大胆地在理论上预言了这种新奇的量子相变,即,当温度足够低时,无相互作用的玻色子将会占据同一状态,大量的原子就会集聚在最低能量的量子态上,这就是所谓的玻色-爱因斯坦凝聚现象(Bose-Einstein condensation 简称BEC)。玻色-爱因斯坦凝聚是一种崭新而奇特的物质状态。实验上,直到1995年人们才在实验室里观察到玻色-爱因斯坦凝聚现象。自此以后,整个物理学界掀起了研究玻色-爱因斯坦凝聚的热潮。

在理论上,玻色-爱因斯坦凝聚在平均场理论框架下可以用Gross-Pitaevskii(GP)方程(即变系数非线性薛定谔方程)描述,该方程在某些特殊参数系数下是可积的且存在精确的孤立子解。随着实验技术的逐步改进,原子间的相互作用力和外势场可以进行调控,从而GP方程的各项系数可以进行人工调制,使得孤立子理论能够有效地应用于玻色-爱因斯坦凝聚的研究,许多新奇的量子态被发现。

近年来,通过与中国科学院物理研究所刘伍明研究员等人合作,我们在玻色-爱因斯坦凝聚体中的孤子动力学方面取得了可喜的研究成果。具体如下:(1)研究了简谐势作用下空间局域非线性的准二维玻色-爱因斯坦凝聚系统,得到了两组精确的局域非线性波解,分析了波函数的量子和拓扑性质及动力学性质,得到了新的概率密度分布,利用数值模拟研究了这些局域非线性波的线性稳定性,发现了非线性系统中类似于线性谐振子的能谱变化规律和量子信息,并设计了一个实验方案来实现这种玻色-爱因斯坦凝聚。该结果发表在[Phys. Rev. A 81, 025604 (2010)]上,该论文至今被引用40余次,其中包括发表在国际顶尖物理学期刊Rev. Mod. Phys.上的论文。(2)研究了简谐势作用下时空调制非线性的两分量玻色-爱因斯坦凝聚,获得了两组精确的物质波孤子解,包括呼吸孤子、准呼吸孤子、振动孤子和运动孤子等;最后,通过加噪声的动力学演化研究了这些物质波孤子的稳定性。该结果发表在[Phys. Rev. A 82, 023612 (2010)]上,至今被他引20余次。(3)研究了准二维简谐势作用下具有时空调制非线性的旋转玻色-爱因斯坦凝聚,求得了精确的量子化涡旋和巨涡旋孤子解,通过动力学演化和数值模拟发现时空调制非线性支持稳定的量子化涡旋;特别地,我们发现在排斥的非均匀凝聚体中存在具有大拓扑核的稳定的量子化涡旋。该结果发表在[Phys. Rev. A 84, 053607 (2011)]上,至今被他引近20次。(4)将延拓结构理论推广到GP方程上,得到了可积的GP方程及其非等谱Lax对;并通过一个自相似变换将具有衰减项的GP方程转化成了经典的非线性薛定谔方程,得到了该GP方程在Feshbach共振条件下的双亮、双暗孤子解,分别描述了在吸引势和排斥势中随时间变化的原子间相互作用的玻色-爱因斯坦凝聚的亮、暗孤子的动力学,为新的实验提供了依据。该结果发表在[J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 245303]上,至今被引用10次。

另外,我们还在旋量玻色-爱因斯坦凝聚的环状暗孤子、三维旋转玻色-爱因斯坦凝聚的环涡旋孤子和具有自旋轨道耦合的旋转玻色-爱因斯坦凝聚的skyrmion等方面做过深入的研究和探索。今后的研究重点是,光晶格中玻色-爱因斯坦凝聚体的新奇动力学、偶极-偶极相互作用下玻色-爱因斯坦凝聚体的孤子动力学以及非交换规范场作用下玻色-爱因斯坦凝聚体的超流和Bogoliubov激发。

这些研究成果得到了国家自然科学基金青年基金项目(批准号:11001263)、北京市自然科学基金(批准号:1132016)和北京市教委科技发展计划面上项目(批准号:SQKM201211232016)的支持。感谢中国科学院物理研究所刘伍明研究员等合作者的无私帮助和讨论。