集成电路工艺与设计范例6篇

集成电路工艺与设计

集成电路工艺与设计范文1

关键词:集成电路工艺;立体化教学;探索与实践

微电子技术是高科技和信息产业的核心技术,是伴随着集成电路(IC)发展起来的高新技术,对国民经济和国家安全有着举足轻重的战略作用。集成电路工艺作为电子科学与技术相关专业的专业课程,其任务是使学生掌握集成电路的主要工艺技术及相关原理,培养其自主解决工艺问题的能力。课程具有实践性强、理论与实践密切结合的特点,目前的教学存在强调理论、忽视实践的问题,学生害怕硬件,缺乏动手能力,不能扎实系统地掌握课程知识。本文对集成电路工艺的教学方法和教学内容进行了探讨,搭建了“理论―模拟―实践”的立体化教学平台,为大学教学改革提供参考。

一、目前课程存在的问题

1.教学模式的限制

在课程教学中,教学模式主要以理论授课为主,但是高等院校对微电子及集成电路专业的人才培养方式越来越强调对学生实践能力的培养,传统板书和多媒体PPT演示的教学方法已经无法满足与实验教学有机的结合。

2.教学资源的缺乏

要培养学生具备较好的动手能力及基本的科研素质,在集成电路工艺实验教学中,必须使用各种工艺设备,如扩散炉、退火炉、光刻机、刻蚀机等,这些设备仪器价格昂贵,购置和维护这些设备的费用远远超出了学校的承受能力,导致其中部分实验无法开设,降低了教学效果。

3.课程设置僵化

目前集成电路工艺的课程设置一般是采用理论教学和实验教学结合、理论教学和计算机模拟结合的形式,或者单独进行相关的课程设计,整个知识面不够系统,并且考核形式比较单一,不利于学生集成电路工艺设计和分析能力的提高。

二、立体化教学在课程中的实践

1.理论教学设计

集成电路工艺的基础知识所涉及的面较广,理论性较强,要求学生能够扎实掌握半导体原理和器件的相关知识,能够从前期的课程基础上解释工艺中出现的问题,如外延层构造及缺陷与器件性能间的联系、扩散参数与掺杂离子分布的联系等。所以,在教学内容的选择上突出交叉课程的相关性,将半导体原理和器件的内容融入工艺的教学内容中,有利于电子科学与技术专业学生对课程体系的整体掌握。

2.模拟仿真设计

TCAD(Technology CAD) 即工艺计算机辅助设计已经在集成电路工艺中有着举足轻重的作用,广泛运用于工艺优化、控制以及设计优化中,不但可以通过模拟芯片制备的整个工艺流程节省实验成本,在实验前后以及进行过程中,可以随时观察各项数据,对实验过程和结果进行直观分析,从而使学生得到及时全面的认知,改善教学效果。对理论教学中的案例进行验证性和探究性模拟实验设计,可以进一步加强学生对知识的掌握程度。基于南通大学的SILVACO―TCAD的教学软件,同样以热扩散工艺为例,如下图所示,扩散深度随着扩散时间的增加而增加,可见在模拟实验中可以便捷地修改各项参数,灵活设计教学内容。

3.实验教学设计

实验作为教学的重要组成部分必须与理论教学相辅相成, 必须能有效地促进学生对理论的理解,又要能在实验中应用相关理论,为学生获得新的理论知识打下良好的基础。目前集成电路工艺课程存在实验仪器贵重、精密、量少与实验人数多、实验时间短的供需矛盾,因此对于现有的设备一定要对实验参数进行正交设计,从全面实验中挑选出部分有代表性的点进行实验,注重高效率、快速、经济。

综上所述,在集成电路工艺课程中,建立理论授课―TCAD工艺模拟―工艺实验密切结合的立体化实验平台,不但能丰富课程的教学内容,而且能激发学生的学习兴趣,也能使学生更为扎实地掌握集成电路制备的整个流程和设计方式,增强动手能力,提升教学效果。

参考文献:

集成电路工艺与设计范文2

关键词:集成电路 SUPREM-III 扩散工艺模拟

1.引言

随着超大规模集成电路技术的发展,集成电路技术领域的计算机辅助设计技术,已经成为优化半导体器件结构,提高各种集成电路性能,设计开发和研制半导器件的特性必不可少的技术手段。我在这个领域里做了一些技术工作,深深地体会到从事集成电路技术研究的技术人员必须尽快掌握这一技术,才能解决工艺中的技术问题,提高开发研制新品的能力,从而提高占领及开拓集成电路产品市场的技术实力。

SUPREM系统是用于通用集成电路及分力半导体器件工艺的计算机模拟系统。当今国际上广泛应用的是SUPREM-Ⅳ版,是开发较为完善的一种工艺模拟器。就集成电路工艺模拟的模拟功能来说,集成电路工艺模拟系统可对集成平面工艺进行全工序、全参数的顺序模拟,同时也可进行单项工艺参数的模拟,现代集成电路技术中,工艺模拟无论对于工艺的研究与开发还是对于集成电路产品的工艺设计都具有重要的意义。计算机上采用SUPREM-III完成离子注入工艺初始条件的编辑和离子注入工艺模拟,并对模拟结果曲线进行比较,并在VC6.0环境下编程模拟N+源、漏区的典型SUPREM运行程序。本系统预先采用SUPREM-III进行扩散工艺模拟,将晶向、方块电阻、氧化时间、氧化厚度、氧化温度、扩散结深等多组数据一一对应地存储于Foxpro数据库表中,用ODBC技术实现Authorware和Foxpro数据库开放式连接。实验中通过相关查询,在Authorware内部再利用插值方式,对操作者给出的晶向、氧化温度、氧化时间、氧化厚度、扩散结深、方块电阻等进行计算后,并给出模拟结果。考虑到系统应用于教学而非工程计算,因此采用了数据库查询加差值数据拟合而非实时计算完成模拟,避免了较长时间的工程计算。系统提供了实际扩散炉设备操作面板,在计算机上完成扩散工艺控制程序的编辑以及扩散炉的操作,并得到相应操作的模拟结果。从而对扩散工艺操作过程有了更深刻的了解[1]。

2.扩散工艺模拟软件

我采用SUPREM软件来进行扩散工艺的模拟。大多数的杂质是通过离子注入来实现掺杂的,杂质的激活、注入,扩散工艺都可以进行模拟,同时可以和实际扩散工艺分布相比较。SUPREM软件包含大多数常用掺杂剂的注入参数。正常条件下,该程序可通过简单的双边高斯分布和高斯分布。还可以通过双Pearson Ⅳ型earson Ⅳ型分布来预测杂质分布情况。高版本的程序还可根据蒙特卡罗方法或者波耳兹曼传输方程来预测杂质分布情况。

3.SUPREM软件在扩散工艺中的应用

扩散工艺模拟的操作步骤同氧化工艺基本一致,只是两处略有不同:第一处,在进片过程中,在主界面操作台下选中扩散工艺按钮,双击设备,从而出现扩散工艺界面,界面的左侧为各种扩散方法,而右侧区域则是进入扩散设备的模拟系统。第二处,输入晶片位置号(1-12)如1号及硅片晶向如110后按键,然后点击进入工艺模拟窗口。把此处修改为输入晶片位置号(1-12),如2号及杂质类型(b或p)后按键,再进入工艺模拟窗口。

从上面的数据可以得到扩散工艺模拟结果,分析如下:在扩散温度和晶片类型相同的情况下,结深的数值随扩散工艺时间的增加而增加,扩散工艺的时间越长,结深的数值就越大。在扩散温度和扩散温度时间的情况下,p型晶片的结深的数值比b型晶片要大,在扩散时间和晶片类型相同的情况下,结深的数值会随扩散工艺温度的增加而增加,温度越高,结深的数值越大。结深与晶片号无关,方块电阻的阻值与晶片号无关,在扩散温度和扩散时间相同的情况下,p型晶片比b型晶片的方块电阻阻值要小得多,在扩散温度和类型相同的情况下,方块电阻的阻值会随扩散工艺时间的增加而减小,扩散时间越长,方块电阻的阻值就越小,在扩散时间和晶片类型相同的条件下,同时方块电阻阻值不为0,方块电阻的阻值会随扩散温度的增加而减小,扩散温度越高,方块电阻的阻值越小。

4.结语

从上面的扩散工艺模拟结果,可以得出SUPREM-III是一种可以用作集成电路工艺计算机辅助设计和模拟的有力的工具,它同器件模拟软件S2P ISCES的联用,可以对MOS场效应管和双极型晶体管特性的进行快速分析设计。在应用的过程中得到SUPREM-III中所用扩散等主要工艺的模型有多种模型可以选择,这样在工艺模拟中就可以灵活的应用。本实验结果表明本次扩散工艺模拟系统可以达到十分理想的模拟精度。是在集成电路工艺研究领域中技术人员的有利技术辅助手段之一。

集成电路工艺与设计范文3

MIC总线控制器远程模块的前端综合设计

基于Astro的MIC总线控制器专用集成电路后端设计

MIC总线控制器专用集成电路的测试设计

论制约MCM技术发展的三个关键问题

一种轨至轨CMOS运算放大器的设计

几种可控硅的触发电路

国内首创低成本纯度99.9999%多晶硅

厚膜HIC电容粘接工艺研究

混合集成电路故障分析方法浅析

电子设备的屏蔽设计

SoC设计中的低功耗技术

一种高效率TEC温度控制器的设计

一种低噪声、宽动态范围I/F转换器的设计

混合有源电力滤波器分析及应用探讨

浅谈状态机的设计方法及应用

微机械陀螺仪版图与工艺设计

CrSi薄膜电阻制作工艺

LTCC半切割基板制作技术研究

MCM-C耐高过载试验研究

CCD图像传感器在军用武器装备中的应用

改善SOICMOS集成电路高温性能的研究

一种非挥发性MNOS器件的制作

非硅MEMS聚酰亚胺牺牲层技术研究

知识信息窗

X5045电路及其应用

单片机系统硬件抗干扰常用方法

浅析正弦振荡器的原理和制作

基于ASL1000自动测试系统的电路测试设计

MCM-C耐高过载试验研究

OLED技术及其国内外发展状况

《集成电路通讯》2006年总目次

MCM-C和HIC的元器件安装工艺技术

厚膜电位器膜层质量控制研究

印刷电路板的基本设计方法及在高频电路中的布线技巧

双通道USB/AC适配器电池充电器IC

虚拟仪器在自动测试领域中的应用

一种模拟开关电路测试台设计与制作

芯片测试中外接引线对电路频率特性的影响

同步MODEM中接收时钟和数据的提取及ADPLL设计

开关磁阻电机调速控制技术研究

PDM系统批量数据导入方法

世界上最小的单门逻辑控制器件集成电路

波长可调谐DFB激光器及其进展

三相全桥单芯片变换器集成电路TPD4104K

CCD图像传感器在军用武器装备中的应用

厚膜HIC共晶焊工艺研究

金锡焊料低温焊料焊工艺控制

用硅作系统级封装的衬底基片的进展

LTCC版图数据输出与CAM制作

集成电路(IC)中电阻的设计

一种高精度反激式DC/DC电源的设计

电气测试中地线干扰及接地设计

AT89S51的串行编程及其对串行EEPROM的读写

正交试验法在LTCC丝网印刷中的应用

电动机适用的驱动集成电路

产品数据管理系统的应用

企业成功实施ERP系统的关键因素

集成电路工艺与设计范文4

 

1CDIO工程教育理念

 

CDIO工程教育模式,是由美国麻省理工学院、瑞典皇家工学院等四所大学共同创立的工程教育改革模式。是近年来国际工程教育改革的最新成果,CDIO是构思(Conceive)、设计(Design)、实施(Implement)、运作(Operate)4个英文单词的缩写,以产品从研发到运行的生命周期为载体让学生以主动的、实践的、与课程之间有机联系的方式学习掌握知识&-4。迄今已有几十所世界著名大学加入了CDIO国际组织,这些学校采用CDIO工程教育理念和教学大纲开展教学实践,取得了良好的效果。

 

2存在的问题与课程建设思想

 

微电子技术研究的中心问题是集成电路的设计与制造,将数以亿计的晶体管集成在一个芯片上。微电子技术是信息技术的基础和支柱,是21世纪发展最活跃和技术增长最快的高新科技,其产业已超过汽车工业,成为全球第一大产业。微电子工艺课程主要介绍微电子器件和集成电路制造的工艺流程,平面工艺中各种工艺技术的基本原理、方法和主要特点。其课程建设思想是使学生对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,掌握当前微电子芯片制作的工艺流程、主要设备、检测方法及其发展趋势^7]。

 

但目前该课程教学中存在较多问题,教学效果不佳,主要有如下几点:(1)教材陈旧,没有较适合的双语教材,难以适应跨国际的微电子制造工艺新技术的快速发展;(2)教学内容信息量大,在教学时间短、内容多的情况下,教师难以合理安排教学进度;(3)在课程设置上重理论轻实践,技术性和实践性的内容较少,与迅速发展的工业实际脱节;(4)教学方法单一,理论联系实际不紧密,不利于学生课堂积极性的提高与创造性的发挥“5)实践教学环境较差,由于微电子工艺设备十分昂贵,有待加强高校精密贵重仪器设备和优质实验教学资源共享平台和运行机制的建设;(6)教评形式单一,忽略了实践教学与考核,致使大多数学生只是死记硬背书本知识的学习方式来应付考试。

 

3微电子工艺的课程建设

 

3.1教材选取及教学内容改革

 

本课程教材选用经历了《芯片制造一半导体工艺制程实用教程》、《现代集成电路制造工艺原理》到目前的首选教材:国外电子与通信教材系列中,美国MichaelQiurk和JulianSerda著《半导体制造技术》韩郑生的中文翻译本。该书不仅详细介绍芯片制造中的每一关键工艺,而且介绍了支持这些工艺的设备以及每一道工艺的质量检测和故障排除;并吸收了当今最新技术资料,如用于亚0.25pm工艺的最新技术:化学机械抛光、浅槽隔离以及双大马士革等工艺;内容丰富、全面、深入浅出、直观形象、思考习题量大,并附有大量的结构示意图、设备图和SEM图片,学生很容易理解,最主要的相对前两本教材,它更加突出实际工艺,弱化了较抽象的原理。

 

教学内容上采取调整部分章节,突出教学重点,并适当增减部分教学内容。本课程的目的是使学生掌握半导体芯片制造的工艺和基本原理,并具有一定的工艺设计和分析能力,课程仅32学时,而教材分20章,600页,所以教师需要精选课堂授课内容。从衬底制备、薄膜淀积、掺杂技术到图形加工光刻技术以及布线与组装,所涉及的概念比较多,要突出重点:薄膜淀积(氧化、蒸发、溅射、MOCVD和外延等),光刻与刻蚀技术、掺杂技术,需章节调整系统整合;对非关键工艺的5~8章(介绍半导体制造中的化学药品、污染及缺陷等内容)只作为学生课后自学阅读。第2章的半导体材料特性已在“固体物理”课程中详细介绍,第3章的器件技术已在‘‘半导体物理“晶体管原理”课程中介绍,第20章装配与封装会在“集成电路封装与测试”课程中介绍,故无需重复讲解。将第9章集成电路制造工艺概况放在后面串通整过工艺讲解,即通过联系单项工艺流程,具体分析讲解典型的CMOS芯片制造工艺流程,如由n-MOS和p-MOS两个晶体管构成的CMOS反相器,这样能够加深对离子注入、化学气相淀积、光刻关键技术、集成电路的隔离技术以及VLSI的接触与互连技术等内容的理解。

 

另一方面,指导学生查阅相关资料,对教材内容作必要的补充,微电子工艺技术的发展迅速,因此需要随时跟踪微电子工艺的发展动态、技术前沿以及遇到的挑战。特征尺寸为45nm的集成电路已批量生产,高K介质/金属栅层叠结构、应变硅技术已采用。而现有的集成电路工艺教材很少能涉及到这些新技术,为了防止知识陈旧,应多关注集成电路工艺的最新进展,尤其是已经投入批量生产的工艺技术,及时将目前主流的工艺技术融入课程教学中。

 

3.2教学方法的改革

 

(1)开发多媒体工艺教学软件,利用多媒体技术,将动画、声音、图形、图像、文字、视频等进行合理的处理,利用大量二维和三维的多媒体图片、视频来展示和讲解复杂的工艺构造过程。开发图文声像并茂的微电子工艺多媒体计算机辅助教学软件,给学生以直观、清楚的认识,有助于提高教学质量。

 

(2)微电子工艺综合共享实验平台建设,集成电路的制造设备价格昂贵,环境条件要求苛刻,运转与维护费用很大,国内仅部分高校拥有集成电路工艺试验线或部分实验分析设备。按照有偿服务或互惠互利原则共享设备仪器资源,创建各院校之间和与企业之间的“微电子工艺综合共享实验平台”可极大的提高集成电路工艺及其实验课程教学效果,即解决了一些院校资金短缺问题,同时也部分补偿了大型设备的日常使用和维护费用问题。其综合共享实验平台包括金属有机化合物MOCVD沉积技术、分子束外延、RF射频磁控溅射、XPS、XRD及AFM分析测试、光刻、离子注入等涉及投资巨大的仪器设备实验项目。

 

(3)拓展实践能力的校企合作,让学生带着理论知识走进企业的真实工程环境,探索利用企业先进的工艺线资源进行工艺实验教学与参观实习6-9]。参观实习能够使学生对集成电路的生产场地,超净环境要求具有深刻的感性认识,对单晶硅制造流程、芯片制造工艺过程以及芯片的测试和封装的了解也更加系统和全面。同时利用假期安排学生去企业实习,让学生参与企业的部分生产环节,亲身感受实际工艺生产过程,增加学生对企业的了解,也利于企业选拔优秀学生。

 

(4)工艺视频与工艺实验辅助教学,由于微电子工艺内容与生产密切结合,不能单靠抽象的书本知识教学,对于学生无法了解到的一些工艺实验与设备,可通过录像教学来补充。本学院购置了清华大学微电子所的集成电路工艺设备录像与多媒体教学系统,结合国外英文原版的工艺流程视频,通过工艺视频把实际工艺流程、设备和设备操作等形象地展示在课堂。多媒体教学系统提供了氧化、扩散和离子注入三项工艺设备操作模拟,可使学生身临其境地对所学的基本工艺进行简单的模拟。同时结合课堂教学开设半导体平面工艺实验,主要包括以:氧化、光刻、扩散、蒸铝、反刻、划片、装架、烧结、封装。实验以教师讲解与学生动手相结合,既培养了学生的实际动手能力,又使学生掌握了科学分析问题的方法,激发了学生的学习兴趣,加深学生对课堂理论知识的理解。

 

3.3多元化的考核评价体系

 

对学生的考核是对其具体学习成果的度量,也是检验教学改革成效的重要手段,为了更科学合理的考核学生,我们建立了多元化的更加注重过程参与的考试评价体系,降低了期末考试在总成绩中所占比例,最大限度避免学生靠死记硬背来应付考试和学生创新思维被抑制、高分低能现象产生。这种多元化、过程性的成绩评定方法,强调知识的积累与构建过程,消除了学生重理论轻实践,考前死记硬背应付考试的弊病。总评成绩由平时成绩和期末考试成绩两部分构成。但加大平时成绩的权重,平时成绩即包括了作业与考勤,还包括综合性实验成绩、设计仿真、国外工艺视频翻译、专题小论文和专题PPT论坛团队成绩等。同时在期末考题中增加openanswerquestion型、工艺过程设计型题目110-11。

 

4结语

集成电路工艺与设计范文5

关键词:数字集成电路;设计;核心工艺

随着微电子技术的发展,数字集成电路获得了越来越广泛的应用。深入了解数字集成电路特性,正确分析数字集成电路在实验中出现的种种异常现象,对于提高数字电子技术使用效果、加深使用者对数字电路理论的理解有着十分重要的作用。而实现上述目的的最关键部分在于对数字集成电路的设计相关内容有着较为清晰的理解,本文正是在这种背景下,探讨了数字集成电路的不同设计方法以及所采用的核心工艺,以求为理论界与实践界更好的认识数字集成电路提供必要的借鉴与参考。

一、数字集成电路理论概述

数的表达是多种多样的,如二进位、八进制、十进位、十六进位等。电脑中数字处理是二进位,所以一切资料都要先转化为“0”和“1”的组合。在教学中要对学生强调这里的“0”和“1”不是传统数学中的数字,而是两种对立的状态的表达。数字集成电路是传输“0”和“1”(开和关)两种状态的门电路,可把来自一个输入端的信息分配给几个输出端,或把几个输入端传来的信息加以处理再传送出去,这个过程叫做逻辑运算处理,所以又叫逻辑集成电路。在数字集成电路中电晶体大多是工作在特性曲线的饱和状态和截止状态(逻辑的“0”和“1”)。数字集成电路又包括着如下三种电路:门电路,是作为不包含时间顺序的组合电路;触发器电路,其能存储任意的时间和信息,故在构成包含时间关系的顺序电路时必不可少,这种电路叫做时序逻辑电路,例如寄存器、管理器等。触发器电路是基本时序单元电路;半导体记忆体电路,它可以存取二进位数字字信息,记忆体的作用是用来记住电子电脑运算过程中所需要的一切原始资料、运算的指令程式以及中间的结果,根据机器运算的需要还能快速地提供出所需的资料和资料。在上课时,发现学生易将组合逻辑电路、时序逻辑电路混淆,所以教学中要反复强调两者的的特点,进行对比,使学生能正确区分两种电路。

二、数字集成电路的设计

第一,MOS场效应电晶体的设计。常用的是N沟MOS管,它是由两个相距很近、浓度很高的N十P结引线后做成的,分别叫做源极“S”和漏极“D”。在源极“S”和漏极“D”之间的矽片表面生长一薄层二氧化矽(SiO2),在SiO2上复盖生长一层金属铝叫栅极“G”(实际上“G”极是个MOS二极体)。NMOS集成电路是用得很多的一个品种。要注意一点是多晶矽栅代替了铝栅,可以达到自对淮(近乎垂直)掺杂,在栅下面的源、漏掺杂区具有极小横向的掺杂效应,使源、栅漏交迭电容最小,可以提高电路的速度。

第二,CMOS集成电路互补场效应电晶体的设计。CMO是指在同一矽片上使用了P沟道和N沟道两种MOS电路。这种反相器有其独特之处,不论在哪种逻辑状态,在VDD和地之间串联的两个管子中,总有一个处干非导通状态,所以稳态时的漏电流很小。只在开关过程中两个管子都处于导通状态时,才有显着的电流流过这个反相器电路。因此,平均功耗很小,在毫微瓦数量级,这种电路叫做CMOS电路。含有CMOS电路的集成电路就叫做CMOS集成电路,它是VLSI设计中广泛使用的基本单元。它占地面积很小、功耗又小,正是符合大规模集成电路的要求,因为当晶片的元件数增加时功耗成为主要的限制因素。CMOS集成电路成为低功耗、大规模中的一颗明星,它是VLSI设计中广泛使用的基本单元,但它的设计和工艺难度也相应地提高了许多。CMOS集成电路在P型衬底上先形式一个以待形成PMOS管用的N型区域叫做“N井”,在“N井”内制造PMOSFET的过程与前述的NMOS管相同,所以制造CMOS集成电路的工序基本上是制造NMOS集成电路的两倍。另外还要解决麻烦的门锁效应(Latch-up)。但它仍是高位数、高集成度、低功耗微处理器等晶片的首选方案。

第三,二极体的设计。集成电路中的二极体均由三极管的eb结或cb结构成,前者的正向压降低,几乎没有寄生效应,开关时间短;后者常在需要高击穿电压的场合中使用,技术上又不必单独制做,只是在晶体管制成后布线时按电路功能要求短路某二个电极,从留用的P-N二边引线出去和电路连接。课堂教学中,对二、三极管的特性及工作原理要做详细的复习,以便学生理解。

第四,电阻设计。集成电路中的电阻是在制造电晶体基区层的同时,向外延层中进行扩散制成。阻值取决于杂质浓度、基区的宽度和长度及扩散深度。当需要更大电容阻值时,采用沟道电阻;在需要更小电容阻值时,则采用发射区扩散时形成的N十区电阻。

这里电阻与学生之前学习的电阻进行比较,利于学生理解。

第五,电容设计。集成电路中的电容器有两种,一种是P-N结电容,它是利用三极管eb结在反向偏压下的结电容,电容量不是常数,它的大小与所加偏压有关,且有极性;另一种是MOS电容,电容值是固定,与偏压无关。一般用重掺的区域作为一个板极,中间的氧化物层作为介质层,氧化物层的顶层金属作为另一个板极。但是,集成电路设计中应尽量避免使用电容,数字电路一般都采用没有电容的电路。

三、数字集成电路的核心工艺

首先是薄圆晶片的制备技术。分别在半导体专用切片机、磨片机、拋光机上加工出厚度约为400um、表面光亮如镜、没有伤痕、没有缺陷的晶片。

其次是外延工艺技术。为了提高电晶体集电结的击穿电压,要求高电阻率材料。但为了提高电晶体工作速度,要求低电阻率材料,为此在低阻的衬底材料上外延生长一层高阻的单晶层,这叫做外延技术。

第三是隔离工艺技术。因为数字集成电路中各组件是做在同一半导体衬底片,各组件所处的电位也不同,要使做有源元件的小区域(电晶体)彼此相隔离开,这种实现彼此隔离的技术叫做隔离技术。正是由于它的出现,使分立元件发展到数字集成电路成为可能。现在常用的有介质隔离(将SiO2生长在需要隔离的部位)和P-N 结隔离两种方法。P-N结隔离是在隔离部位形成两个背对背的P-N结;外延结构P-N结隔离是在P 型衬底表面的n型外延层上进行氧化、光刻、扩散等工艺,并将硼杂质扩散到特定部分,直到扩穿外延层和P 型衬底相接。外加反向电压使外延n型层成为一个个相互隔离的小岛,然后再在这个n型外延小岛区域上分别制造电晶体或其他元件。

最后是氧化工艺技术。半导体器件性能与半导体表面有很大关系,所以必须对器件表面采用有效保护措施。二氧化矽被选作为保护钝化层,一来它易于选择腐蚀掉;二来可以在扩散之后在同炉内马上通氧进行氧化;三来可以作为选择掺杂的掩蔽物;再来它常被用来作导电层之间的绝缘层。当然用作钝化的介质还有氮化矽薄膜,这里不多介绍。各种薄膜不仅要执行其本身的预定功能,也要和后续的全部工艺相相容。即钝化薄膜要能承受所要求的化学处理及加热处理,而其结构还保持稳定。从上面工艺流程可以看到,每一步光刻之前都有氧化工序,图形加工只能在氧化层上进行。

设计是一项难度较大的工作,在设计中要考虑许多细节的东西,实践与理论之间有一定的差距,对于我们技术学校的学生而言,可以让他们做一些简单的设计,自己动手搭建电路并做测试,在做中发现问题,解决问题,从而加深对知识的理解。

(作者单位:福建省第二高级技工学校)

参考文献:

[1]桑红石,张志,袁雅婧,陈鹏.数字集成电路物理设计阶段的低功耗技术[J].微电子学与计算机,2011年第4期.

集成电路工艺与设计范文6

改革开放以来,经过大规模引进消化和90年代的重点建设,目前我国半导体产业已具备了一定的规模和基础,包括已稳定生产的7个芯片生产骨干厂、20多个封装企业,几十家具有规模的设计企业以及若干个关键材料及专用设备仪器制造厂组成的产业群体,大体集中于京津、沪苏浙、粤闽三地。

我国历年对半导体产业的总投入约260亿元人民币(含126亿元外资)。现有集成电路生产技术主要来源于国外技术转让,其中相当部分集成电路前道工序和封装厂是与美、日、韩公司合资设立。其中三资企业的销售额约占总销售额的88%(1998年)。民营的集成电路企业开始萌芽。

设计:集成电路的设计汇集电路、器件、物理、工艺、算法、系统等不同技术领域的背景,是最尖端的技术之一。我国目前以各种形态存在的集成电路设计公司、设计中心等约80个,工程师队伍还不足3000人。2000年,集成电路设计业销售额超过300万元的企业有20多家,其中超过1000万的约10家。超过1亿的4家(华大、矽科、大唐微电子和士兰公司)。总销售额10亿元左右。年平均设计300种左右(其中不到200种形成批量)。

现主要利用外商提供的EDA工具,运用门阵列、标准单元,全定制等多种方法进行设计。并开始采用基于机构级的高层次设计技术、VHDL,和可测性设计技术等先进设计方法。设计最高水平为0.25微米,700万元件,3层金属布线,主线设计线宽0.8-1.5微米,双层布线。[1]目前,我国在通信类集成电路设计有一定的突破。自行设计开发的熊猫2000系列CAD软件系统已开发成功并正在推广。这个系统的开发成功,使我国继美国、欧共体、日本之后,第四个成为能够开发大型的集成电路设计软件系统的国家。目前逻辑电路、数字电路100万门左右的产品已可以用此设计。

前工序制造:1990年代以来,国家通过投资实施“908”、“909”工程,形成了国家控股的骨干生产企业。其中,中日合资、中方控股的华虹NEC(8英寸硅片,0.35-0.25微米,月投片2万片),总投资10亿美元,以18个月的国际标准速度建成,99年9月试投片,现已达产。该工程使我国芯片制造进入世界主流技术水平,增强了国内外产业界对我国半导体产业能力的信心。

在前8家生产企业中,三资企业占6家,总投资7.15亿美元,外方4.69亿美元,占66%.目前芯片生产技术多为6英寸硅片、0.8-1.5微米特征尺寸。7个主干企业生产线的月投片量已超过17万片,其中6~8英寸圆片的产量占33%以上。

目前这些企业生产经营情况良好。2000年,七个骨干企业总销售额达到56亿元人民币,利润7.5亿元,利润率达到13%.同年全国电子信息产业总销售额5800亿元人民币,利润380亿,利润率6.5%.

封装:由于中国是目前集成电路消费大国,同时国内劳动力、土地资源价格相对便宜,许多国外大型集成电路生产企业在中国建立了合资或独资集成电路封装厂。

国内现有封装企业规模都不大,而且所用芯片、框架、模塑料等也主要靠进口,因此大量的集成电路封装产品也只是简单加工,技术上与国际封装水平相差较远。主要以DIP为主,SOP、SOT、BGA、PPGA等封装方式国内基本属于空白。

集成电路封装业在整个产业链中技术含量最低,投入也相对较少(与芯片制造之比一般为10:1)。我国目前集成电路年封装量,仅占世界当年产量的1.8%~2.5%,封装的集成电路仅占年进口或消耗量的13%~14.4%,即中国所用85%以上的集成电路都是成品进口。

2000年,我国集成电路封装业的销售收入超过130亿元,其中销售收入超过1亿元的14家,全年封装电路近45亿块,其中年封装量超过5亿块的5家。

材料、设备、仪器:围绕6英寸芯片生产线使用的主要材料(硅单晶、塑封料、金丝、化学试剂、特种气体等)、部分设备(单晶炉、外延炉、扩散炉、CVD、蒸发台、匀胶显影设备、注塑机等)、仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)、部分仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)国内已能提供。

芯片制造设备,我国只具备部分浅层次设计制造能力,如电子45所已有能力制造0.5微米光刻机等。

半导体分立器件:2000年,全年分立器件的销售额60亿,产量341亿只。

供需情况和近期发展形势

20世纪90年代,我国集成电路产业呈加速发展趋势,年均增长率在30%以上。2000年,我国集成电路产量达到58.8亿块,总产值约200亿人民币(其中设计业10亿,芯片制造56亿,封装130亿)。如果加上半导体分立器件,总产值达到260亿元。预计2001年,集成电路产量可达70亿块。

2000年,全球半导体销售额达到1950亿美元,我国半导体生产从价值量上看,占世界半导体生产的1.6%(含封装、设计产值),从加工数量看占全世界份额不足1%(美国占32%,日本占23%)。

从需求方面看,据信息产业部有关人员介绍,2000年,国内集成电路总销售量240亿块,1200亿人民币。业内普遍估计,今后10年,半导体的国内需求仍将以20%的速率递增,估计2005年,我国集成电路国内市场的需求约为300亿块、800亿元人民币;2010年,达到700亿块、2100亿元人民币。

从近几年统计数字分析看,国内生产芯片(包括外商独资企业的生产和在国内封装的进口芯片)占国内需求量的20%~25%,但国内生产部分的80%为出口,按此计算,我国集成电路产业的自给率仅4%~5%.但是,有两个因素影响了对芯片生产自给率的准确估计。首先是我国集成电路的产品销售有很大一部分通过外贸渠道出口转内销,据信息产业部估计,出口转内销约占出口量的一半。如此推算,国内半导体生产满足国内市场的实际比重在12%~15%.实际上,国内生产的芯片质量已过关,主要是缺乏市场信任度,而销售渠道又往往掌握在三资企业外方手中。

但芯片走私的因素,可能又使自给率12%~15%的估计过分夸大。台湾合晶科技公司蔡南雄指出:官方统计,1997年中国大陆进口集成电路和分立器件约50亿美元,但当年集成电路进口实际用汇达95.5亿美元。[2]近几年大力打击走私,这一因素的作用可能有所减弱。但无论如何,我国现有半导体产业远远落后于国内需求的迅速增长则是不争的事实。

由于核心部件自给能力低,我国的电子信息产业成了高级组装业。著名的联想集团,计算机国内市场占有率是老大,利润率仅3%.我国电子信息制造业连年高速增长,真正发财的却是外国芯片厂商。

由此,进入1990年代以来,我国集成电路进口迅速增长。1994~1997年,集成电路进口金额年均递增22.6%;97年进口金额为36.48亿美元,96.06亿块。[3]1999年,我国集成电路进口75.34亿美元,出口(含进料、来料加工)18.89亿美元。

2000年6月,国家《软件产业和集成电路产业的发展的若干政策》(国发18号文件)。在国家发展规划和产业政策的鼓舞下,各地政府纷纷出台微电子产业规划,其中上海和北京为中心的两个半导体产业集中区,优惠力度较大,投资形势也最令人鼓舞。目前累计已开工建设待投产的项目,投资总额达50亿美元,超过我国累计投资额的1.5倍,未来2-3年这几条线都将投入量产。

天津摩托罗拉:外商独资企业,总投资18亿美元,在建。2001年5月试投产,计划11月量产。

上海中芯:1/3国内资金,2/3台资(第三国注册)。投资14亿美元。2001年11月将在上海试投产。

上海宏立:预计2002年一季度投入试运行,16亿美元。

北京讯创:6寸线,投资2亿美元。

友旺:在杭州投资一条6寸线,10亿人民币左右,已打桩。

目前我国半导体产业和国际水平的差距

总体上说,我国微电子技术力量薄弱,创新能力差,半导体产业规模小,市场占有率低,处于国际产业体系的中下端。

从芯片制造技术看,和国际先进水平的差距至少是2代。[4]尽管华虹现已能生产0.25微米SDRAM,接近国际先进水平(技术的主导权目前基本上还在外方手中),国内主流产品仍以0.8-1.5微米中低端低价值产品为主。其中80%~90%为专用集成电路,其余为中小规模通用电路。占IC市场总份额66%的CPU和存储器芯片,我国无力自给。

我国微电子科技水平与国外的差距,至少是10年。[5]现有科技力量分散,科技与产业界联系不紧密。产业内各重要环节(基础行业、设计、制造工艺、封装),尚未掌握足以跨国公司对等合作的关键技术专利。

半导体基础(支撑)行业落后:目前硅材料已有能力自给,各项原料在不同程度上可以满足国内要求(材料半数国产化,关键材料仍需进口)。

但如上所述,几乎所有尖端设备,我们自己都不能设计制造,基本依赖进口。业内认为我国半导体基础行业和国际水平差距约20年。

一般地说,西方对我引进设备放松的程度和时机,取决于我国自身的技术进展,所以我国半导体设备技术的进步,成为争取引进先进设备的筹码(尽管代价高昂)。如没有这方面的工作,设备引进受到限制,连参与设备工艺的国际联合研制的资格也没有(韩台可以参与)。

已引进的先进生产线,经营控制权不在我手中,妨碍电路设计和工艺自主研发现有较先进的集成电路生产线(包括华虹NEC、首钢NEC),其技术、市场和管理尚未掌握在中国人手中。其原因是“自己人”管理,亏损面太大。现有骨干企业不是合资就是将生产线承包给外人,技术和经营的重大决策权多在外方代表手中。经营模式还没有跳出“两头在外”模式。

这也说明,我国现有国有企业经济管理机制,尽管有了很大进步,但还没有真正适应高科技产业对管理的苛刻要求,高级技术人才和营销人才更是缺乏。

“某厂…最赔钱的×号厂房,包出去了。这也怪了。台湾人也没有带多少资金技术,还是原来的设备和技术,就赢利。

“我问承包人,人还是我们的人,厂房技术还是我们的,为什么你们一来就行了?他说”体制改变了“。我问体制改了什么,是工资高了?也不是。他们几个人就是搞市场。咱们中国市场之大,是虚的。让人家占领的。

“10多年前我在美国参观,他们的工厂成品率是90%多,我们研究室4K最高时成品率50%多,当时这个成绩,全国轰动。我参观时问,你们有什么诀窍做到90%多?美国人说没有什么诀窍,就是经常换主管,新主管要超过上一任,又提高一步。主管到了线里,就是general,…说炒就炒。咱们国家行吗?我们这些领导都是孙子…半导体的生产求非常严格的纪律。没有这个东西绝对不行。你想100多道工艺,每一道差1%,成品率就是零。所以这个体制,说了半天没有说出来,一是市场,一是管理。”[6]但无论如何,我们半导体产业的“管理”和“市场”这两大门坎,是必须跨过去的。深化国企改革、发挥非国有经济的竞争优势,在半导体领域同样适用。

由于没有技术和经营控制权,导致我们的半导体产业遇到两方面困难。首先,国内单位自行设计的专用电路上线生产,必须取得生产厂家的外方同意,有的被迫转向海外代工,又多一道海关的麻烦;关系国家机密的芯片更无法在现有先进生产线加工(或者是外方以“军品”为名拒绝加工,或者是我方不放心)。

其次,妨碍了产学研结合、自主设计和研发工艺设备。例如中国科学院微电子中心已达到0.25微米工艺的中试水平,但因先进工厂的经营权不在自己手中,无法将自有工艺研究成果应用于大线试生产。

工艺技术是集成电路制造的关键技术。如果我方没有自主设计工艺的技术能力,即使买了先进生产线也无法控制。目前合资企业中,中方职工可以掌握在线的若干产品的工艺技术,但无法自主开展工艺技术研究。5年后我方将接管华虹NEC,也面临自己的工艺技术能否顶上去的问题。工艺科研领域目前所处的困境如不能及时摆脱,则仅有的研究力量也会逐渐萎缩,如果不重视工艺技术能力的成长,我们就无法掌握芯片自主设计生产能力。

设计行业处于幼稚阶段由于专业电路市场广阔,目前国内各种类型的设计公司逐渐增加。但企业普遍规模偏小、技术水平较低,缺乏自主开发能力。

由于缺乏技术的积累,我国还远没有形成具有自主知识产权的IP库,与国外超大规模IC的模块化设计和S0C技术差距甚远。设计软件基本用外国软件,即使设计出来,也往往因加工企业IP库的不兼容而遭拒绝。

集成电路的设计与加工技术是相互依存的。因为我国微细加工工艺水平落后,人才缺乏,目前不具备设计先进电路的水平,更没有具备设计CPU及大容量存储器的水平。也有的客户眼睛向外,不愿意在国内加工,但到国外加工还要受欺负。尽管我们花了100%的制版费,板图也拿不回来。

超大规模集成电路的设计,难度最大的是系统设计和系统集成的能力,最需要的人才是系统设计的领头人,这是我国最缺的人力资源。国内现有人才多数是设计后道的能力,做系统的能力差。国内现有环境,培养这样的人才比较难。

国内的设计制造行业,就单个企业来说很难开发需要高技术含量的超前性、引导性产品。多数民营中小企业只能跟在别人后面走仿制道路(所谓反向设计)。反向设计只能适应万门以下电路的设计开发。故目前还无法与国外先进设计公司竞争。

缺乏市场信任度由于总体技术水平低,市场多年被外国产品占领,自己的供给能力还没有赢得国内市场的信任,以致出现外商一手向国内IC厂定货,再转手卖给国内用户的现象。这是当前外(台)商大举在国内投资集成电路生产线的客观背景。

国内设计、制造的产品往往受到比国外产品更严格的挑剔,要打开市场需要更多的时间和精力,这就难免被国外同行抢先。半导体市场瞬息万变,竞争十分残酷,而我国对自己的半导体产业,似取过分自由放任态度,几乎完全暴露在国际竞争中。有必要对有关政策上给以重新评估。

我国电子整机厂多为组装厂,自己设计开发芯片的极少,由于多头引进,整机品种繁多,规格不一,批量较小,成本高。另外,象汽车电子、新一代“信息家电”等产品市场很大,但需要高水平且配套的芯片产品,而我国单个电路设计企业无力完成,设计和生产能力还尚待磨合。如欲进军这方面的市场,需要高层有明确的市场战略和行业级的协调。我国微电子行业目前因技术能力所限,可适应市场领域还比较狭窄,又面临着国际市场的巨大压力。要争得技术和资本的积累期和机会,必须有政府的组织作用。

还没有形成完整的产业体系从整体看,我国半导体产业还没有形成有机联系的生态群,或刚刚处于萌芽状态,产业内各环节上下游间互补性薄弱。目前少数先进生产能力,置于跨国公司的全球制造~营销体系内,外(台)商做OEM接单,来大陆工厂生产,国内芯片厂商被动打工。国家体制内的科研力量和现有生产体系的结合渠道不顺畅,国内科技型中小型民营(设计)企业和大型制造企业的互补关系正在建立中。

“集成电路设计与生产都需要有很强的队伍,能够根据国内整机的需要设计出产品,按照我们的工艺规则来生产。他的设计拿过来我们能做,做好了能够测试,测试以后能够用到整机单位去应用。这条路要把它走通。另外还有一批人能够打开市场。其他的暂时可以慢一点。”[7]所以,目前我国微电子领域与国际水平的差距,并非单项技术的差距,而是包括各环节在内的系统性的差距。单从技术和资金要素来看,“908”“909”工程的实践,可以说是试图以类似韩国的大规模投资来实现生产技术的“跨越”。但实践证明,单项发展,不足以带动一个科技-产业系统的整体进步。不仅要克服资金、人才、市场的瓶颈,也要克服体制、政策的瓶颈,非此不能吸引人才,不能调动各方面的积极性。

我国半导体产业发展的现有条件

经过20年的发展和积累,特别是近年来我国电子信息产业的高速发展,半导体产业在我国经济、国防建设中的重要地位,以及加快发展的必要性,已基本形成共识。应该说,我国已经在多方面具备了微电子大发展所必须的条件。

首先是经过多年的引进和国家大规模投资,已形成一定产业基础,初步形成从设计、前工序到后封装的产业轮廓。广义电子产业布局呈现向京津地区、华东地区和深穗地区集中的态势,已经形成了几个区域性半导体产业群落。这对信息知识的交流,技术的扩散,新机会的创造,以及吸引海外高级人才、都十分重要。

技术引进和国内科研工作的长期积累,也具备了自主研发的基础。“909”工程初步成功,说明投资机制有了巨大进步,直接鼓励了外商投资中国大陆的热情。尤其在通讯领域,国内以企业为主导的研发机制取得了可喜发展。

其次,国内投资环境大幅度改善。尤其是沿海经济发达地区,市场经济初见轮廓,法制和政策环境日益改善,人才和资金集中,信息基础设施完备,各种类型的民营企业已开始显现其经营管理能力,已有问鼎高效益高风险的微电子领域的苗头,各种类型的设计公司正在兴起。

近两年来,海外半导体产业界已经对我国大陆的半导体业投资环境表示了极大兴趣。外(台)商对大陆的半导体投资热,虽然并不能使我们在短期内掌握技术市场控制权(甚至可能对我人才产生逆向吸附作用),但有助于形成、壮大产业群,有助于冲破西方设备、技术封锁。长远看是利大于弊。

人才优势。国内软件人才潜力巨大,而软件设计和芯片设计是相通的。这是集成电路设计业的有力后盾。

再次是随着国内电子产品制造业的飞速发展,半导体产业市场潜力巨大。1990年代,我国电子产品制造业产值年均增长速度约27%,1999年为4300亿元人民币,2000年达5800亿(总产值1万亿)。其中,PC机和外部设备年增率平均40%以上,某些产品的产量已名列世界前茅;互联网用户和网络业务的年增率超过300%;公用固定通讯交换设备平均每年新增2000万线,预计2005年总量将超过3亿线;手机用户数每年增长1500-2000万户,2001年已突破1亿户。各类IC卡的需求量也猛增。据信息产业部预计,我国电子产品制造业未来5年平均增长率将超过15%(一般电子工业增长率比GDP增长率高1倍)。预计2005年,信息制造业的市场总规模达到2万亿。

最后是国家对半导体产业十分重视。官方人士多次表示:要想根本改变我国的电子信息产业目前落后状况,需要“十五”计划中,把推进超大规模集成电路的产业化作为加速发展信息产业的第一位的重点领域。并相应制定了产业优惠政策。这些政策将随着产业的发展逐步落实并进一步完善。

注释:

[1]陈文华,1998年。

[2]《产业论坛》1998年第18期。

[3]陈文华,1998年。

[4]《关于加快我国微电子产业发展的建议》,工程科技与发展战略报告集,2000年。

[5]叶甜春,2000年。

[6]吴德馨院士访谈录,2001年3月。