模拟集成电路的分析与设计范例6篇

前言:中文期刊网精心挑选了模拟集成电路的分析与设计范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

模拟集成电路的分析与设计

模拟集成电路的分析与设计范文1

关键词: PCM2906B; 虚拟信号分析仪; C#; USB接口

中图分类号: TN911?34 文献标识码: A 文章编号: 1004?373X(2013)16?0095?03

0 引 言

随着信息处理技术和虚拟仪器技术的发展,虚拟仪器逐渐成为现代仪器的发展方向。目前市场上出现的虚拟仪器价格过于昂贵,在实际中难以大规模应用[1]。本文设计了一种高性能价格比的虚拟信号分析仪,其整体结构由通用PC机和虚拟仪器卡两部分组成,二者通过USB接口进行信号通信。

信号的采集和输出由虚拟仪器卡完成,信号的处理由通用PC机通过软件进行,PC软件可以利用面向对象的C#语言开发。该仪器具有信号发生器、示波器、记录仪、频谱分析仪、时频分析仪等多种功能,硬件功耗低,成本低廉,性价比高,可以在教学和实验中得到广泛的推广和应用。

1 系统设计及结构

1.1 系统总体设计

整个系统由通用PC机和虚拟仪器卡两部分组成,PC机中装有分析信号和处理信号的软件,虚拟仪器卡负责信号的采集和输出,二者采用USB2.0全速通信接口。该虚拟仪器卡拥有两个输入通道和两个输出通道,通过USB接口接收从PC机上传送来的配置信息和控制命令,同时利用USB总线供电。PC机上的软件主要负责配置虚拟仪器卡,对虚拟仪器卡进行波形读取分析和传送波形数据,同时完成波形数据的显示、存储、频谱分析、时频分析等功能。

PC机软件与虚拟仪器卡两者相互配合,协调工作,共同完成信号的采集和产生。系统总体结构框图如图1所示。

1.2 系统硬件结构

虚拟仪器卡的硬件结构是以PCM2906B为核心设计,工作时由PCM2906B的内核从USB接口传送的数据流中提取出音频数据流和时钟信号,然后将其变换为标准数字音频串行数据,其中PCM2906B内部采用 TI 采样周期适应性控制跟踪系统(SpAct),利用 PLL电路分离单时钟源,因此能将噪声等抖动信号抑制到极低的水平,从而保证了良好的信号采集和产生的信号效果。虚拟仪器卡的硬件结构框图如图2所示。

2 系统硬件设计

系统硬件设计主要是指虚拟仪器卡的硬件结构设计。本系统使用TI公司的立体声音频编解码器(CODEC)——PCM2906B作为主体核心芯片。由于PCM2906B自身具备的USB协议控制器不需要编写任何软件代码便可以工作,而且其驱动程序可以利用Windows操作系统中的通用声卡驱动程序,这样就可减少大量的底层软件设计工作,简化了系统的整体软件设计。而且它的内部集成了一个16?Bit Delta?Sigma ADC,能够同时采集两路输入信号,每路输入信号的最高频率可达20 kHz,采样频率可达48 kHz;其内部还集成了一个16?Bit Delta?Sigma DAC,可同时产生两路任意波形信号,其采样率同样达到[2]48 kHz。可以利用TI公司的高速单电源轨至轨运算放大器OPA2353构建每路输入输出通道的极性变换电路和低通滤波器。根据系统的功能要求,基于PCM2906B设计的虚拟信号分析仪硬件电路主要包括USB数据接口电路、输入通道前端电路和输出通道后端电路、增益调整电路等部分。

2.1 USB数据接口电路

PCM2906B的USB数据接收接口符合USB 2.0标准,芯片上集成 USB接口全速收发器D+与VddI之间的1.5 kΩ上拉电阻使 PCM2906B的 USB接口工作在全速状态[3]。

信号按如下过程产生:当接口电路完成起始电平的恢复并与 USB总线接通后,这时PCM2906B的设置准备工作完成,PCM2906B准备接收 USB数据。在数据信号尚未送来的等待状态时,模拟输出设置为双零点零标志, ZERO为高电平。当接收到数据信号后, PCM2906B将第一批数据包(含 1 ms 的音频数据)存储到其内部FIFO存储器中,当接口电路检测到头帧信号后,PCM2906B开始产生信号。

2.2 输入通道前端电路和输出通道后端电路

从PCM2906B的特性可知,由于PCM2906B的输入通道和输出通道允许的电压范围为-0.3~VCCCI+0.3,所以需要将外界的双极性模拟信号变为符合PCM2906B特性的单极性的输入信号,以及需要将PCM2906B单极性的输出信号变为真正可用的双极性模拟信号输出。同时由于外界环境存在的各种干扰,为了得到较为纯净的输入和输出信号,抑制各种干扰信号,在每路输入和输出通道上都设计了低通滤波器。

2.3 增益调整电路

PCM2906B提供三个人机接口设备 (HID) 引脚。HID是Human Interface Devices的缩写,即人机接口设备,是USB 协议中最早提出并支持的一种设备类。典型的HID有键盘和鼠标等,其主要用于和计算机进行交互通信。鼠标也属于HID设备,USB 串行总线规范专门定义了HID 类规范[4]。在本系统中将HID0设置成可以同时停止PCM2906B的两路输出,将HID1设置成可同时放大PCM2906B的两路输出的增益,将HID2设置成可同时减小PCM2906B的两路输出的增益。

3 系统软件设计

由于本系统能实现信号采集、信号产生、频谱分析、时频分析等功能,因此软件部分设计主要包括实时显示模块、波形存储模块、后处理模块、信号生成模块、FFT模块、功率谱分析模块、时频分析模块、频谱分析模块及自相关分析模块。PC软件采用面向对象的编程语言C#开发,软件总体流程见图3[5]。软件具体模块设计略。

4 系统性能测试

系统测试时将虚拟仪器卡的两路输出分别与两路输入相连。虚拟仪器卡的一路输出设置为波形频率500 Hz的正弦信号,另一路输出设置为波形频率为1 000 Hz的正弦信号,同时在软件窗口查看两路输入信号的采集波形。

采集到的波形如图4所示。

5 结 语

本系统设计技术含量高、功能丰富且成本低廉,设计出的仪器性能价格比高,为各类实验的开展提供了有力的技术设备支持,特别是在教学和实验改革中具有十分广阔的应用前景。

参考文献

[1] 黄松龄,吴静.虚拟仪器设计基础教程[M].北京:清华大学出版社,2008.

[2] Texas Instruments. Stereo audio codec with usb interface, single?ended analog input/output, and S/PDIF datasheet [R]. USA: Texas Instruments, 2008.

[3] 张正华,王丰硕.基于PCM2902的高性能音频接口卡的研制[J].电声技术,2006(12):35?37.

[4] 杨顺,王星.基于USB接口芯片CH372的人机接口设备设计与实现[J].计算机系统应用,2010,19(4):216?218.

[5] BRADLEY J C, MILLSPAUGH A C. Programming in C#.NET [M].北京:清华大学出版社,2005.

[6] 雷国建,练峰海.基于VI技术的USB系统监控设计[J].现代电子技术,2013,36(4):151?153.

[7] 林永硕.基于USB的音频信号分析仪设计[J].现代电子技术,2012,35(21):62?64.

模拟集成电路的分析与设计范文2

关键词:模拟电子技术 课程设计 Proteus 仿真

中图分类号:G642 文献标识码:A DOI:10.3969/j.issn.1672-8181.2013.17.094

模拟电子技术课程设计是在我院经过多年教学实践,结合自动化、电气工程及其自动化、电子信息和通信工程专业的培养目标,旨在提高学生的实践技能和创新能力的综合实践教学环节[1],是学好模拟电子技术课程的重要教学环节,同时,给学生提供一个自主创新的平台,锻炼了学生自主分析问题,解决问题能力,培养学生理论联系实际的能力、设计的能力、综合应用的能力、动手的能力等。

电路设计仿真软件以其强大的仿真能力,便于学生学习与应用,是提高学生设计电路水平的有效方法[2-4]。Proteus的仿真是基于SPICE3F5的,能够进行模拟分析、数字分析、混合信号分析、频率分析等相关电路分析[5],在模拟电子技术试验课程设计中引入Proteus仿真软件,利于提高学生动手能力和创新能力,弥补教学资源不足,提高课堂教学的实效性。

1 Proteus软件特点

Proteus是英国Labeenter electronics公司开发的电子线路和单片机系统设计与仿真软件。软件由智能原理图输入系统ISISI(Intelligent Schematic Input System)、虚拟系统模型VSM、高级布线编辑软件ARES三大部分组成。

Proteus具备如下主要特点[6]:

①可以仿真、分析各种模拟器件和集成电路,其最大的特点是可以支持许多型号的单片机仿真,该软件的单片机仿真库里有51系列、PIC系列、AVR系列、摩托罗拉的68MHll系列等。

②提供了虚拟示波器、逻辑分析仪、信号发生器、计数器、电表、Virtual Terminal(使用电脑的键盘和显示器通过串口与外部的单片机系统通讯)等虚拟仪器仪表供选择用。

③能够进行SCH(原理图)与PCB(印制板)的设计。

④能和Keil、MATLAB等软件整合使用,以求达到更好的仿真效果。

2 Proteus在课程设计中的应用

课程设计要求学生利用提供的主要元件:ICL8038、μA741和电位器(由于经费有限)设计出符合要求的函数发生器电路。锻炼学生利用分立元件和集成元件进行模拟电路设计的能力;提高学生综合运用所学的理论知识独立分析和解决实际问题的能力;掌握Proteus仿真、PCB设计、制作实物和安装调试。

函数发生器电路具体要求如下:

①电路能输出正弦波、方波和三角波三种波形;

②输出信号的频率要求可调;

③输出波形的幅度可调。

根据设计要求,该电路主要由波形产生、频率调节和幅度调节等部分组成,总电路原理图如图 1 所示。下面简单说明各单元电路的设计与调试方法。

2.1 波形产生电路的设计

ICL8038是一种能产生三种波形信号的集成芯片。搭配一些调节电路就能产生一定频段的低失真的正弦波、三角波、矩形波等信号。

ICL 8038 的主要特点[7]:

①可同时输出任意的三角波、矩形波和正弦波等;

②频率可调范围:0.001Hz~300kHz;

③输出矩形波的占空比范围:2%~ 98%;

④输出正弦波的失真正:小于1%;

⑤低温度漂移:50ppm/℃;

⑥输出三角波的非线性线性度: 小于0.05%;

⑦输出波形的频率和占空比还可以由电流或电阻控制;

⑧采用单电源供电时,电压范围是10~30V;采用双电源时,电压可在±5~±15V范围内选取。

2.2 频率和失真调节电路设计

利用ICL8038集成芯片管脚8频率调节功能,设置合适的滑动变阻器RV1和电容C1,来对三种波形频率进行调节;同时利用管脚1和12线性度调节功能,选用合适的滑动变阻器RV2和RV3来进行失真调节。

2.3 幅度调节电路设计

利用ICL8038集成芯片管脚4和5,虽然可以进行一定的波形幅度调节,但是调节幅度范围较小,所以采用在波形产生后,接一个通用集成运放μA741,来进行幅度的调节。μA741采用反相比例运算电路,选择合适电阻R7和滑动变阻器RV5,可以得出电路的放大比例为:RV5/ R7。只要R7 和RV5的阻值选择合适,就可以得出不同的放大比例,满足幅度调节的要求。

2.4 Proteus仿真

利用Proteus提供的虚拟示波器,可得电路的仿真结果如图2。

2.5 PCB设计

利用Proteus 的SCH(原理图)和PCB(印制板)设计功能,设计的布线图如图3。

2.6 安装与调试

利用以上Proteus软件进行的原理图设计、仿真和PCB设计,组织学生亲自动手制作实物。由于Proteus软件强大的功能,使得学生课程设计工作事半功倍,锻炼了学生的独立思考能力,实践动手能力和团队协作能力。

3 结束语

模拟电子技术课程设计是针对学生学完数字电子技术课程和模拟电子技术课程后,开设的综合实践课程,目的在于提高学生对前序课程的理解能力和应用能力,锻炼学生动手能力和自主学习能力。结果表明,利用 Proteus 软件具有的特点,学生在设计电路时,可以多方位思考问题,在教学元器件短缺、经费有限的条件下,充分利用现有资源,设计出符合要求的电路。不仅有利学生进一步学习模拟电子技术课程和数字电子技术课程,而且有利于提高学生解决实际问题的能力和创新能力。最终达到提高学生对已有专业知识的应用能力和培养学生创新意识的目的,并为后续专业课的学习打下牢固的基础。

参考文献:

[1]吴志敏,朱正伟,何宝祥.Multisim10 在模拟电子技术课程实验中的应用[J].实验室科学,2012,(15):113-116.

[2]侯向锋,周兆丰.Proteus在模拟电子技术教学中的应用[J].湖北师范学院学报(自然科学版),2012,(32):113-118.

[3]刘艳,朱昌平,宋凤琴等.模拟电子技术实验教学中的学生实践能力培养[J].实验室技术与管理,2010,(27):110-112.

[4]陈跃华,杜明茜,向启荣.基于计算机仿真技术的电子电路探究性学习[J].实验室研究与探索,2007,(26):49-55.

[5]乔建华,李临生,田启川.Proteus在单片机教学中的应用分析[J].电气电子教学学报,2008,(20):70-73.

[6]杨秀增,肖丽玲.Proteus软件在“模拟电子技术”课程教学中的应用[J].中国电力教育,2012,(2):56-57.

模拟集成电路的分析与设计范文3

ElectronicsWorkbench(简称EWB),中文又称电子工程师仿真工作室。EWB5.12软件的仿真功能十分强大,近似100%地仿真出真实电路的结果。而且,它就像在实验室桌面或工作现场那样提供了示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器,万用表等广播电视设备设计、检测与维护必备的仪器、仪表工具。采用EWB虚拟电子工作台,即通过计算机软件仿真的方法,对电子线路分析进行模拟,下面以电子线路中设计的一个稳压电源实际电路为例,详细讲述其操作程序,以掌握电路仿真分析的应用方法。EWB软件最明显的特点是:仿真手段切合实际,选用元器件、仪器与实际情形非常相近。用EWB进行仿真模拟实验,实验过程非常接近实际操作的效果。各元器件选择范围广,参数修改方便,不会像实际操作那样多次地把元件焊下而损坏器件和印刷电路板。软件不但提供了各种丰富的分立元件和集成电路等元器件,还提供了各种丰富的调试测量工具:各种电压表、电流表、示波器、指示器分析仪等。是一个全开放性的仿真实验和课件制作平台,给我们提供了一个实验器具完备的综合性电子技术实验室。

关键词:EWB,仿真,电子技术

目录

摘要

目录

第1章前言

1.1简介

1.2EWB的使用

第2章EDA仿真技术在电子线路分析中的应用

2.1软件的功能与特点

2.1.1软件仿真分析设计流程

2.2应用仿真软件对实际电子线路进行仿真分析举例

图2-2导线连接图

2.2.2仪器的使用

2.2.3电路的仿真分析

2.2.4设计指标测试

第3章EWB在《模拟电子技术基础》课程教学中的应用

3.1在模拟电子技术中使用EWB的必要性

3.2研究的方法与内容

3.3单级放大器放大特性的研究

3.3.1相关数据的计算

3.3.2数据的分析

3.3.3单极放大器放大特性分析

3.4放大器的最佳工作点与晶体管最大允许输入电压的研究

3.5谐振荡器与波形变换

3.5.1测量振荡周期与波形

3.5.2输出波形的改善和应用

3.6集成运算放大器的应用

3.6.1反相与求和电路

3.6.2文氏桥式及RC振荡电路

第4章结论

致谢

参考文献

第1章前言

1.1简介

随着电子技术和计算机技术的飞速发展,电子线路的设计工作也日益显得重要。经过人工设计、制作实验板、调试再修改的多次循环才定型的传统产品设计方法必然被计算机辅助设计所取代,因为这种费时费力又费资源的设计调试方法既增加了产品开发的成本,又受到实验工作场地及仪器设备的限制。为了克服上述困难,加拿大InteractiveImageTechnologies公司推出的基于Windows95/98/NT操作系统的EDA软件(ElectronicsWorkbench“电子工作台”,EWB)。他可以将不同类型的电路组合成混合电路进行仿真。EWB是用在计算机上作为电子线路设计模拟和仿真的新的软件包,是一个具有很高实用价值的计算机辅助设计工具。目前已在电子工程设计等领域得到了广泛地应用。与目前流行的电路仿真软件相比较,EWB具有界面直观、操作方便等优点。他改变了有些电路仿真软件输入电路采用文本方式的不便之处,该软件在创建电路、选用元器件的测试仪器等均可以直接从屏幕图形中选取,而且测试仪器的图形与实物外形基本相似,从而大大提高了电子设计工作的效率。此外,从另一角度来看,随着计算机技术和集成电路技术的发展,现代电子与电工设计,已经步入了电子设计自动化(EDA)的时代,采用虚拟仿真的手段对电子产品进行前期工作的调试,已成为一种发展的必然趋势。通过对实际电子线路的仿真分析,从而提高对电路的分析、设计和创新能力。

1.2EWB的使用

ElectronicsWorkbench(简称EWB),中文又称电子工程师仿真工作室。该软件是加拿大交换图像技术有限公司(INTERACTIVEIMAGETECHNOLOGIESLtd)在90年代初推出的EDA软件。而在国内应用EWB软件,却是近几年的事。目前应用较普遍的EWB软件是在Windows95/98环境下工作的ElectronicsWorkbench5.12(简称EWB5.12),该公司近期又推出了最新电子电路设计仿真软件EWB6.0版本。

在众多的应用于计算机上的电路模拟EDA软件中,EWB5.12软件就像一个方便的实验室。相对其它EDA软件而言,它是一个只有几兆的小巧EDA软件。而且功能也较单一、似乎不太可能成为主流的EDA软件形象,也就是用于进行模拟电路和数字电路的混合仿真。

但是,EWB5.12软件的仿真功能十分强大,近似100%地仿真出真实电路的结果。而且,它就像在实验室桌面或工作现场那样提供了示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器,万用表等广播电视设备设计、检测与维护必备的仪器、仪表工具。EWB5.12软件的器件库中则包含了许多国内外大公司的晶体管元器件,集成电路和数字门电路芯片。器件库没有的元器件,还可以由外部模块导入。

EWB5.12软件是众多的电路仿真软件最易上手的。它的工作界面非常直观、原理图与各种工具都在同一个窗口内,即使是未使用过它的工程技术人员,稍加学习就可以熟练地应用该软件。现代的广播电视设备电路结构复杂,而EWB5.12软件,可以使你在许多电路设计、检测与维护中无须动用电烙铁就可以知道它的结果,而且若想更换元器件或改变元器件参数,只须点点鼠标即可。

模拟集成电路的分析与设计范文4

一、明确“模拟电子技术”课程各部分内容的地位和作用

与其他课程一样,“模拟电子技术”课程的绪论课非常重要,这堂课必须讲明:什么是模拟电子技术;本课程的主要内容;本课程的目的和要求;模拟电子技术的特点;放大电路及其模型;放大电路的主要性能指标。尤其重要的是“本课程的主要内容”部分。教师可以以一个简单的电子系统组成为例,说明模拟电子技术课程的主要内容及各部分内容的地位和作用。图1(b)是扩音机的详细框图。图中的信号源,在实际工程中是由各种各样的传感器将待处理的温度、速度、压力、声音等信号转换为电信号,图1(a)中的拾音器就是将声音信号转换为电信号的传感器,充当信号源;在实验研究中,由信号产生电路充当信号源,信号产生电路便是教材第9章(以康光华主编的《电子技术基础(模拟部分)》[第五版]为例,以下同)的内容,[1]信号产生电路包括正弦波产生电路和非正弦波(矩形波、三角波等等)产生电路。图1中的放大电路是电子系统中对信号进行放大和处理的主体,其基础是由双极结型晶体管BJT或场效应管FET构成的放大电路,教材的第4章、第5章分别介绍这两部分内容。高性能的放大电路采用模拟集成运算放大器,集成运放是具有高开环增益、多级直接耦合的放大电路,教材的第2章、第6章都是关于集成运放的内容。“增益”、“开环”等是放大电路、反馈中的重要概念。反馈对于电子系统的运行具有重要意义,尤其是其中的负反馈是电子系统稳定运行的充分必要条件,教材的第7章介绍反馈放大电路。多级放大电路的末级及末前级称为功率放大电路,功放较前级放大电路有一定的特殊性,教材的第8章介绍功率放大电路。所有的电子系统必须有直流电源提供能量才能正常工作,正如手机必须装电池(同时电池必须有电)才能使用。教材的第10章介绍直流电源。二极管是电子系统中最基本也是最重要一个器件,教材的第3章介绍二极管。通过上述讲解,学生对模拟电子技术课程的主要内容有了宏观了解,但同时也产生了很多问题,诸如“放大”、“增益”、“反馈”等等究竟是什么?恢宏的十章都讲了些什么?学习后可以解决哪些实际工程问题?正是如此,才激发了学生的求知欲,使学生带着问题学习。教学实践证明,这是培养学生学习兴趣、激发学生自主学习、提高模拟电子技术课程教学效果的好办法。

二、教学中适当举例

“模拟电子技术”课程中概念很多,难以理解。适当的举例,不仅使抽象的概念易于理解,且难以忘怀。

1.关于放大电路中的静态工作点放大电路中直流与交流共存,静态工作点决定动态工作性能,这是“模拟电子技术”课程的难点之一,很多学生对此不能理解,表现有二。其一是做放大电路实验的测试动态性能指标时不给放大电路加直流电源,导致实验结果不正常;其二是在做放大电路的分析计算时,静态分析和动态分析的方法使用不当,互相混淆。放大电路必须要有合适的静态工作点,这是由PN结及三极管的单向导通特性决定的。为了说明这一点,在教学实践中提炼出下述例子:老师站在地板上,若让老师上、下各移动100cm,行不行?不行!怎么办?得让老师站得高一些,至少离地100cm才能上、下各移动100cm;若老师站得过高,离天花板只有60cm,老师能上、下各移动100cm吗?若老师站在30cm高的讲台上,能上、下各移动100cm吗?老师站在什么位置,上、下各移动hcm,这个h最大呢?这个形象的例子,学生通过主动参与、积极思考对放大电路设置静态工作点的必要性、饱和失真、截止失真、最大动态输出范围等等抽象的概念充分地理解。

2.关于电子系统的温度特性由于电子器件材料——半导体的温度特性,决定了电子系统的工作性能受温度的影响,[2]以笔者在20世纪80年代中期在天津无线电一厂工作的一个案例说明这一点。当时厂里生产一批出口的烟雾报警器,为赶工期,工人加班加点,烟雾报警器的调试系统24小时连续运转。调试好的产品入库暂存,待购买方提货抽检时,发现多个批次的产品指标不合格,这对厂方是个很大的打击。经分析,原因是调试系统连续运转一定时间后工作温度上升,使得系统的工作点偏离设计工作点。后将调试系统安置在恒温的房间,问题得以解决。这一案例使学生对于温度对电子系统的影响有了间接的感性认识,在学习“温度对放大电路性能的影响”、“提高放大电路温度稳定性”等内容时不再感觉陌生,且有急于了解这些内容的心理,教学效果当然很好。

3.关于反馈、开环、闭环“模拟电子技术”课程中的反馈也是一个教学难点。各项理论分析中提及的“开环”、“闭环”究竟是什么?一个形象的例子可以说明。两军对垒,敌方有人来投诚,所带来的信息不能称为反馈的信息,因为从敌方到我方仅仅是一个单方向的开环系统;必须是我方派出的情报人员到敌方进行缜密的侦查工作,所带回的信息才能称为反馈的信息,因为从我方到敌方再回到我方构成了一个闭环系统,经闭环系统得到的信号称为反馈信号。

三、理论教学与实验教学相互融合

实验教学在“模拟电子技术”课程的教学中占据重要地位。模拟电子技术实验,不仅训练学生使用电子仪器仪表的技能、测试电子电路的技能,还能加深学生对理论课程的理解、验证模拟电子技术课程的理论,更重要的是培养学生发现问题、分析问题、解决问题的能力。为使理论教学与实验教学更好地融合,在时间上将实验教学集中在后8周开设;在内容上举下述两例。

1.三极管的参数掌握三极管的参数是用好三极管的重要前提。在三极管的诸多参数中,有一个极限参数——集电极最大允许电流ICM,其定义为:当集电极电流增加时,电流放大系数β要下降,当β下降到一定数值时的集电极电流称为集电极最大允许电流ICM。关于电流放大系数β随集电极电流增加而下降的现象,在上理论课时要求学生在“共射放大电路的设计”实验中进行观察。[3]在对所设计的电路进行调试的阶段,用两个电流表同时观测静态基极电流IB和集电极电流IC,调整基极偏置电阻,测算电流放大系数β=IC/IB观察β随集电极电流增加而下降的现象,加深对三极管极限参数的理解。

2.放大电路的动态性能指标放大电路的动态性能指标包括增益、输入电阻、输出电阻、通频带等等。为什么将输入电阻、输出电阻作为重要的性能指标,要求学生重点掌握其求解方法呢?以电压放大电路的输出电阻为例,它反映了放大电路带负载的能力,在上理论课时就要求学生在“单管放大器”实验中,[3]将放大电路的静态工作点调整到交流负载线的中部后,在一定的交流输入信号下,观测放大电路空载和有载两种情况下输出信号的大小;在负载电阻RL一定的情况下,集电极电阻RC不同(在一定范围内)时输出信号的大小,从而理解放大电路的输出电阻对放大能力的影响。单管放大器的实验电路如图2所示。

四、以“模拟电子技术”课程为载体,培养学生的工程意识

“模拟电子技术”是关于模拟电路的分析、设计、应用研究的工程实践,课程特点是:定性分析、近似估算、经验设计、实验调整。这决定了模拟电子技术课程具有很强的工程特性,以其为载体培养学生的工程意识具有天然的优势。[4]

1.设计性实验的调试在“模拟电子技术”课程的设计性实验“共射放大电路的设计”中,要求学生先对电路的元器件参数进行理论分析、计算,然后到实验室进行调试。学生按理论计算参数选择元器件,安装好电路,通电后,无论是静态指标还是动态指标都与设计要求不符!究其原因,一是电阻元件的实际阻值不同于标称值,如实验室常用的E12系列电阻,允许存在±10%的误差;二是手册给出的三极管电流放大系数β是一个范围,[5]理论计算时取了一个确定的数值,而β又是随着集电极电流IC改变的;三是电容不理想,静态时并非开路,动态时并非短路。诸多原因,都是由于理论值与实际值的偏差,导致电子系统必须经定性分析后进行近似估算,根据经验进行设计,最后通过实验进行调整。几乎所有的工程系统都要经过调试才能正常运行,通过设计性实验的调试环节,学生逐渐培养起工程意识。

2.集成运算放大器的调零集成运算放大器的第1级采用差动结构以减小零点漂移。从理论上讲差动放大电路结构对称,相应元件参数相同,在共模输入的情况下输出应该为零,而在“运放基本应用一(运算电路)”的实验中却要对电路进行调零,调零电路如图3所示。测试结果也说明,图3中的电位器RW2的取值对运放的输出有影响,仅仅在某一数值时将输出调为零。由于实际工作中或多或少会出现不对称性(或由外部电路引起),使集成运放存在输入失调电压和输入失调电流,当运算放大器组成的线性电路输入信号为零时,输出往往不等于零。为了提高电路的运算精度,要求对失调电压和失调电流造成的误差进行补偿,这就是运算放大器的调零。

模拟集成电路的分析与设计范文5

关键词:模拟电路;故障诊断;小波分析法

中图分类号:TN108.7 文献标识码:A文章编号:1007-9599 (2010) 01-0000-01

模拟电路发生了故障,就不能达到设计时所规定的功能和指标,这种电路称为故障电路。故障诊断就是要对电路进行一定的测试,从测试结果分析出故障。模拟电路故障诊断是电路分析理论中的一个前沿领域。它既不同于电路分析,也不属于电路综合的范畴。模拟电路故障诊断所研究的内容是当电路的拓扑结构已知,并在一定的电路激励下知道一部分电路的响应,求电路的参数,他是近代电路理论中新兴的第三个分支。

一、模拟电路故障

电路诞失所既定的功能称为故障,在模拟电路中的故障类型及原因如下:从故障性质来分有早期故障、偶然故障和损耗故障。早期故障是由设计、制造的缺陷等原因造成的、在使用初期发生的故障,早期故障率较高并随时间而迅速下降。偶然故障是由偶然因素造成的、在有效使用期内发生的故障,偶然故障率较低且为常数。损耗故障是由老化、磨损、损耗、疲劳等原因造成的、在使用后期发生的故障,损耗故障率较大且随时间迅速上升。从故障发生的过程来分有软故障、硬故障和间歇故障。软故障又称渐变故障,它是由元件参量随时间和环境条件的影响缓慢变化而超出容差造成的、通过事前测试或监控可以预测的故障。硬故障又称突变故障。它是由于元件的参量突然出现很大偏差(如开路、短路)造成的、通过事前测试或监控不能预测到的故障。从同时故障数及故障间的相互关系来分有单故障、多故障、独立故障和从属故障。单故障指在某一时刻故障仅涉及一个参量或一个元件,常见于运行中的设备。多故障指与几个参量或元件有关的故障,常见于刚出厂的设备。

二、模拟电路故障测试的传统方法

一般来讲,模拟电路故障诊断的方法可以分为估计法,测试前模拟法和测试后模拟法三大类。估计法是一种近似法,这类方法一般只需较少的测量数据,采用一定的估计技术,估计出最可能发生故障的元件。这类方法又可分为确定法和概率法。确定法依据被测电路或系统的解析关系来判断最可能的故障元件,概率法是依据统计学原理决定电路或系统中各元件发生故障的概率,从而判断出最可能的故障元件。

测前模拟法又称故障字典法或故障模拟法,其理论基础是模式识别原理,基本步骤是在电路测试之前,用计算机模拟电路在各种故障条件下的状态,建立故障字典;电路测试以后,根据测量信号和某种判决准则查字典。从而确定故障。选择测试测量点是故障字典法中最重要的部分。为了在满足隔离要求的条件下使测试点尽可能少,必须选择具有高分辨率的测试点。

测后模拟法又称为故障分析法或元件模拟法,是近年来虽活跃的研究领域,其特点是在电路测试后,根据测量信息对电路模拟,从而进行故障诊断。根据同时可诊断的故障是否受限,SAT又分为任意故障诊断(或参数识别技术)及多故障诊断(或故障证实技术)。

三、模拟电路的故障测试的创新方法――小波分析法

1.小波分析法是基于神经网络的模拟测试

基于神经网络的模拟从测试点提取电压信号特征进行故障诊断,而从电源电流测试角度开展的工作还十分有限。模拟电路中的电流是一个重要的参数,也是故障信息的重要组成部分,包含着电路拓扑结构的丰富信息。若电路发生故障,输出电流波形将随之发生相应变化,含有丰富的故障类信息。对任一电路而言,电源节点是通用的,测量也比较方便,特别是目前模拟/混合电路的集成度与复杂度不断提高,可利用的测试管脚有限,给测试和诊断带来极大困难,因此对电源电流测试的研究具有重要意义。

小波变换具有同时在时-频域分析信号、大量压缩数据的属性,对采样数据经小波变换预处理后,能有效提取故障特征,简化了神经网络结构、提高了训练速度。小波变换具有同时在时-频域分析信号、大量压缩数据的属性,已广泛应用于信号检测、故障诊断等研究领域。在模拟集成电路故障诊断中,小波变换用来预处理采样数据,提取故障特征。二进小波变换通过多分辨分析算法来实现,将信号分解为近似(低频)和细节(高频)两部分,分别对近似和细节继续分解,形成信号的多层分解结构。

2.基于小波分析的模拟电路故障诊断

在电路信号的特征提取中,常采用频谱分析的方法。但是基于统计分析的傅立叶分析仅对不随时间变化的平稳信号十分有效,对于模拟电路响应信号中通常含有非平稳或时变信息却不能有效地提取故障特征。另外,模拟电路中含有大量噪声,若直接将高频成分当作噪声成份舍弃会造成有效成分的损失,若单纯对电路的输出进行分析,会导致故障模糊集较多,分辨率不高。而小波分析所具有的时频局部化特性、良好的去噪能力,无需系统模型结构的优势使之成为分析和处理此类信号的有效工具,也是目前在模拟电路故障诊断领域使用最多的一种特征提取方法,对模拟电路中的软、硬故障均适用。

小波分析的基本原理是通过小波母函数在尺度上的伸缩和时域上的频移来分析信号,适当选择母函数可使扩张函数具有良好的局部性,非常适合对非平稳信号进行奇异值分析,以区分信号的突变与噪声。小波分析技术实现时与神经网络有两种结合方式:一是松散型结合,二是紧致型结合。

总之,模拟电路故障诊断的主要任务是在已知网络的拓扑结构、输入激励信号和故障下的响应时,求解故障元件的物理位置和参数。模拟电路故障诊断理论和方法自研究以来,取得了很多成就,也提出了不少故障诊断方法。

参考文献:

[1]芮S,李明齐,张小东,易辉跃,胡宏林.两次一维维纳滤波信道估计的一种噪声方差优化方法[J]电子学报,2008,08

模拟集成电路的分析与设计范文6

关键词:Proteus仿真;模拟电子技术;职业教育

模拟电子技术课程是我校五年制高职电子信息工程技术专业核心教学与项目训练课程,电子信息工程专业人才培养方案赋予模拟电子技术课程的任务是:使学生掌握线性典型基本单元电路的工作原理,学会分析模拟电路的一般方法,培养一定的计算分析能力,培养较强的操作技能,为学生的终身学习及工作打下坚实基

础。在教学中,如何完成专业人才培养方案赋予课程的任务?如何让电路理论与实际应用之间很好地对接?如何化繁为简、形象生动地理解所学所教?这些问题一直困扰着师生,本文结合Proteus仿真软件在模拟电子技术课程中的教学做一些尝试。

一、职业院校模拟电子技术课程教学模式变革

模拟电子技术课程是电类专业非常重要的专业基础课程,它不但集繁杂理论、实验实践于一体,与工程实际也密不可分;而且对专业能力的形成、后续课程的深入学习影响深远。传统的“粉笔+书本”教学模式已经完全无法适应教育现代化进程的不断推进和

素质教育的深入开展;突出以能力为本位、以学生为主体、以就业为导向的理实一体化模式在模拟电子技术教学实践中效果明显。模拟电子技术课程理实一体化模式中的“理”是指电路的原理或理论,“实”是指实验或工程实践。理实一体化模式教学既要求师生做好理论的教和学,同时要求在课堂内外对学生展开实践教学,深入实验室、工作现场为学生进行讲解,配合理论,加深学生对模拟电子技术相关知识的理解与认知。

但在实际教学中,“实”的教学经常受到经费和实验或实践条

件的限制,无法及时提供实验或实践场所或所需元器件来装接、调整电器参数,而且存在仪器和元器件的损耗问题。在“理”的教与学过程中,师生共同面对抽象枯燥的电路理论、空洞复杂的电路分

析——干涩无味又难以理解,师生的教与学都费力、费时,还无法达到预期的教学效果。

迅速发展的电子与信息技术提供了EDA教学新平台,如果恰当地运用EDA工具软件虚拟仿真来辅助教学,可以较好地克服我们在理实一体化教学中遇到的这些困难。EDA是电子设计自动化(Electronic Design Automation)的缩写。在电子领域中,EDA技术发挥着重大的作用,是现代电子设计的核心。在模拟电子技术教学中,从早期的EWB到现在的Multisim,我们的确感受到了EDA的仿真技术能打破专业教学上的一些局限性,在激发学生学习兴趣的同时保证了良好的教学效果。

二、Proteus与模拟电子技术课程教学

1.认识Proteus软件

Proteus是英国Labcenter electronics公司开发的EDA工具软件,虽然只有20多年的历史,但在全球的使用范围很广。Proteus软件的功能强大,它集电路设计、制版及仿真等多功能于一体,不仅能够对电工、电子技术学科涉及的电路进行设计与分析,还能对微处理器进行设计和仿真,并且功能齐全,界面多彩,是近年来备受电子设计爱好者青睐的一款电子线路设计与仿真软件。Proteus主要由ARES和ISIS两大模块构成,ARES主要用于印刷电(PCB)的设计及其电路仿真,ISIS主要用于原理图的设计并仿真:包含有模拟电路仿真、数字电路仿真、单片机仿真。Proteus软件所提供了30多个元件库,8000多千种元件,且随着版本的不断升级,数量仍在不断增加,元器件涉及数字和模拟、交流和直流等25个大类。

2.结合Proteus仿真平台的模拟电子技术课程教学

Proteus仿真结果的显示形式非常适合于学生认知电路的功能,是模拟电子技术教学良好的辅助手段。恰当地应用,不仅可以帮助学生掌握模拟电子技术教学的基础知识、基本理论、基本分析和设计方法,为学习后续课程提供必要的理论基础知识和实践技

能,还可以培养学生对知识的广泛兴趣,激发他们的创造性。与传统实验方式相比,是一种更能突出以学生为中心的开放式教学。

选择Proteus软件与模拟电子技术教学相对接,是因为它不但在电路仿真功能上可以和Multisim相媲美,而且它的PCB制版功能也可以和Protel相媲美,更重要的是它的单片机仿真功能是其

他任何EDA软件都不具备的。可以看出Proteus软件的功能不但强大,而且每种功能都不逊色于同类软件,是电子信息类专业学生学习专业课程难得的一个工具软件。当然,电路的仿真属于理想状况,并不能完全代替实验室实验。如果我们能合理安排一些实践内容和实践时间,辅以Proteus软件来学习,我们的教和学就会事半功倍。

参考文献:

[1]陈其纯.电子线路.2版.北京:高等教育出版社,2008.

[2]胡宴如.模拟电子技术.2版.北京:高等教育出版社,2004.

[3]朱清慧,张凤蕊,翟天嵩,等.Proteus教程.1版.北京:清华大学出版社,2008.